ORDER AND SCHWARTZ DISTRIBUTIONS[†]

by W. A. FELDMAN and J. F. PORTER

(Received 9 June, 1975)

Introduction. The space \mathscr{D}' of Schwartz distributions on the unit circle Γ in the plane is topologically a considerable generalization of the space \mathscr{D}'_0 of regular, finite Borel measures on Γ . However, the order structure of \mathscr{D}' is usually taken to be the same as that of \mathscr{D}'_0 : there are no "positive" distributions which are not measures. This perhaps warrants consideration, since the order structure of \mathscr{D}'_0 generates its topology. In this paper we construct a system of order structures for \mathscr{D}' which is a more natural complement in the intermediate stages to the topology of \mathscr{D}' and which provides an interpretation of \mathscr{D}' with its Schwartz topology as a quotient of a generalized base norm space V'. Where \mathscr{D}_0 denotes the space of continuous functions on Γ with its supremum norm topology, V' is the dual of $\prod_{n=0}^{\infty} \mathscr{D}_0$. The space $\Pi \mathscr{D}_0$ contains the infinitely differentiable functions on Γ with their usual topology, and (via the pointwise ordering on \mathscr{D}_0) $\Pi \mathscr{D}_0$ in its product ordering is realized as a generalized order unit space. Some consequences for harmonic functions are discussed.

We cite [5] and [9] for general information on partial orderings for topological vector spaces and [10] for general information on Schwartz distributions.

1. Partial Order Structures on \mathcal{D}_n and \mathcal{D}'_n . We recall that the Banach space \mathcal{D}_0 of real continuous functions on Γ with the norm

$$||f||_0 = \sup \{|f(x)| : x \in \Gamma\}$$

for f in \mathcal{D}_0 and positive cone \mathcal{D}_{0+} of pointwise non-negative members of \mathcal{D}_0 is an order unit space (and an *M*-space). Where \mathcal{D}'_{0+} denotes the set of linear functionals ϕ on \mathcal{D}_0 satisfying $\phi(f) \ge 0$ for all f in \mathcal{D}_{0+} and $(\mathcal{D}'_0, \|\cdot\|'_0)$ is the Banach dual of $(\mathcal{D}_0, \|\cdot\|_0)$, the system $(\mathcal{D}'_0, \mathcal{D}'_{0+}, \|\cdot\|'_0)$ is a base norm space (and an *L*-space). The order unit 1 in \mathcal{D}_{0+} can be taken as the generator of $\|\cdot\|_0$ (i.e., $\|\cdot\|_0$ is the Minkowski functional on the order interval

$$[-1, 1]_0 = \{f \in \mathcal{D}_0 : -1 \leq f \leq 1\}).$$

The Riesz Representation Theorem states that $(\mathscr{D}'_0, \|\cdot\|_0)$ can be identified with the space of regular, finite Borel measures on Γ with total variation norm and that \mathscr{D}'_{0+} can be identified, with the non-negative measures in \mathscr{D}'_0 . The base of probability measures on Γ for \mathscr{D}'_{0+} corresponds to the order unit 1.

Let \mathcal{D}_n (n = 1, 2, ...) be the space of *n*-times continuously differentiable functions on Γ with the norm

$$|||f|||_{n} = ||f||_{0} + ||f^{(1)}||_{0} + \ldots + ||f^{(n)}||_{0},$$

[†] Some of the results in this paper appear in the second author's dissertation (Syracuse University, 1971) written under the supervision of Professor Guy Johnson, Jr.

where $f^{(j)}$ is the *j*th derivative of the function f in \mathcal{D}_n . Then $\{\mathcal{D}_n\}_{n=0}^{\infty}$ is a decreasing sequence of Banach spaces with successively increasing norms. The corresponding dual spaces form an increasing sequence $\{\mathscr{D}'_n\}_{n=0}^{\infty}$ with successively decreasing norms, which we will denote by $\|| \cdot \||_n'$ for n = 1, 2, ... Let \mathcal{D} denote $\bigcap_{n=0}^{\infty} \mathcal{D}_n$ with the projective limit (Schwartz) topology. The space \mathscr{D}' of Schwartz distributions on Γ is the topological dual of \mathscr{D} . Moreover, $\mathscr{D}' = \bigcup_{n=0}^{\infty} \mathscr{D}'_n$ and the Schwartz topology on \mathscr{D}' is the inductive limit topology. One defines " derivatives " of members ϕ of \mathcal{D}' by stipulating that

$$\phi^{(n)}(f) = (-1)^n \phi(f^{(n)})$$

for all f in \mathcal{D} , this being essentially an extension of the formula for integration by parts.

