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1. Introduction
The study of periodic, irrotational waves of finite amplitude in an incom-

pressible fluid of infinite depth was reduced by Levi-Civita (1) to the determin-
ation of a function

regular analytic in the interior of the unit circle p = 1 and which satisfies the
condition

— = pe~3z sin 0, p = const.
da

on the boundary. Here 0 is the angle of inclination of the flow, q = cex is its
speed and c is the velocity of wave propagation.

The uniqueness of the solution to the problem is a question of long standing,
raised by Levi-Civita himself. Both Levi-Civita and Lichtenstein (2) demon-
strated existence and uniqueness if p is sufficiently close to a positive integer.
Levi-Civita used Cauchy's method of " Calcul des Limites " and Lichtenstein
the method of non-linear integral equations. In 1957 Stoker (3) returned to
the question using the methods of modern functional analysis; in particular
an iteration procedure devised by Littman and Nirenberg. Recently Dunninger
and the author (4), using elementary methods, obtained the following result
on uniqueness.

Given a solution eo^O = 6t + ixt, no other solution io2{Q = 02 + ix2 exists for
which

i i#2V ^ a2 - (cos 102Y ;f I a 1̂ 1 a I
3 i 0 j 4i \cosi0j ' ' ' ' ( n )

COS | 0 ;

provided k~l, X = sin 02/sin #i are regular and \ 0X | +1 02 | <n in p ^ 1.

The inequalities (1.1) are portrayed in the hodograph plane (the plane with
polar coordinates q, 0) by the shaded areas in Fig. la. Under the conditions
stated no second solution exists for which the hodograph point (q2, 02) lies in
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24 M. H. MARTIN

the shaded region attached to the hodograph point (qu flj, both points [q^, 0r),
(q2, 62) corresponding to the same point £ in the unit circle p < l . One would
prefer a uniqueness theorem without the inequalities (1.1), i.e., one in which
the shaded region attached to {qu 6{) is the entire plane, or, if this is not possible,
a full neighbourhood of (qlt 9^; for example, the circular region in Fig. lb.
One arrives in this way at a concept of local uniqueness to which we shall
return in a moment.

- 1 ' \sin±0|)3

q =,

FIG. la FIG. lb

The general problem treated in the paper which includes the Levi-Civita
problem is the following.

Determine a function w = u + iv of the complex variable z = x+iy regular
analytic in a region S of the z-plane bounded by an analytic curve C upon which

«» = Ks)f(u, v), (1.2)
where un denotes the external normal derivative of u on C, and h, f are given
analytic functions of their arguments, with s denoting some parameter on C,
e.g., the arc length.

Prompted by the above results on the Levi-Civita problem, we seek those
functions/(w, v) in (1.2) for which a solution w is locally p-unique in the follow-
ing sense, as defined by Cushing (5).

A solution Wj = u1+iv1 of (1.2) is locally p-unique if a non-negative func-
tion f p = p(«!, Vi) can be found such that there is no second solution

for which
w2 = u2 + iv2

zeS. (1.3)

t Cushing (5) takes /> = />(*, y), but the choice /> = p(ult cj) is more convenient for our
purposes.
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LOCAL UNIQUENESS IN BOUNDARY PROBLEMS 25

Obviously if the solution to (1.2) is unique in the ordinary sense, it is locally
p-unique, but the converse need not be true.

To avoid difficulties on the boundary C we assume that any solution w is
regular analytic in a region /?=>S+C.

2. Preliminary results
In this section we collect a number of results for later use.
The integral identity

f ^ ^ ^ (2.1)

a ready consequence of Gauss' theorem, is basic to our considerations. Here
x = T(M1; U2, U3, M4) is an arbitrary function of the real and imaginary parts of
two analytic functions

and
/ i =/i("i> "sX h =

are assumed given in advance. 2 is a quadratic form

Q = a

ft-£-\ (2-2)
dx

in the partial derivatives pk with coefficients

a = / 2 ? U l , 2b = (/2T)H2-(/1T)ul,

c=-hxn, 2d=-(/1T)U3-(/2T)U4)
 ( 2 3 )

which are determined, once the function x has been selected.
If wlt w2 are two solutions to (1.2), i.e., if

^Ks)f(uuu3), ^Hs)f(u2,u4) (2.4)
on on

hold on C and if we take

the identity (2.1) implies Q = 0 in S, provided Q is definite, or at least semi-
definite. If Q is definite (semi-definite) there is no loss in generality in assuming
Q positive definite (positive semi-definite), since Q changes its sign if % is
replaced by — T.

