ORDER AND SCHWARTZ DISTRIBUTIONS \dagger

by W. A. FELDMAN and J. F. PORTER

(Received 9 June, 1975)
Introduction. The space \mathscr{D}^{\prime} of Schwartz distributions on the unit circle Γ in the plane is topologically a considerable generalization of the space \mathscr{D}_{0}^{\prime} of regular, finite Borel measures on Γ. However, the order structure of \mathscr{D}^{\prime} is usually taken to be the same as that of \mathscr{D}_{0}^{\prime} : there are no " positive" distributions which are not measures. This perhaps warrants consideration, since the order structure of \mathscr{P}_{0}^{\prime} generates its topology. In this paper we construct a system of order structures for \mathscr{D}^{\prime} which is a more natural complement in the intermediate stages to the topology of \mathscr{D}^{\prime} and which provides an interpretation of \mathscr{D}^{\prime} with its Schwartz topology as a quotient of a generalized base norm space V^{\prime}. Where \mathscr{D}_{0} denotes the space of continuous functions on Γ with its supremum norm topology, V^{\prime} is the dual of $\prod_{n=0}^{\infty} \mathscr{D}_{0}$. The space $\Pi \mathscr{D}_{0}$ contains the infinitely differentiable functions on Γ with their usual topology, and (via the pointwise ordering on \mathscr{D}_{0}) $\Pi \mathscr{D}_{0}$ in its product ordering is realized as a generalized order unit space. Some consequences for harmonic functions are discussed.

We cite [5] and [9] for general information on partial orderings for topological vector spaces and [10] for general information on Schwartz distributions.

1. Partial Order Structures on \mathscr{D}_{n} and \mathscr{D}_{n}^{\prime}. We recall that the Banach space \mathscr{D}_{0} of real continuous functions on Γ with the norm

$$
\|f\|_{0}=\sup \{|f(x)|: x \in \Gamma\}
$$

for f in \mathscr{D}_{0} and positive cone \mathscr{D}_{0+} of pointwise non-negative members of \mathscr{D}_{0} is an order unit space (and an M-space). Where $\mathscr{D}_{0+}^{\prime}$ denotes the set of linear functionals ϕ on \mathscr{D}_{0} satisfying $\phi(f) \geqq 0$ for all f in \mathscr{D}_{0+} and ($\mathscr{D}_{0}^{\prime},\|\cdot\|_{0}^{\prime}$) is the Banach dual of ($\mathscr{D}_{0},\|\cdot\|_{0}$), the system ($\mathscr{D}_{0}^{\prime}, \mathscr{D}_{0+}^{\prime},\| \|_{0}^{\prime}$) is a base norm space (and an L-space). The order unit 1 in \mathscr{D}_{0+} can be taken as the generator of $\|\cdot\|_{0}$ (i.e., $\|\cdot\|_{0}$ is the Minkowski functional on the order interval

$$
\left.[-1,1]_{0}=\left\{f \in \mathscr{D}_{0}:-1 \leqq f \leqq 1\right\}\right)
$$

The Riesz Representation Theorem states that ($\mathscr{D}_{0}^{\prime},\| \|_{0}^{\prime}$) can be identified with the space of regular, finite Borel measures on Γ with total variation norm and that $\mathscr{D}_{0_{+}}^{\prime}$ can be identified with the non-negative measures in \mathscr{D}_{0}^{\prime}. The base of probability measures on Γ for $\mathscr{D}_{0+}^{\prime}$ corresponds to the order unit 1 .

Let $\mathscr{D}_{n}(n=1,2, \ldots)$ be the space of n-times continuously differentiable functions on Γ with the norm

$$
\|\mid f\|_{n}=\|f\|_{0}+\left\|f^{(1)}\right\|_{0}+\ldots+\left\|f^{(n)}\right\|_{0}
$$