We induce the order structures of \mathscr{D}_0 and \mathscr{D}'_0 onto \mathscr{D}_n and \mathscr{D}'_n , respectively, in a way which is compatible both to their usual topologies and with the natural embeddings $\mathscr{D}_n \subseteq \mathscr{D}_{n-1}$ and $\mathscr{D}'_n \supseteq \mathscr{D}'_{n-1}$. All order structures to be considered evolve from the map M of the following proposition. Here, f denotes the mean value

$$(1/2\pi)\int_0^{2\pi}f(t)\,dt$$

and $f^{(n)}$ denotes the *n*th derivative of f. The choice of M is motivated by the desire to convert differentiation in \mathcal{D} into an isomorphism whose dual produces the derivatives in \mathcal{D}' and whose inverse preserves the order structure of \mathcal{D}_0 .

PROPOSITION 1. Let $M: \mathcal{D}_1 \to \mathcal{D}_0$ be defined by $M(f) = \bar{f} - \pi f^{(1)}$. Then M(1) = 1 and for *each* n = 1, 2, ...

- M | D_n is an isomorphism of D₀ onto D_{n-1};
 M establishes an isomorphism Mⁿ of D_n onto D₀, with Mⁿ(f) = f+(-π)ⁿf⁽ⁿ⁾.

Proof. Trivially, M(1) = 1. For (1), M and hence $M | \mathcal{D}_n$ for each n is clearly linear. If $f - \pi f^{(1)} = 0$, then $f^{(1)}$ is the constant function f/π . Since, by Rolle's Theorem, $f^{(1)}(x_1) = 0$ for some x_1 in Γ , then $f^{(1)}(x) = \overline{f} = 0$ for all x in Γ and f is a constant. This constant, being its own mean value, must be zero. Then M, and hence $M | \mathcal{D}_n$ for each n, is one-to-one. To see that M is onto, let g be in \mathcal{D}_0 and let

$$k_g = \left(\int_0^{2\pi} dx \int_0^x g(t) dt\right) / 2\pi^2.$$

Define

$$f(x) = \left[\left(x\bar{g} - \int_0^x g(t) \, dt \right) / \pi \right] + k_g.$$

Then f is in \mathcal{D}_1 and $\bar{f} = \bar{g}$, so that $M(f) = \bar{f} - \pi f^{(1)} = g$. For g in \mathcal{D}_{n-1} this construction produces a function f in \mathcal{D}_n ; hence, $M | \mathcal{D}_n$ is onto \mathcal{D}_{n-1} for each n. For (2), define

26

 $M^n: \mathcal{D}_n \to \mathcal{D}_0$ to be the composite

$$(M \mid \mathscr{D}_1) \circ (M \mid \mathscr{D}_2) \circ \ldots \circ (M \mid \mathscr{D}_n).$$

Since each factor is an isomorphism, so is M^n . The formula for M^n follows by induction.

It will be convenient also to denote the restriction $M^n | \mathcal{D}_{n+j}$ for all integers $j \ge 0$ by M^n ; with the conventions that M^0 is the identity operator on \mathcal{D}_0 and that M^{-n} is the inverse of M^n , we will use the laws of integral exponents freely on M. Of course, $M^n(1) = 1$ for all n. Since M^{-n} is an isomorphism (n = 1, 2, ...), the set $M^{-n}\mathcal{D}_{0+}$ is a positive cone for \mathcal{D}_n . We will denote this positive cone by \mathcal{D}_{n+} ; thus f is in \mathcal{D}_{n+} if and only if

$$\tilde{f} + (-\pi)^n f^{(n)} = M^n f \ge 0.$$

We also define a norm for \mathcal{D}_n by

$$||f||_n = ||M^n f||_0 = \sup \{ |\tilde{f} + (-\pi)^n f^{(n)}(x)| : x \in \Gamma \}.$$

Thus $(\mathcal{D}_n, \mathcal{D}_{n+1}, \|\cdot\|_n)$ is an *M*-space with order unit 1 isometric and order-isomorphic to $(\mathcal{D}_0, \mathcal{D}_{0+1}, \|\cdot\|_0)$.