If £ 4 denotes the four dimensional space of the variables uu u2, u3, w4, the
domain D in which Q is positive definite obviously depends on the function x
and one seeks a function x that will make D as large as possible in view of the
following lemma (4).
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26 M. H. MARTIN

Lemma 2.1. If wv = u1 + iu3 is a non-constant solution of the boundary
problem (1.2), there is no other solution w2 — u2 + iu4for which the integrals in
(2.1) exist and the manifold

lies in D.

M2: «! = u^x, y), u2 = u2(x, y),

"3 = "3(*> y)> "4 = «4(*> y), (x, y) e S,

To prove the lemma, assume that a second solution w2 exists. On sub-
stituting from (2.4) into the integral identity (2.1), the integral over S vanishes.
Since Q is positive definite, this implies Q — 0 and therefore that

Pi= Pi = P 3 = P* = ° . (2-6)
hold in S. In view of the Cauchy-Riemann equations

duk
Pi = 43, Pi = 44. Ik = -r-5.

dy

wL = constant, contrary to hypothesis.
To illustrate the lemma, consider the Levi-Civita problem, for which, in

present notation
/ = e - 3 o s i n u .

Let us take
_ cos «2-cos Ul 3(U3+Ui) _ g-i-XWto+rt sin«2

sin UJL sin u2 cos ux+cos u2 sin «x

One finds
A2 + C O S 2 « , 2 « t /-i 2 . 1-1 2\

1 + cos Mt cos u2

A + C O S M i 2 j n
c = i - r\, d = 0,

1+COS «j COSU2

where
Ul = elt u2 = 92, r\^e^ = {qjcf, r\ = e3u* = (?2/c)3, (2.7)

from which it is clear that the integrals in (2.1) will exist if A"1, A are regular
and | ut \ + \u2\<n. The domain D is defined by the inequalities

a>0, A = b2-ac<0.

The first is obviously satisfied. In view of

A = \ esc2 uj esc2 w2[(r! + r2)2 — (r: cos «2 + r2 cos Mi)2]

. , U , . 2 "l V 2 "2 2 " A
r , sin2 — — r2 sin2 — H r i c o s — — ri c o s — »1 2 2 2 A 2 2 /

the second, on returning to the hodograph variables (2.7), amounts to prescribing
the inequalities (1.1) pictured by the shaded regions in Figure la.
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LOCAL UNIQUENESS IN BOUNDARY PROBLEMS 27

In section 3 we shall need the reversed Cauchy inequality (6), which in its
simplest form states that if

(x,y) = x1yl+x2y2-x3y3,

then (x, x)<0 implies that
(x,y)2^(x,x)(y,y), (2.8)

with equality prevailing if and only if the vectors

x = xux2,x3; y = yuy2,y3

are linearly dependent.

3. The quadratic form Q
A simple calculation verifies that

A = b2+d2-ac. (3.1)

Consequently if a>0, the quadratic form Q is positive definite if A<0, positive
semi-definite if A = 0 and indefinite if A>0. A is known as the discriminant
of Q.

The domain D of £4 in which Q is positive definite is accordingly defined
by the inequalities

a>0, A = b2+d2-ac<0, (3.2)

the coefficients a, b, c, d being determined by z in accordance with (2.3).
The points in £4 which correspond to equal functions wlt w2 form a two

dimensional subspace
S2: u2 = uu M4 = u3.

Likewise the points in 2s4 which correspond to functions wt, w2 for which

0< | wt-w2 | ^ p, p = pfai, M3), (3.3)

form a " neighbourhood "

Dp: 0 < ( « 1 - u 2 ) 2 + ( u 4 - u 3 ) 2 g p 2 ,
of S2.

IfDpczD and wt is a non-constant solution of (1.2), there is no other solution
w2 for which the integrals in (2.1) exist and the manifold M2 in Lemma 2.1
lies in Dp or even in Dp, i.e., in

Dp: 0 ^ | wl-w2 | | p , p = p(uuu3), (3.3')

since wl = w2 can occur for at most finitely many points of S, and the partial
derivatives pk in (2.6) will continue to vanish at these points by continuity.
Thus we see that if a function T can be found so that DpcD, i.e., Q is positive
definite in Dp, a non-constant solution wt is locally p-unique, at least among
solutions H>2 for which the integrals in (2.1) exist.
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28 M. H. MARTIN

We now take up the problem of determining the function T, SO that Q will
be positive definite in Dp for some p = p(uly u3), i.e., so that the inequalities
(3.2) hold in Dp.