[^0]where $f^{(j)}$ is the j th derivative of the function f in \mathscr{D}_{n}. Then $\left\{\mathscr{D}_{n}\right\}_{n=0}^{\infty}$ is a decreasing sequence of Banach spaces with successively increasing norms. The corresponding dual spaces form an increasing sequence $\left\{\mathscr{D}_{n}^{\prime}\right\}_{n=0}^{\infty}$ with successively decreasing norms, which we will denote by $\left|\left||\cdot| \|_{n}^{\prime}\right.\right.$ for $n=1,2, \ldots$ Let \mathscr{D} denote $\bigcap_{n=0}^{\infty} \mathscr{D}_{n}$ with the projective limit (Schwartz) topology. The space \mathscr{D}^{\prime} of Schwartz distributions on Γ is the topological dual of \mathscr{D}. Moreover, $\mathscr{D}^{\prime}=\bigcup_{n=0}^{\infty} \mathscr{D}_{n}^{\prime}$ and the Schwartz topology on \mathscr{D}^{\prime} is the inductive limit topology. One defines "derivatives" of members ϕ of \mathscr{D}^{\prime} by stipulating that
$$
\phi^{(n)}(f)=(-1)^{n} \phi\left(f^{(n)}\right)
$$
for all f in \mathscr{D}, this being essentially an extension of the formula for integration by parts.
We induce the order structures of \mathscr{D}_{0} and \mathscr{D}_{0}^{\prime} onto \mathscr{D}_{n} and \mathscr{D}_{n}^{\prime}, respectively, in a way which is compatible both to their usual topologies and with the natural embeddings $\mathscr{D}_{n} \subseteq \mathscr{D}_{n-1}$ and $\mathscr{D}_{n}^{\prime} \supseteq \mathscr{D}_{n-1}^{\prime}$. All order structures to be considered evolve from the map M of the following proposition. Here, f denotes the mean value
$$
(1 / 2 \pi) \int_{0}^{2 \pi} f(t) d t
$$
and $f^{(n)}$ denotes the nth derivative of f. The choice of M is motivated by the desire to convert differentiation in \mathscr{D} into an isomorphism whose dual produces the derivatives in \mathscr{D}^{\prime} and whose inverse preserves the order structure of \mathscr{D}_{0}.

Proposition 1. Let $M: \mathscr{D}_{1} \rightarrow \mathscr{D}_{0}$ be defined by $M(f)=\bar{f}-\pi f^{(1)}$. Then $M(1)=1$ and for each $n=1,2, \ldots$
(1) $M \mid \mathscr{D}_{n}$ is an isomorphism of \mathscr{D}_{0} onto \mathscr{D}_{n-1};
(2) M establishes an isomorphism M^{n} of \mathscr{D}_{n} onto \mathscr{D}_{0}, with $M^{n}(f)=\bar{f}+(-\pi)^{n} f^{(n)}$.

Proof. Trivially, $M(1)=1$. For (1), M and hence $M \mid \mathscr{D}_{n}$ for each n is clearly linear. If $f-\pi f^{(1)}=0$, then $f^{(1)}$ is the constant function f / π. Since, by Rolle's Theorem, $f^{(1)}\left(x_{1}\right)=0$ for some x_{1} in Γ, then $f^{(1)}(x)=f=0$ for all x in Γ and f is a constant. This constant, being its own mean value, must be zero. Then M, and hence $M \mid \mathscr{D}_{n}$ for each n, is one-to-one. To see that M is onto, let g be in \mathscr{D}_{0} and let

$$
k_{g}=\left(\int_{0}^{2 \pi} d x \int_{0}^{x} g(t) d t\right) / 2 \pi^{2}
$$

Define

$$
f(x)=\left[\left(x \bar{g}-\int_{0}^{x} g(t) d t\right) / \pi\right]+k_{g}
$$

Then f is in \mathscr{D}_{1} and $\bar{f}=\bar{g}$, so that $M(f)=\bar{f}-\pi f^{(1)}=g$. For g in \mathscr{D}_{n-1} this construction produces a function f in \mathscr{D}_{n}; hence, $M \mid \mathscr{D}_{n}$ is onto \mathscr{D}_{n-1} for each n. For (2), define
$M^{n}: \mathscr{D}_{n} \rightarrow \mathscr{D}_{0}$ to be the composite

$$
\left(M \mid \mathscr{D}_{1}\right) \circ\left(M \mid \mathscr{D}_{2}\right) \circ \ldots \circ\left(M \mid \mathscr{D}_{n}\right)
$$

Since each factor is an isomorphism, so is M^{n}. The formula for M^{n} follows by induction.
It will be convenient also to denote the restriction $M^{n} \mid \mathscr{D}_{n+j}$ for all integers $j \geqq 0$ by M^{n}; with the conventions that M^{0} is the identity operator on \mathscr{D}_{0} and that M^{-n} is the inverse of M^{n}, we will use the laws of integral exponents freely on M. Of course, $M^{n}(1)=1$ for all n. Since M^{-n} is an isomorphism ($n=1,2, \ldots$), the set $M^{-n} \mathscr{D}_{0+}$ is a positive cone for \mathscr{D}_{n}. We will denote this positive cone by $\mathscr{D}_{n^{+}}$; thus f is in $\mathscr{D}_{n^{+}}$if and only if

$$
\bar{f}+(-\pi)^{n} f^{(n)}=M^{n} f \geqq 0
$$

We also define a norm for \mathscr{D}_{n} by

$$
\|f\|_{n}=\left\|M^{n} f\right\|_{0}=\sup \left\{\left|\bar{f}+(-\pi)^{n} f^{(n)}(x)\right|: x \in \Gamma\right\} .
$$

Thus $\left(\mathscr{D}_{n}, \mathscr{D}_{n+},\|\cdot\|_{n}\right)$ is an M-space with order unit 1 isometric and order-isomorphic to $\left(\mathscr{D}_{0}, \mathscr{D}_{0+},\|\cdot\|_{0}\right)$.