PROPOSITION 2. The positive cones $\{\mathcal{D}_{n+}\}_{n=0}^{\infty}$ form a decreasing sequence. The norms $\{\|\cdot\|_n\}_{n=0}^{\infty}$ successively increase.

Proof. Let f be in \mathcal{D}_{1+} and suppose $f(x_0) \leq 0$ for some x_0 in Γ . By translating f we can assume $x_0 = 0$. Since $Mf \geq 0$, the function

$$h(x) = \int_0^x (Mf)(t) dt = x\bar{f} - \pi [f(x) - f(0)]$$

is non-negative and non-decreasing, with $\bar{h} = \pi f(0)$. Since $f(0) \leq 0$ then h must vanish i.e., $xf - \pi [f(x) - f(0)] = 0$; since f is periodic it must also vanish. Thus $\mathcal{D}_{1+} \subseteq \mathcal{D}_{0+}$. If f is in \mathcal{D}_{n+} for n > 1 then $M^{n-1}f$ is in \mathcal{D}_{1+} and hence in \mathcal{D}_{0+} so that f is in $\mathcal{D}_{(n-1)+}$. Thus $\{\mathcal{D}_{n+}\}_{n=0}^{\infty}$ is decreasing. It now follows that the order intervals

$$[-1,1]_n = \{f \in \mathcal{D}_n : -1 \leq M^n f \leq 1\}$$

form a decreasing sequence

$$[-1,1]_0 \supseteq [-1,1]_1 \supseteq \ldots \supseteq [-1,1]_n \supseteq \ldots$$

Since $[-1, 1]_n$ is also the unit ball in $(\mathcal{D}_n, \|\cdot\|_n)$ (n = 0, 1, 2, ...) the norms increase with n.

PROPOSITION 3. The norms $\|\cdot\|_n$ and $\||\cdot\|\|_n$ are equivalent.

Proof. (Suprema will be taken over all x in Γ .) Clearly

$$||f||_0 \le |||f|||_n$$
 and $||f^{(n)}||_0 \le |||f|||_n$.

Since $\tilde{f} = f(x_0)$ for some x_0 in Γ ,

$$|\bar{f}| \leq ||f||_0 \leq |||f|||_n$$

Thus

28

$$||f||_{n} = \sup |\vec{f} + (-\pi)^{n} f^{(n)}(x)|$$

$$\leq |\vec{f}| + \pi^{n} \sup |f^{(n)}(x)|$$

$$\leq (1 + \pi^{n}) |||f|||_{n}.$$

On the other hand,

$$\|f\|_{n} = \sup |\bar{f} + (-\pi)^{n} f^{(n)}(x)|$$

$$\geq \sup (\pi^{n} |f^{(n)}(x)| - |\bar{f}|)$$

$$= \pi^{n} \|f^{(n)}\|_{0} - |\bar{f}|.$$

Thus

$$\pi^{n} \| f^{(n)} \|_{0} \leq \| f \|_{n} + | \bar{f} | \leq 2 \| f \|_{n}$$

so that $||f^{(n)}||_0 \le 2\pi^{-n} ||f||_n$. Then

$$||f|||_{n} = ||f||_{0} + ||f^{(1)}||_{0} + \dots + ||f^{(n)}||_{0}$$

$$\leq ||f||_{0} + 2\pi^{-1} ||f||_{1} + \dots + 2\pi^{-n} ||f||_{n}$$

$$\leq (1 + 2\pi^{-1} + \dots + 2\pi^{-n}) ||f||_{n},$$

this last step by Proposition 2.