Let us denote evaluation in £2 by a bar, for example

J2~fu J2~fl> J2—fl>
where

f, _ ^/i f, _ 8f2 > _ 3/x f df2

oul ou2 ou3 ou4

As our first condition on T, from (2.3) we are led to require

fl=/1ful>0. (3.4)

On substituting from (2.3), one finds that

A= U
where

W = / , ( / ; -fi)rrUl. (3.5)
Clearly

PF=O, A=

and we can secure A = 0, by choosing x subject to the conditions

TB1 + T,2 = 0, /,[TU 3 + fH4] + 2/,f = 0,

where by fB1, for example, we mean the value of fUl on S2 and not the partial
derivative of f with respect to Wj which equals TUI+TU2. We shall prove that
5>0, A<0 in Z)p imply f = 0, provided//' ^ 0. Indeed A is positive whenever
W is positive and W can be written in the form

A.

If f ^= 0, the quantities a, A, T maintain fixed signs in the neighbourhood of
S2, but / i ' - / 2 ' will change sign, in as much as/j" # 0. Thus W, and A also,
would become positive in a neighbourhood of S2, contrary to the requirement
that A be negative in Dp. Consequently we lay down the following " initial
conditions "

f = 0, fUl + fU2 = 0, fU3 + f,,4 = O,

for T, the latter two being obvious consequences of the first.
For uu u3 fixed A becomes a function of u2, M4. We seek a function x so

that A will have zero for a relative maximum at a point P0(ui, u3) of the (u2, w4)-
plane. If this can be done for each point Po, we shall have A<0 in a domain
Dp as desired. Sufficient conditions for zero to be a relative maximum for A
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LOCAL UNIQUENESS IN BOUNDARY PROBLEMS 29

at PQ are of course

A = AU2 = AU4 = 0, AU2U2<0, A ^ - A ^ A ^ - c O . (3.6)

From the definition of A one finds

AU2 = WU2 = -fJI'TTUi = 0, AU4 = WU4 = -/j/i 'ff., = 0,

in which

"U2U2
 = AJiJi TU2, " u 2 U 4 = J i T U 2 ( y 1 T I ( 2 + / 1 TU4),

Clearly AU2U2<0 implies WU2U2<0, and therefore

One also observes that

w?2Ui-wU2U2wUiUt = / 1
2 f u

2
2 ( / 1 ' f U 2 - / 1 "f U 4 ) 2 ^ o.

If inequality holds, Po is a saddle point of W, so that W, and A also, would be
positive in a neighbourhood of Po. Therefore equality holds, and we have the
additional " initial condition "

A'tU2-/i"fU4 = 0 (3.7)

on T. Assuming that this condition is fulfilled, we write

WU2U2 = - 2 R 2 , WU2U4 = - 2RS, WU4U4 = - 2 S 2

so that
AU2U2 = 2(U2

2 + FU
2
2 - R 2 ) , AU2U4 = 2(VU2UU4+VU2VUA-RS),

In view of the reversed Cauchy inequality (2.8)

A2
2U4-AU2U2AU4l(4^

with equality prevailing if and only if

(3.8)

Thus the inequalities in (3.6) cannot be fulfilled simultaneously. In place
of the last inequality, we are forced to consider the ambiguous case

A2
2tt4-AU2U2AH4U4 = 0 (3.9)

at the critical point Po in our attempt to insure that A has a relative max imum
ati>0-

One readily verifies that

m = f l
uiu< fl'
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30 M. H. MARTIN

If we introduce
f"

" " &
under the assumption that

i.e.,/! is neither a linear function of uu nor an additively separable function of
uu u3, equations (3.7), (3.8) become

From the first of these equations we see that

TU4 = 0 ,

U< = 0,
and when these equations are used to eliminate the partial derivatives of the
first two orders of T on S2 from the last two equations, we obtain an over-
determined system

./> ' +fi<o +Aco2 = 0, fl(b-f{-Ao> = 0,
of partial differential equations for/ j . From the lemma in the appendix it
follows that the function fY must be one of the folio-wing types

(i) A ^ ( i m i ! + /iti3), Qi) A =J1+g(l^A, (3.10)

where g = g(O is an arbitrary function and m, n, £tit u3, jx denote arbitrary
constants.