Proposition 2. The positive cones $\left\{\mathscr{D}_{n+}\right\}_{n=0}^{\infty}$ form a decreasing sequence. The norms $\left\{\|\cdot\|_{n}\right\}_{n=0}^{\infty}$ successively increase.

Proof. Let f be in \mathscr{D}_{1+} and suppose $f\left(x_{0}\right) \leqq 0$ for some x_{0} in Γ. By translating f we can assume $x_{0}=0$. Since $M f \geqq 0$, the function

$$
h(x)=\int_{0}^{x}(M f)(t) d t=x \vec{f}-\pi[f(x)-f(0)]
$$

is non-negative and non-decreasing, with $\bar{h}=\pi f(0)$. Since $f(0) \leqq 0$ then h must vanishi.e., $x \bar{f}-\pi[f(x)-f(0)]=0$; since f is periodic it must also vanish. Thus $\mathscr{D}_{1+} \subseteq \mathscr{D}_{0+}$. If f is in \mathscr{D}_{n+} for $n>1$ then $M^{n-1} f$ is in \mathscr{D}_{1+} and hence in \mathscr{D}_{0+} so that f is in $\mathscr{D}_{(n-1)+}$. Thus $\left\{\mathscr{D}_{n^{+}}\right\}_{n=0}^{\infty}$ is decreasing. It now follows that the order intervals

$$
[-1,1]_{n}=\left\{f \in \mathscr{D}_{n}:-1 \leqq M^{n} f \leqq 1\right\}
$$

form a decreasing sequence

$$
[-1,1]_{0} \supseteq[-1,1]_{1} \supseteq \ldots \supseteq[-1,1]_{n} \supseteq \ldots
$$

Since $[-1,1]_{n}$ is also the unit ball in $\left(\mathscr{D}_{n},\|\cdot\|_{n}\right)(n=0,1,2, \ldots)$ the norms increase with n.
Proposition 3. The norms $\|\cdot\|_{n}$ and $\mid\|\cdot\| \|_{n}$ are equivalent.
Proof. (Suprema will be taken over all x in Г.) Clearly

$$
\|f\|_{0} \leqq \mid\|f\|_{n} \text { and } \quad\left\|f^{(n)}\right\|_{0} \leqq\| \| f \|_{n} .
$$

Since $\vec{f}=f\left(x_{0}\right)$ for some x_{0} in Γ,

$$
|\vec{J}| \leqq\|f\|_{0} \leqq\left||f| \|_{n}\right.
$$

Thus

$$
\begin{aligned}
\|f\|_{n} & =\sup \left|\bar{f}+(-\pi)^{n} f^{(n)}(x)\right| \\
& \leqq|\bar{f}|+\pi^{n} \sup \left|f^{(n)}(x)\right| \\
& \leqq\left(1+\pi^{n}\right)\left|\|f \mid\|_{n} .\right.
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\|f\|_{n} & =\sup \left|\bar{f}+(-\pi)^{n \prime} f^{(n)}(x)\right| \\
& \geqq \sup \left(\pi^{n}\left|f^{(n)}(x)\right|-|\bar{f}|\right) \\
& =\pi^{n}\left\|f^{(n)}\right\|_{0}-|\bar{f}|
\end{aligned}
$$

Thus

$$
\pi^{n}\left\|f^{(n)}\right\|_{0} \leqq\|f\|_{n}+|f| \leqq 2\|f\|_{n}
$$

so that $\left\|f^{(n)}\right\|_{0} \leqq 2 \pi^{-n}\|f\|_{n}$. Then

$$
\begin{aligned}
\left|\|f \mid\|_{n}=\right. & \|f\|_{0}+\left\|f^{(1)}\right\|_{0}+\ldots+\left\|f^{(n)}\right\|_{0} \\
& \leqq\|f\|_{0}+2 \pi^{-1}\|f\|_{1}+\ldots+2 \pi^{-n}\|f\|_{n} \\
& \leqq\left(1+2 \pi^{-1}+\ldots+2 \pi^{-n}\right)\|f\|_{n}
\end{aligned}
$$

this last step by Proposition 2.
We now wish to dualize and summarize the results of this section. For a linear functional ϕ on \mathscr{D}_{n}, let

$$
\|\phi\|_{n}^{\prime}=\sup \left\{|\phi(f)|: f \in \mathscr{D}_{n},\|f\| \leqq 1\right\} .
$$