We now wish to dualize and summarize the results of this section. For a linear functional ϕ on \mathcal{D}_n , let

$$\|\phi\|'_n = \sup\{|\phi(f)| : f \in \mathcal{D}_n, \|f\| \leq 1\}.$$

Let us presume the Schwartz notation \mathscr{D}'_n for the set of those ϕ for which $\|\phi\|'_n < +\infty$ and denote by \mathscr{D}'_{n+} the set of those ϕ for which $\phi(f) \ge 0$ whenever f is in \mathscr{D}_{n+} . Let $L^n : \mathscr{D}'_0 \to \mathscr{D}'_n$ denote the dual of $M^n : \mathscr{D}_n \to \mathscr{D}_0$, i.e. $L^n(\sigma) = \sigma \circ M^n$ for all σ in \mathscr{D}'_0 . For the sake of emphasis, Proposition 3 is incorporated into the next theorem.

THEOREM 1. Let n = 1, 2, ...

(1) $(\mathcal{D}_n, \mathcal{D}_{n+}, \|\cdot\|_n)$ is an M-space with order unit 1, isometric and order-isomorphic to $(\mathcal{D}_0, \mathcal{D}_{0+}, \|\cdot\|_0)$. The norm $\|\cdot\|_n$ is equivalent to the frequently employed norm $\|\|\cdot\|\|_n$ for \mathcal{D}_n and increases with n.

(2) $(\mathscr{D}'_n, \mathscr{D}'_{n+}, \|\cdot\|'_n)$ is an L-space isometric and order-isomorphic to $(\mathscr{D}'_0, \mathscr{D}'_{0+}, \|\cdot\|'_0)$. \mathscr{D}'_n is the space of nth order Schwartz distributions on Γ . The norm $\|\cdot\|'_n$ is equivalent to $\|\cdot\|'_n$ and decreases as n increases.

Proof. Part (1) contains nothing new. For part (2) we remark that it follows from part (1) that the order-theoretic and Banach duals of $(\mathcal{D}_n, \mathcal{D}_{n+1}, \|\cdot\|_n)$ coincide and that $(\mathcal{D}'_n, \mathcal{D}'_{n+1}, \|\cdot\|_n)$ is an L-space. That \mathcal{D}'_n is indeed the space of *n*th order distributions on Γ follows from Proposition 3, which also implies that $\|\cdot\|_n'$ and $\|\|\cdot\|_n'$ are equivalent. That $\{\mathcal{D}'_{n+1}\}_{n=0}^{\infty}$ increases is dual to Proposition 2, as is the fact that the norms $\{\|\cdot\|_n'\}_{n=0}^{\infty}$ decrease.

(Here we use the convention that if ϕ is not in \mathscr{D}'_n , then $\|\phi\|_n = +\infty$.) The mapping L^n , being the dual of an isometry and order-isomorphism, is an isometry and order-isomorphism, with $L^n \mathscr{D}'_{0+} = \mathscr{D}'_{n+}$ and $\|L^n \sigma\|'_n = \|\sigma\|'_0$.

Utilizing the formula $\phi^{(n)}(f) = (-1)^n \phi(f^{(n)})$ mentioned at the beginning of the paper, we can obtain an explicit description for L^n . Here, and throughout the paper, *m* will be the Lebesgue measure normalized to have $m\Gamma = 1$. For f in \mathcal{D}_n and σ in \mathcal{D}'_0 ,

$$(L^n \sigma)(f) = \sigma(M^n f) = \sigma(\overline{f} + (-\pi)^n f^{(n)})$$
$$= \int_{\Gamma} \overline{f} \, d\sigma + \pi^n \sigma^{(n)}(f) = \sigma \Gamma m(f) + \pi^n \sigma^{(n)}(f)$$
$$= (\pi^n \sigma^{(n)} + \sigma \Gamma m)(f),$$

by Proposition 1; thus

$$L^n(\sigma) = \pi^n \sigma^{(n)} + \sigma \Gamma m.$$

We also note that $L^n m = m$ and if $L^n \sigma = \sigma$ for σ in \mathcal{D}'_0 , then σ is a multiple of m.