Summing up our results, we see that the conditions (3.6) for A to have zero
for a relative maximum at Po cannot be satisfied simultaneously. If the first
four are satisfied, the ambiguous case (3.9) arises a t the critical point Po and
if / i is neither a linear function of ux, nor an additively separable function of
uu u3, it must be one of the types (3.10). Boundary problems of the latter two
types have been studied by Cushing (5) in his thesis and Dunninger (7) has
obtained uniqueness theorems if/j is of type (i) in (3.10) in the special cases

4. The case / = f(mu+nv)
This section will be devoted to the special case of the boundary problem

(1.2)
un = /i(s)/(^), £, = mu + nv, m, n = const., (4.1)

to which we have been led by the considerations of the previous section.
Given a solution Wj = Uj^ + i^ of (4.1), a one-parameter family of solutions

w2 = Wi + Hm + ir^c, c = const, (real), (4.2)

is generated by it. Under what conditions are these the only solutions of (4.1)?

https://doi.org/10.1017/S0013091500009159 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009159


LOCAL UNIQUENESS IN BOUNDARY PROBLEMS 31

The mapping
£t = mu1+nu3, £2 = mu2 + nu4, (4.3)

carries the space 2s4 of the variables w1, u2, u3, M4 into the plane E2 of the
variables £ls £2. This mapping carries the hyperplane

S3: m(u1 — u2) + n(u3 — u4) = 0,

in E4 into the straight line
S,: ^ = £2

of is2. 1° addition to containing the subspace S2 of equal solutions, S3 also
contains the one-parameter family of solutions (4.2) generated by a given
solution wt. If wu w2 are two solutions of (4.1), not related by (4.2), the
mapping (4.3) carries the region S of the z-plane into a set £ of the plane E2.
Clearly

Ui-^|^|w1-w2|V(m2 + «2).
Consequently if wu w2 satisfy (3.3') the set S will be confined to the band

0 ^ | ^ - ^ 2 | < p V ( m 2 + n2) (4.4)

about the straight line Su the level lines ^ = 0 of the harmonic function
£, = £i — £2, mapping into segments of St.

If we assume that

U, V, W and A become functions of %y, £2. For ^ fixed A becomes a function
of {2, and in place of (3.6) we now seek a function T for which

A = A,2 = 0, A,2?2<0, (4.5)

the ~ denoting evaluation on St.
From the definition of U, V, W in (3.5) we now have

where

One readily verifies that, in as much as A = W = 0,

V = Wi(rSl + fix) = 0, V = i/iCA^, + f 4l) + 2/it ] = 0,
and therefore that

in consequence of which
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If we assume that T is regular analytic in the neighbourhood of St, in parti-
cular permits the expansion

one has

and the formulas for U^2, Vi2, W^2 simplify to

When these are inserted in the expression for A 2̂̂ 2 above, one finds

where
/ = «2/(m2 + «

To make A 2̂̂ 2 negative, we set

/ 1a
This implies

a1 = /c/r1"2' , k = const. (4.6)

Under these circumstances A 2̂̂ 2 will be negative if and only if/j satisfies the
inequality

A simple calculation verifies that, if k = —\jm in (4.6), a =/i"2 ' , so that a will
be positive as long as fy is positive.

Summing up our results, we have the following theorem.

Theorem 4.1. If the function f(u, v) in the boundary problem (1.2) has the
special form

/ = /({), £=mu + nv, m, n = const., m # 0,

and f (£) fulfils the inequality

ff"+lf'2<0, l = n2l(m2 + n2), 0£l<l, (4.7)

apart from the solutions (4.2) any non-constant solution w1 = u^ + iu?, o/(4.1)
for which

fi=f(.$i)=fi(mu1 + nu3)>0 in S + C

is locally p-unique for some function p = p(%1)>0.

Under the conditions of the theorem T may be chosen so that Q is positive
semi-definite on St and positive definite in a neighbourhood

0<\^-^2\<d, 6 = 8(^1 (4.8)

of 5X for some function 5(£x). If we choose p = 5/y/(m2 + n2) in (3.3'), it

https://doi.org/10.1017/S0013091500009159 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009159


LOCAL UNIQUENESS IN BOUNDARY PROBLEMS 33

follows from (4.4) that the set 2 into which S is carried by the mapping (4.3)
will be confined to the strip

0^\^-^2\<S. (4.9)

If there is a second solution w2 of (4.1) for which (4.8) holds, the fundamental
identity (2.1) implies pt = p2 = p3 = p* = 0, and w1 = const., contrary to
hypothesis. Consequently such a solution w2 cannot exist. This result can be
extended to include equality as in (4.9), for, the solutions w2 in (4.2) being ex-
cluded, equality can occur only on the level lines £t — £2 = 0 in S and the partial
derivatives pk will continue to vanish on these level lines by continuity.