Let us presume the Schwartz notation \mathscr{D}_{n}^{\prime} for the set of those ϕ for which $\|\phi\|_{n}^{\prime}<+\infty$ and denote by $\mathscr{D}_{n+}^{\prime}$ the set of those ϕ for which $\phi(f) \geqq 0$ whenever f is in \mathscr{D}_{n+}. Let $L^{n}: \mathscr{D}_{0}^{\prime} \rightarrow \mathscr{D}_{n}^{\prime}$ denote the dual of $M^{n}: \mathscr{D}_{n} \rightarrow \mathscr{D}_{0}$, i.e. $L^{n}(\sigma)=\sigma \circ M^{n}$ for all σ in \mathscr{D}_{0}^{\prime}. For the sake of emphasis, Proposition 3 is incorporated into the next theorem.

Theorem 1. Let $n=1,2, \ldots$
(1) $\left(\mathscr{D}_{n}, \mathscr{D}_{n+},\|\cdot\|_{n}\right)$ is an M-space with order unit 1 , isometric and order-isomorphic to ($\mathscr{D}_{0}, \mathscr{D}_{0+},\|\cdot\|_{0}$). The norm $\|\cdot\|_{n}$ is equivalent to the frequently employed norm $\|\|\cdot\|\|_{n}$ for \mathscr{D}_{n} and increases with n.
(2) $\left(\mathscr{D}_{n}^{\prime}, \mathscr{D}_{n+}^{\prime},\left\|^{\cdot}\right\|_{n}^{\prime}\right)$ is an L-space isometric and order-isomorphic to $\left(\mathscr{D}_{0}^{\prime}, \mathscr{D}_{0+}^{\prime},\left\|^{\cdot}\right\|_{0}^{\prime}\right.$. \mathscr{D}_{n}^{\prime} is the space of nth order Schwartz distributions on Γ. The norm $\|\cdot\|_{n}^{\prime}$ is equivalent to $\left\|\left\|^{\cdot}\right\|\right\|_{n}^{\prime}$ and decreases as n increases.

Proof. Part (1) contains nothing new. For part (2) we remark that it follows from part (1) that the order-theoretic and Banach duals of ($\mathscr{D}_{n}, \mathscr{D}_{n+},\|\cdot\|_{n}$) coincide and that ($\mathscr{D}_{n}^{\prime}, \mathscr{D}_{n+}^{\prime},\left\|^{\cdot}\right\|_{n}^{\prime}$) is an L-space. That \mathscr{D}_{n}^{\prime} is indeed the space of nth order distributions on Γ follows from Proposition 3, which also implies that $\|\cdot\|_{n}^{\prime}$ and $\left\|\left\|^{\bullet}\right\|\right\|_{n}^{\prime}$ are equivalent. That $\left\{\mathscr{D}_{n+}^{\prime}\right\}_{n=0}^{\infty}$ increases is dual to Proposition 2, as is the fact that the norms $\left\{\left\|^{\cdot}\right\|_{n}^{\prime}\right\}_{n=0}^{\infty}$ decrease.
(Here we use the convention that if ϕ is not in \mathscr{D}_{n}^{\prime}, then $\|\phi\|_{n}=+\infty$.) The mapping L^{n}, being the dual of an isometry and order-isomorphism, is an isometry and order-isomorphism, with $L^{n} \mathscr{D}_{0_{+}}^{\prime}=\mathscr{D}_{n+}^{\prime}$ and $\left\|L^{n} \sigma\right\|_{n}^{\prime}=\|\sigma\|_{0}^{\prime}$.

Utilizing the formula $\phi^{(n)}(f)=(-1)^{n} \phi\left(f^{(n)}\right)$ mentioned at the beginning of the paper, we can obtain an explicit description for L^{n}. Here, and throughout the paper, m will be the Lebesgue measure normalized to have $m \Gamma=1$. For f in \mathscr{D}_{n} and σ in \mathscr{D}_{0}^{\prime},

$$
\begin{aligned}
&\left(L^{n} \sigma\right)(f)=\sigma\left(M^{n} f\right)=\sigma\left(f+(-\pi)^{n} f^{(n)}\right) \\
&=\int_{\Gamma} f d \sigma+\pi^{n} \sigma^{(n)}(f)=\sigma \Gamma m(f)+\pi^{n} \sigma^{(n)}(f) \\
&=\left(\pi^{n} \sigma^{(n)}+\sigma \Gamma m\right)(f)
\end{aligned}
$$