One can modify the proof of Proposition 1 to show that $f \mapsto \bar{f} - a\pi f^{(1)}$ is an isomorphism of \mathcal{D}_1 onto \mathcal{D}_0 for all real $a \neq 0$ and leads to structures similar to ours. However,

$$\{f \in \mathcal{D}_1 : \tilde{f} - a\pi f^{(1)} \ge 0\}$$

is contained in \mathcal{D}_{0+} if and only if $|a| \ge 1$. In this sense \mathcal{D}_{1+} is maximal in \mathcal{D}_{0+} .

2. Partially Ordered Structures on \mathcal{D} and \mathcal{D}' . In order to apply the results of §1 to the locally convex spaces \mathcal{D} and \mathcal{D}' , we utilize generalizations of order unit and base norm spaces (see [2], [3] and [4]). A positive element u in a real vector lattice V is called a *semiorder-unit* (sou) if for each v in V there is a $\lambda > 0$ such that $v \wedge nu \leq \lambda u$ for all positive integers n. An Archimedean vector lattice V is called a *semiorder-unit space* (sou space) if it is endowed with the topology generated by all seminorms

$$p_u(x) = \inf \{ \lambda > 0 : |x| \land nu \leq \lambda u \ (n = 1, 2, \ldots) \}$$

for u a sou in V, called the sou topology for V.

Let V be a real Archimedean vector lattice and V^0 its order dual. A convex set S of positive elements in V is called a *semibase* if it is $\sigma(V, V^0)$ -bounded (weakly), the ideal I(S) generated by S is a projective band (see [8]) and S is a base for the positive cone of I(S). The space V is called a *semibase space* if it is the union of the ideals generated by its semibases and if its semibases are directed in the following sense: For each pair S' and S'' of semibases there is a semibase S such that I(S) contains I(S') and I(S''). The topology generated by all seminorms

$$p_{S}(x) = \inf \{\lambda > 0 : \rho_{S}(x) \in \lambda I(S)\},\$$

where S is a semibase and ρ_s is the projection mapping from V into I(S), is called the *semi-base topology* for V.

PROPOSITION 4. The countable product $\prod_{n=0}^{\infty} \mathscr{D}_0(=\mathscr{D}_0^N)$ in its product ordering is a sou space whose topology is the product topology. Dually, the countable direct sum $\bigoplus_{n=0}^{\infty} \mathscr{D}'_0$ in its direct sum ordering is a semibase space whose topology is the direct sum topology.

Proof. Clearly $\Pi \mathcal{D}_0$ is an Archimedean vector lattice. Let u be a sou in $\Pi \mathcal{D}_0$ and let ρ_n denote the projection map from $\Pi \mathcal{D}_0$ into the *n*th factor \mathcal{D}_0 . The fact that u is a sou implies that for some integer M > 0,

$$[\{n\rho_n(u)\}_{n=1}^{\infty}] \land mu \leq Mu \quad (m = 1, 2, \ldots).$$

Since ρ_n is a lattice homomorphism, we obtain

$$[n\rho_n(u)] \wedge mu \leq M\rho_n(u),$$

which for large *m* implies $n\rho_n(u) \leq M\rho_n(u)$. Thus for n > M, $\rho_n(u) = 0$. We note that, if $\rho_n(u) \neq 0$, it is a sou in \mathcal{D}_0 . In fact, if $\rho_n(u) \neq 0$, it is an order unit. (Since $\rho_n(u)$ is a sou in \mathcal{D}_0 there is a $\lambda > 0$ such that

$$1 \wedge m\rho_n(u) \leq \lambda \rho_n(u) \quad (n = 1, 2, \ldots),$$

so that $[\rho_n(u)](x) \ge 1/\lambda$ whenever $[\rho_n(u)](x) \ne 0$.) To verify that the sou topology is the product topology we note that if the sou u has $\rho_n(u) = 0$ for n > M, it is dominated by a multiple of that sou v_M which has 1 for its first M entries and 0 elsewhere. The seminorms p_{v_M} obviously generate the product topology.