That functions /(<!;) exist for which the inequality (4.7) holds can be seen
by simple examples. If/ = £1/p, one readily verifies that

and consequently (4.7) holds for £ >0 provided p > 1 + /. More generally if

we have

V 9y H>

If p is an odd integer greater than 1 + / and gg" S 0. inequality (4.7) holds,
provided g' does not vanish simultaneously with gg", e.g., g = sin <!;.

5. The case / = /(«)
The restriction/x>0 in Theorem 4.1 is an unhappy one. Clearly it is not

met in the Levi-Civita problem, in which sin 9 = 0 at the crests and troughs of
the waves. In this section we show how the restriction can be removed in the
special case in which/in (1.2) does not depend on v. This question has also
been treated with other methods by Cushing (5).

For the function x we take

«JW4 *-=f2lfu fl=f(u1), /2=/(w2)» (5-1)
where a(Mt), <j>(X) are two analytic functions at our disposal. We assume that
$> = <{>(1) = 0, to insure that t vanishes on the straight line 5X: ut = u2.
Using (2.3) one verifies that

2b =

Consequently the integrals in the fundamental identity (2.1) exist, provided the
ratio X is regular analytic in S+ C.

E.M.S.-
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For Mj fixed A becomes a function of u2 and in place of (4.5) we seek T SO
that

A = AU2 = 0, AU2U2<0. (5.2)
where, from (3.5)

A = V2 + W, U = WJS* +/2tU2 - (/i - / 2 ' ) T ] ,

One readily verifies that f = 0 implies the first two equalities in (5.2). In
addition one has

AU2U2 = 2V2
2 + WU1U2, UU1 = i$'(«/0' ,

file n

i F W 2 2 ^ « ,
Ji

so that if one chooses
$' = 0 ' ( 1 ) = - 1 , a = l//1'

one obtains

The case / = f(mu+nv) considered in the previous section reduces to the
case / = f(u) if m = 1 and n = 0. Theorem 4.1 still applies, but in addition
we have the following theorem.

Theorem 5.1. If the function f (u, v) in the boundary problem (1.2) has the
special form

/ = /(«),
and f \u) fulfils the inequality

f"lf<0
apart from the solutions

w2 = wl + ic, c = const, (real),

any non-constant solution wt = ut + iu3 for which

/i=/'(«i)#0 in S + C

is locally p-unique for some function p = p(u1)>0 among the analytic functions
w2 = u2 + iu4for which X =f2/fi is regular analytic in S+C.

If, for example, / = sin u, the hypotheses of the theorem are met for a
non-constant solution wt = ut + iu3 provided 0 ^ | u± \<n/2 on S+C.

Appendix

This section contains a proof of the following lemma

Lemma. The only solutions of the over-determined system

zwx + zxw + zyw
2 = 61 z wy - zx - zyw = 0' w = - zxjzxy,
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LOCAL UNIQUENESS IN BOUNDARY PROBLEMS 35

are developable surfaces z = z(x, y), and are either those with parallel, horizontal
rulings

z = g(mx + ny), m,n = const.,
or are cones

z = zo+(x- xo)g ( y y°), x0, y0, z0 = const.
\ x -x 0 /

From the integrability condition

wxy-wyx = w(zxxzyy-zly)jzzxy = 0

we see that any solution z = z(x, y) is a developable surface. Taking a develop-
able surface to be the envelope of a one-parameter family of planes

z = ax+by + c,
where a, b, c are functions of a parameter t, the Cartesian equation of the
envelope is obtained by eliminating / between this equation and

ax+by+c = 0
(where the dots denote differentiation with respect to t), an equation which
defines / = t(x, y) implicitly. One readily verifies that

zx = a, zy = b, zxx = dtx, zxy = aty = btx, zyy = bty,

from which it follows that the developable surface will be a solution of the system
if and only if the Wronskian of a, b, c vanishes, i.e., the functions a, b, c are
linearly dependent.

If a, b are linearly dependent, say na = mb for constant m, n, the envelope
is a ruled surface

z = g(mx+ny)
with parallel, horizontal rulings. If a, b are linearly independent, we can write
axo + byo + c = 0, with x0, y0 constant, and find that the envelope is a cone

x-x0
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