by Proposition 1; thus

$$
L^{n}(\sigma)=\pi^{n} \sigma^{(n)}+\sigma \Gamma m .
$$

We also note that $L^{n} m=m$ and if $L^{n} \sigma=\sigma$ for σ in \mathscr{D}_{0}^{\prime}, then σ is a multiple of m.
One can modify the proof of Proposition 1 to show that $f \mapsto \bar{f}-a \pi f^{(1)}$ is an isomorphism of \mathscr{D}_{1} onto \mathscr{D}_{0} for all real $a \neq 0$ and leads to structures similar to ours. However,

$$
\left\{f \in \mathscr{D}_{1}: J-a \pi f^{(1)} \geqq 0\right\}
$$

is contained in $\mathscr{D}_{0^{+}}$if and only if $|a| \geqq 1$. In this sense \mathscr{D}_{1+} is maximal in \mathscr{D}_{0+}.
2. Partially Ordered Structures on \mathscr{D} and \mathscr{D}^{\prime}. In order to apply the results of $\S 1$ to the locally convex spaces \mathscr{D} and \mathscr{D}^{\prime}, we utilize generalizations of order unit and base norm spaces (see [2], [3] and [4]). A positive element u in a real vector lattice V is called a semiorder-unit (sou) if for each v in V there is a $\lambda>0$ such that $v \wedge n u \leqq \lambda u$ for all positive integers n. An Archimedean vector lattice V is called a semiorder-unit space (sou space) if it is endowed with the topology generated by all seminorms

$$
p_{u}(x)=\inf \{\lambda>0:|x| \wedge n u \leqq \lambda u(n=1,2, \ldots)\}
$$

for u a sou in V, called the sou topology for V.
Let V be a real Archimedean vector lattice and V^{0} its order dual. A convex set S of positive elements in V is called a semibase if it is $\sigma\left(V, V^{0}\right)$-bounded (weakly), the ideal $I(S)$ generated by S is a projective band (see [8]) and S is a base for the positive cone of $I(S)$. The space V is called a semibase space if it is the union of the ideals generated by its semibases and if its semibases are directed in the following sense: For each pair S^{\prime} and $S^{\prime \prime}$ of semibases there is a semibase S such that $I(S)$ contains $I\left(S^{\prime}\right)$ and $I\left(S^{\prime \prime}\right)$. The topology generated by all seminorms

$$
p_{S}(x)=\inf \left\{\lambda>0: \rho_{s}(x) \in \lambda I(S)\right\}
$$

where S is a semibase and ρ_{S} is the projection mapping from V into $I(S)$, is called the semibase topology for V.

Proposition 4. The countable product $\prod_{n=0}^{\infty} \mathscr{D}_{0}\left(=\mathscr{D}_{0}^{N}\right)$ in its product ordering is a sou space whose topology is the product topology. Dually, the countable direct sum $\underset{n=0}{\infty} \mathscr{D}_{0}^{\prime}$ in its direct sum ordering is a semibase space whose topology is the direct sum topology.

Proof. Clearly $\Pi \mathscr{D}_{0}$ is an Archimedean vector lattice. Let u be a sou in $\Pi \mathscr{D}_{0}$ and let ρ_{n} denote the projection map from $\Pi \mathscr{D}_{0}$ into the nth factor \mathscr{D}_{0}. The fact that u is a sou implies that for some integer $M>0$,

$$
\left[\left\{n \rho_{n}(u)\right\}_{n=1}^{\infty}\right] \wedge m u \leqq M u \quad(m=1,2, \ldots)
$$

Since ρ_{n} is a lattice homomorphism, we obtain

$$
\left[n \rho_{n}(u)\right] \wedge m u \leqq M \rho_{n}(u)
$$

which for large m implies $n \rho_{n}(u) \leqq M \rho_{n}(u)$. Thus for $n>M, \rho_{n}(u)=0$. We note that, if $\rho_{n}(u) \neq 0$, it is a sou in \mathscr{D}_{0}. In fact, if $\rho_{n}(u) \neq 0$, it is an order unit. (Since $\rho_{n}(u)$ is a sou in \mathscr{D}_{0} there is a $\lambda>0$ such that

$$
1 \wedge m \rho_{n}(u) \leqq \lambda \rho_{n}(u) \quad(n=1,2, \ldots)
$$

so that $\left[\rho_{n}(u)\right](x) \geqq 1 / \lambda$ whenever $\left[\rho_{n}(u)\right](x) \neq 0$.) To verify that the sou topology is the product topology we note that if the sou u has $\rho_{n}(u)=0$ for $n>M$, it is dominated by a multiple of that sou v_{M} which has 1 for its first M entries and 0 elsewhere. The seminorms $p_{v_{M}}$ obviously generate the product topology.