The dual result is a consequence of Theorem 1 of [4], or can be proved directly as follows. The set B_0 of probability measures on Γ is a $\sigma(\mathscr{D}'_0, \mathscr{D}'_0)$ -bounded base for \mathscr{D}'_{0+} whose base norm is $\|\cdot\|'_0$. Let B be any semibase in $\oplus \mathscr{D}'_0$. If $\rho_n(B) = 0$, define $f_n = 0$; if $\rho_n(B)$ contains a positive element ϕ_n , define f_n to be some element in \mathscr{D}_{0+} for which $\phi_n(f_n) > n$. For the element $\{f_n\}$ of $\Pi \mathscr{D}_0$, as a positive linear functional on $\oplus \mathscr{D}'_0$, to be bounded on B, $\rho_n(B)$ must be zero for all but finitely many n. Thus from the $\sigma(\oplus \mathscr{D}'_0, [\oplus \mathscr{D}'_0]^0)$ -boundedness of B we conclude that B is contained in a multiple of a sum of finitely many copies of B_0 ; i.e.,

$$B \subseteq \lambda \left[\bigoplus_{n=0}^{M} B_0 \right]$$

for some $\lambda > 0$ and integer *M*. Each such $\lambda \begin{bmatrix} M \\ m \\ n=0 \end{bmatrix}$ is clearly a semibase. The fact that $\bigoplus \mathcal{D}'_0$ is a semibase space and the equivalence of the topologies can now be easily verified.

One could readily prove the following generalization of Proposition 4: A countable product of order unit spaces is a sou space whose topology agrees with the product topology, and a countable direct sum of base norm spaces is a semibase space whose topology agrees with the direct sum topology.

We recall that B_0 , the set of probability measures on Γ , is a weak* compact base for \mathscr{D}'_{0+} and the closed convex hull of the closed set E_0 of extreme points consisting of the unit point-measures on Γ . The set $\bigoplus_{n=0}^{\infty} B_0$ is a base for the positive cone of $\bigoplus \mathscr{D}'_0$. This base,

though not weak* compact, is the closed convex hull of the set of extreme points $\oplus E_0$.

We can now apply the order structures of §1 to \mathcal{D} and \mathcal{D}' . We let $[\Pi \mathcal{D}_0]_+$ and $[\oplus \mathcal{D}'_0]_+$ denote the positive cones of Proposition 4.

THEOREM 2. There is a topological isomorphism i from the space \mathcal{D} of infinitely differentiable functions on Γ with its Schwartz topology into the sou space $(\Pi \mathcal{D}_0, [\Pi \mathcal{D}_0]_+)$. Dually, the space \mathcal{D}' of distributions on Γ with its Schwartz topology is topologically isomorphic to the quotient of the semibase space $(\bigoplus \mathcal{D}'_0, [\bigoplus \mathcal{D}'_0]_+)$ by the kernel of the adjoint of i.

Proof. Let $i: \mathcal{D}_0 \to \Pi \mathcal{D}_0$ be defined by setting $i(f) = \{M^n f\}_{n=0}^{\infty}$. The theorem is a consequence of Proposition 4 and the results of §1. (Recall that \mathcal{D}_n and \mathcal{D}'_n have been identified with \mathcal{D}_0 and \mathcal{D}'_0 by the maps M^n and L^n , and \mathcal{D} and \mathcal{D}' are the appropriate projective limit topologies.)

The maps *i* and *i** naturally induce positive cones *K* and *P* on \mathscr{D} and \mathscr{D}' respectively, the usual subspace and quotient cones. It is easy to see that $K = \bigcap_{n=0}^{\infty} \mathscr{D}_{n+}$ and $P = \bigcup_{n=0}^{\infty} \mathscr{D}'_{n+}$. We will give explicit characterizations for these cones.

PROPOSITION 5. K consists of the nonnegative constant functions on Γ and P is $\{\phi \in \mathcal{D}' : \phi(1) > 0\} \cup \{0\}$.

Proof. That $P \subseteq \{\phi \in \mathscr{D}' : \phi(1) > 0\} \cup \{0\}$ can be argued as follows. If θ is in $P = \bigcup_{n=0}^{\infty} \mathscr{D}'_{n+}$ then θ is in \mathscr{D}'_{m+} for some integer $m \ge 0$, so that $\theta = L^m \sigma$ for some (unique) measure σ in \mathscr{D}'_{0+} . If $\sigma \Gamma = 0$ then $\sigma \equiv 0$, so that $\theta \equiv 0$. Otherwise, $\theta(1) = \sigma \Gamma > 0$. For the converse, let ϕ be in \mathscr{D}' with $\phi(1) > 0$. Then ϕ is in \mathscr{D}'_M for some integer $M \ge 0$, and so $\phi = L^M \sigma$ for some σ in \mathscr{D}'_0 . Let

$$\sum_{k=-\infty}^{+\infty} a_k e^{ikx}$$

be the Fourier series for σ . Then $a_0 = \sigma \Gamma > 0$. For each n = 1, 2, ..., the Fourier series

$$f_n(x) = a_0 + \sum_{k \neq 0} (\pi i k)^{-n} a_k e^{ikx}$$

defines an absolutely continuous measure μ_n with *n*th distributional derivative $(\sigma - \sigma \Gamma m)/\pi^n$. For $n \ge 2$,

$$|f_n(x) - a_0| \leq \sum_{k \neq 0} |a_k| / (\pi^n |k|^n).$$

Since $|a_k| \leq ||\sigma||_0$ we can write $|f_n(x) - a_0| \leq ||\sigma||_0 d_n$, where

$$d_n = (2/\pi^n) \sum_{k=1}^{\infty} k^{-n} \le 1/(3\pi^{n-2}) \text{ (for } n \ge 2).$$

Because $d_n \to 0$ as $n \to \infty$ and $a_0 > 0$, we can choose N large enough so that $0 < d_N \leq a_0/||\sigma||_0$. But then $|f_N(x) - a_0| \leq a_0$. In particular $f_N(x) \geq 0$, implying that μ_N is in \mathcal{D}'_{0+} . Since $\mu_N^{(N)} = (\sigma - \sigma \Gamma m) / \pi^N$ and $\mu_N \Gamma = a_0 = \sigma \Gamma$, it follows that

$$\sigma = \pi^N \mu_N^{(N)} + \mu_N \Gamma m = L^N \mu_N$$

Thus $\phi = L^M \sigma = L^{M+N} \mu_N$ so that ϕ is in $\mathcal{D}'_{(N+M)+}$ and consequently in P.

To characterize K, we note that the set of nonnegative constant functions on Γ is contained in K, and K is contained in

$$\{f \in \mathcal{D} : f(P) \ge 0\}.$$

Since for each $x \in \Gamma$ and $\lambda > 0$, the measures m, $\lambda \delta_x + (1 - \lambda)m$ and $(1 + \lambda)m - \lambda \delta_x$ are in P, we obtain that each member of $\{f \in \mathcal{D} : f(P) \ge 0\}$ satisfies

$$\left(1-\frac{1}{\lambda}\right)\vec{f} \leq f(x) \leq \left(1+\frac{1}{\lambda}\right)\vec{f} \text{ and } \vec{f} \geq 0,$$

and is thus a nonnegative constant function.

The cone K is the dual in \mathscr{D} of P but P is not the dual of K. The dual \mathscr{H} of K is just the set of distributions ϕ in \mathscr{D}' having $\phi(1) \ge 0$. It is not difficult to show that \mathscr{H} is the closure of P in the Schwartz topology. \mathscr{H} fails to be a positive cone for \mathscr{D}' since $\mathscr{H} \cap (-\mathscr{H})$ contains all ϕ in \mathscr{D}' having $\phi(1) = 0$.

Let
$$B = \bigcup_{n=0}^{\infty} L^n B_0$$
 in \mathcal{D}' . Then B is a base for P and it follows from Proposition 5 that
 $B = \{d \in \mathcal{D}' : d(1) = 1\}$

$$B = \{ \phi \in \mathscr{D}' : \phi(1) = 1 \}.$$

B is not linearly compact. Thus (see [9]) \mathscr{D}' is not lattice ordered by *P*. Moreover, *B* has no extreme points and is, of course, not compact in any locally convex topology for \mathscr{D}' (in contrast to the base $\bigoplus B_0$ discussed before Theorem 2).