The dual result is a consequence of Theorem 1 of [4], or can be proved directly as follows. The set B_{0} of probability measures on Γ is a $\sigma\left(\mathscr{D}_{0}^{\prime}, \mathscr{D}_{0}^{\prime 0}\right)$-bounded base for $\mathscr{D}_{0+}^{\prime}$ whose base norm is $\left\|^{\cdot}\right\|_{0}^{\prime}$. Let B be any semibase in $\oplus \mathscr{D}_{0}^{\prime}$. If $\rho_{n}(B)=0$, define $f_{n}=0$; if $\rho_{n}(B)$ contains a positive element ϕ_{n}, define f_{n} to be some element in \mathscr{D}_{0+} for which $\phi_{n}\left(f_{n}\right)>n$. For the element $\left\{f_{n}\right\}$ of $\Pi \mathscr{D}_{0}$, as a positive linear functional on $\oplus \mathscr{D}_{0}^{\prime}$, to be bounded on $B, \rho_{n}(B)$ must be zero for all but finitely many n. Thus from the $\sigma\left(\oplus \mathscr{D}_{0}^{\prime},\left[\oplus \mathscr{D}_{0}^{\prime}\right]^{0}\right)$-boundedness of B we conclude that B is contained in a multiple of a sum of finitely many copies of B_{0}; i.e.,

$$
B \subseteq \lambda\left[\bigoplus_{n=0}^{M} B_{0}\right]
$$

for some $\lambda>0$ and integer M. Each such $\lambda\left[\underset{n=0}{\oplus} B_{0}\right]$ is clearly a semibase. The fact that $\oplus \mathscr{D}_{0}^{\prime}$ is a semibase space and the equivalence of the topologies can now be easily verified.

One could readily prove the following generalization of Proposition 4: A countable product of order unit spaces is a sou space whose topology agrees with the product topology, and a countable direct sum of base norm spaces is a semibase space whose topology agrees with the direct sum topology.

We recall that B_{0}, the set of probability measures on Γ, is a weak* compact base for $\mathscr{D}_{0+}^{\prime}$ and the closed convex hull of the closed set E_{0} of extreme points consisting of the unit point-measures on Γ. The set $\oplus_{n=0}^{\infty} B_{0}$ is a base for the positive cone of $\oplus \mathscr{D}_{0}^{\prime}$. This base,

We can now apply the order structures of $\S 1$ to \mathscr{D} and \mathscr{D}^{\prime}. We let $\left[\Pi \mathscr{D}_{0}\right]_{+}$and $\left[\oplus \mathscr{D}_{0}^{\prime}\right]_{+}$ denote the positive cones of Proposition 4.

Theorem 2. There is a topological isomorphism ifrom the space \mathscr{D} of infinitely differentiable functions on Γ with its Schwartz topology into the sou space ($\Pi \mathscr{D}_{0},\left[\Pi \mathscr{D}_{0}\right]_{+}$). Dually, the space \mathscr{P}^{\prime} of distributions on Γ with its Schwartz topology is topologically isomorphic to the quotient of the semibase space $\left(\oplus \mathscr{D}_{0}^{\prime},\left[\oplus \mathscr{D}_{0}^{\prime}\right]_{+}\right)$by the kernel of the adjoint of i.

Proof. Let $i: \mathscr{D}_{0} \rightarrow \Pi \mathscr{D}_{0}$ be defined by setting $i(f)=\left\{M^{n} f\right\}_{n=0}^{\infty}$. The theorem is a consequence of Proposition 4 and the results of $\S 1$. (Recall that \mathscr{D}_{n} and \mathscr{D}_{n}^{\prime} have been identified with \mathscr{D}_{0} and \mathscr{D}_{0}^{\prime} by the maps M^{n} and L^{n}, and \mathscr{D} and \mathscr{D}^{\prime} are the appropriate projective limit topologies.)

The maps i and i^{*} naturally induce positive cones K and P on \mathscr{D} and \mathscr{D}^{\prime} respectively, the usual subspace and quotient cones. It is easy to see that $K=\bigcap_{n=0}^{\infty} \mathscr{D}_{n+}$ and $P=\bigcup_{n=0}^{\infty} \mathscr{D}_{n+}^{\prime}$. We will give explicit characterizations for these cones.

Proposition 5. K consists of the nonnegative constant functions on Γ and P is $\left\{\phi \in \mathscr{D}^{\prime}: \phi(1)>0\right\} \cup\{0\}$.