We consider an interpretation of the above structures for the space H of real-valued harmonic functions on the unit disc Δ in the plane. Let H_+ denote the cone of pointwise nonnegative members of H and let H^0 be $H_+ - H_+$. We denote by H^n the linear span of derivatives

$$u^{(j)} = \frac{\partial^j u}{\partial \theta^j} \quad (j = 0, 1, \dots, n)$$

of functions in H^0 (written in polar coordinates) and let $\mathscr{H} = \bigcup_{n=0}^{\infty} H^n$. Each H^n is isomorphic to \mathscr{D}'_n (see [6] and [7]). The correspondence is obtained as follows. For $0 \le r < 1$ the Poisson function

$$\mathbf{P}_{r}(\theta) = \frac{1-r}{1-2r\cos\theta + r^{2}}$$

is in \mathcal{D} . For each ϕ in \mathcal{D}' one obtains by convolutions $h_r = \mathbf{P}_r * \phi$ a harmonic function $h(r, \theta) = h_r(\theta)$. Thus \mathcal{H} is isomorphic to \mathcal{D}' . The map L defined from H into H by

$$L(u) = \pi u^{(1)} + u(0),$$

when restricted to \mathcal{H} , corresponds to the map L discussed previously. Theorem 2 adapted

to this context says that \mathscr{H} is isomorphic to a quotient of $\bigoplus_{\substack{n=0\\n=0}}^{\infty} H^0$ in its direct sum ordering. The quotient cone P induced on \mathscr{H} is $\bigcup_{n=0}^{\infty} L^n H_+$, and, as in Proposition 5 (since

$$h(0) = \mathbf{P}_0 * \phi = \phi(1)),$$

$$P = \{h \in \mathcal{H} : h(0) > 0\} \cup \{0\}.$$

We now have the following extension of the classical Herglotz theorem for H_+ (see [1]).

PROPOSITION 6. For each $h \in \mathcal{H}$ having h(0) > 0 there is a least integer n and a unique positive measure μ in \mathcal{D}'_{0+} such that

$$h(r, \theta) = \int_{\Gamma} (L^{\mathbf{r}} \mathbf{P})(r, \theta - t) \, d\mu(t).$$

Proof. Let h be in \mathcal{H} with h(0) > 0; i.e., let h be in P. Since $P = \bigcup L^n H_+$ there exists a least integer n and a unique element $u \in H_+$ such that $h = L^n u$. The classical Herglotz theorem implies that

$$u(r, \theta) = \int_{\Gamma} \mathbf{P}(r, \theta - t) d\mu(t)$$

for a unique μ in \mathcal{D}'_{0+} , and thus

$$h(r, \theta) = (L^{n}u)(r, \theta) = \int_{\Gamma} (L^{n}\mathbf{P})(r, \theta - t) d\mu(t).$$

REFERENCES

1. P. L. Duren, Theory of H^p-spaces (Academic Press, 1970).

2. W. A. Feldman and J. F. Porter, Compact convergence and the order bidual for C(X), Pacific J. Math. 57 (1975), 113-124.

‡3. W. A. Feldman and J. F. Porter, Order units generalized for convex spaces and a Kakutanitype representation (Preprint).

^{‡4.} W. A. Feldman and J. F. Porter, Semibase spaces and their duality with semiorder-unit spaces (Preprint).

5. G. Jameson, Ordered linear spaces, Lecture Notes in Mathematics No. 141 (Springer-Verlag, 1970).

6. G. Johnson, Jr., Harmonic functions on the unit disc I, Illinois J. Math. 12 (1968), 366-385.

7. G. Johnson, Jr., Harmonic functions on the unit disc II, Illinois J. Math. 12 (1968), 386-396.

8. W. A. J. Luxemburg and A. A. Zaanen, Riesz spaces, Vol. I (North-Holland, 1971).

9. A. L. Peressini, Ordered topological vector spaces (Harper and Row, 1967).

10. L. Schwartz, *Théorie des distributions*, Actualitès Sci. Indust., Nos. 1245 (1957) and 1122 (1957).

[‡] References [3] and [4] have appeared as one paper, Order units and base norms generalized for convex spaces, *Proc. London Math. Soc.* (3) 33 (1976), 299–312.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ARKANSAS

FAYETTEVILLE, ARKANSAS 72701, U.S.A.

PRINTED IN GREAT BRITAIN BY ROBERT MACLEHOSE AND CO. LTD PRINTERS TO THE UNIVERSITY OF GLASGOW