Proof. That $P \subseteq\left\{\phi \in \mathscr{D}^{\prime}: \phi(1)>0\right\} \cup\{0\}$ can be argued as follows. If θ is in $P=\bigcup_{n=0}^{\infty} \mathscr{D}_{n+}^{\prime}$ then θ is in $\mathscr{D}_{m+}^{\prime}$ for some integer $m \geqq 0$, so that $\theta=L^{m} \sigma$ for some (unique) measure σ in $\mathscr{D}_{0_{+}^{\prime}}^{\prime}$. If $\sigma \Gamma=0$ then $\sigma \equiv 0$, so that $\theta \equiv 0$. Otherwise, $\theta(1)=\sigma \Gamma>0$. For the converse, let ϕ be in \mathscr{D}^{\prime} with $\phi(1)>0$. Then ϕ is in \mathscr{D}_{M}^{\prime} for some integer $M \geqq 0$, and so $\phi=L^{M} \sigma$ for some σ in \mathscr{D}_{0}^{\prime}. Let

$$
\sum_{k=-\infty}^{+\infty} a_{k} e^{i k x}
$$

be the Fourier series for σ. Then $a_{0}=\sigma \Gamma>0$. For each $n=1,2, \ldots$, the Fourier series

$$
f_{n}(x)=a_{0}+\sum_{k \neq 0}(\pi i k)^{-n} a_{k} e^{i k x}
$$

defines an absolutely continuous measure μ_{n} with nth distributional derivative $(\sigma-\sigma \Gamma m) / \pi^{n}$. For $n \geqq 2$,

$$
\left|f_{n}(x)-a_{0}\right| \leqq \sum_{k \neq 0}\left|a_{k}\right| /\left(\pi^{n}|k|^{n}\right)
$$

Since $\left|a_{k}\right| \leqq\|\sigma\|_{0}$ we can write $\left|f_{n}(x)-a_{0}\right| \leqq\|\sigma\|_{0} d_{n}$, where

$$
d_{n}=\left(2 / \pi^{n}\right) \sum_{k=1}^{\infty} k^{-n} \leqq 1 /\left(3 \pi^{n-2}\right) \quad(\text { for } n \geqq 2)
$$

Because $d_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $a_{0}>0$, we can choose N large enough so that $0<d_{N} \leqq a_{0} /\|\sigma\|_{0}$. But then $\left|f_{N}(x)-a_{0}\right| \leqq a_{0}$. In particular $f_{N}(x) \geqq 0$, implying that μ_{N} is in $\mathscr{V}_{0+}^{\prime}$. Since
$\mu_{N}^{(N)}=(\sigma-\sigma \Gamma m) / \pi^{N}$ and $\mu_{N} \Gamma=a_{0}=\sigma \Gamma$, it follows that

$$
\sigma=\pi^{N} \mu_{N}^{(N)}+\mu_{N} \Gamma m=L^{N} \mu_{N} .
$$

Thus $\phi=L^{M} \sigma=L^{M+N} \mu_{N}$ so that ϕ is in $\mathscr{D}_{(N+M)+}^{\prime}$ and consequently in P.
To characterize K, we note that the set of nonnegative constant functions on Γ is contained in K, and K is contained in

$$
\{f \in \mathscr{D}: f(P) \geqq 0\} .
$$

Since for each $x \in \Gamma$ and $\lambda>0$, the measures $m, \lambda \delta_{x}+(1-\lambda) m$ and $(1+\lambda) m-\lambda \delta_{x}$ are in P, we obtain that each member of $\{f \in \mathscr{D}: f(P) \geqq 0\}$ satisfies

$$
\left(1-\frac{1}{\lambda}\right) f \leqq f(x) \leqq\left(1+\frac{1}{\lambda}\right) \bar{f} \text { and } \bar{f} \geqq 0
$$

and is thus a nonnegative constant function.
The cone K is the dual in \mathscr{D} of P but P is not the dual of K. The dual \mathscr{K} of K is just the set of distributions ϕ in \mathscr{D}^{\prime} having $\phi(1) \geqq 0$. It is not difficult to show that \mathscr{K} is the closure of P in the Schwartz topology. \mathscr{K} fails to be a positive cone for \mathscr{D} since $\mathscr{K} \cap(-\mathscr{K})$ contains all ϕ in \mathscr{D}^{\prime} having $\phi(1)=0$.

Let $B=\bigcup_{n=0}^{\infty} L^{n} B_{0}$ in \mathscr{D}^{\prime}. Then B is a base for P and it follows from Proposition 5 that

$$
B=\left\{\phi \in \mathscr{D}^{\prime}: \phi(1)=1\right\} .
$$

B is not linearly compact. Thus (see [9]) \mathscr{D}^{\prime} is not lattice ordered by P. Moreover, B has no extreme points and is, of course, not compact in any locally convex topology for \mathscr{D}^{\prime} (in contrast to the base $\oplus B_{0}$ discussed before Theorem 2).

We consider an interpretation of the above structures for the space H of real-valued harmonic functions on the unit disc Δ in the plane. Let H_{+}denote the cone of pointwise nonnegative members of H and let H^{0} be $H_{+}-H_{+}$. We denote by H^{n} the linear span of derivatives

$$
u^{(j)}=\frac{\partial^{j} u}{\partial \theta^{j}} \quad(j=0,1, \ldots, n)
$$

of functions in H^{0} (written in polar coordinates) and let $\mathscr{H}=\bigcup_{n=0}^{\infty} H^{n}$. Each H^{n} is isomorphic to \mathscr{D}_{n}^{\prime} (see [6] and [7]). The correspondence is obtained as follows. For $0 \leqq r<1$ the Poisson function

$$
\mathbf{P}_{r}(\theta)=\frac{1-r}{1-2 r \cos \theta+r^{2}}
$$

is in \mathscr{D}. For each ϕ in \mathscr{D}^{\prime} one obtains by convolutions $h_{r}=\mathbf{P}_{r} * \phi$ a harmonic function $h(r, \theta)=h_{r}(\theta)$. Thus \mathscr{H} is isomorphic to \mathscr{D}^{\prime}. The map L defined from H into H by

$$
L(u)=\pi u^{(1)}+u(0)
$$

when restricted to \mathscr{H}, corresponds to the map L discussed previously. Theorem 2 adapted
to this context says that \mathscr{H} is isomorphic to a quotient of $\underset{n=0}{\infty} H^{0}$ in its direct sum ordering. The quotient cone P induced on \mathscr{H} is $\bigcup_{n=0}^{\infty} L^{n} H_{+}$, and, as in Proposition 5 (since

$$
\begin{gathered}
\left.h(0)=\mathbf{P}_{0} * \phi=\phi(1)\right), \\
P=\{h \in \mathscr{H}: h(0)>0\} \cup\{0\} .
\end{gathered}
$$

We now have the following extension of the classical Herglotz theorem for H_{+}(see [1]).
Proposition 6. For each $h \in \mathscr{H}$ having $h(0)>0$ there is a least integer n and a unique positive measure μ in $\mathscr{D}_{0+}^{\prime}$ such that

$$
h(r, \theta)=\int_{\Gamma}\left(L^{n} \mathbf{P}\right)(r, \theta-t) d \mu(t)
$$

Proof. Let h be in \mathscr{H} with $h(0)>0$; i.e., let h be in P. Since $P=\bigcup L^{n} H_{+}$there exists a least integer n and a unique element $u \in H_{+}$such that $h=L^{n} u$. The classical Herglotz theorem implies that

$$
u(r, \theta)=\int_{\Gamma} \mathbf{P}(r, \theta-t) d \mu(t)
$$

for a unique μ in $\mathscr{D}_{0+}^{\prime}$, and thus

$$
h(r, \theta)=\left(L^{n} u\right)(r, \theta)=\int_{\Gamma}\left(L^{n} \mathbf{P}\right)(r, \theta-t) d \mu(t)
$$

REFERENCES

1. P. L. Duren, Theory of $H{ }^{\text {- }}$-spaces (Academic Press, 1970).
2. W. A. Feldman and J. F. Porter, Compact convergence and the order bidual for $C(X)$, Pacific J. Math. 57 (1975), 113-124.
\ddagger 3. W. A. Feldman and J. F. Porter, Order units generalized for convex spaces and a Kakutanitype representation (Preprint).
$\ddagger 4$. W. A. Feldman and J. F. Porter, Semibase spaces and their duality with semiorder-unit spaces (Preprint).
3. G. Jameson, Ordered linear spaces, Lecture Notes in Mathematics No. 141 (SpringerVerlag, 1970).
4. G. Johnson, Jr., Harmonic functions on the unit disc I, Illinois J. Math. 12 (1968), 366-385.
5. G. Johnson, Jr., Harmonic functions on the unit disc II, Illinois J. Math. 12 (1968), 386-396.
6. W. A. J. Luxemburg and A. A. Zaanen, Riesz spaces, Vol. I (North-Holland, 1971).
7. A. L. Peressini, Ordered topological vector spaces (Harper and Row, 1967).
8. L. Schwartz, Théorie des distributions, Actualitès Sci. Indust., Nos. 1245 (1957) and 1122 (1957).
\ddagger References [3] and [4] have appeared as one paper, Order units and base norms generalized for convex spaces, Proc. London Math. Soc. (3) 33 (1976), 299-312.

Department of Mathematics

University of Arkansas
Fayetteville, Arkansas 72701, U.S.A.

[^0]: \dagger Some of the results in this paper appear in the second author's dissertation (Syracuse University, 1971) written under the supervision of Professor Guy Johnson, Jr.

