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Abstract. 
Filaments are a global phenomenon and their formation, structure 

and dynamics are determined by magnetic fields. So they are an im
portant signature of the solar magnetism. The central mechanism in 
traditional mean-field dynamo theory is the alpha effect and it is a major 
result of this theory that the presence of kinetic or magnetic helicities is 
at least favourable for the effect. Recent studies of the magnetohydrody-
namic equations by means of numerical bifurcation-analysis techniques 
have confirmed the decisive role of helicity for a dynamo effect. The 
alpha effect corresponds to the simultaneous generation of magnetic he
licities in the mean field and in the fluctuations, the generation rates 
being equal in magnitude and opposite in sign. In the case of statistically 
stationary and homogeneous fluctuations, in particular, the alpha effect 
can increase the energy in the mean magnetic field only under the con
dition that also magnetic helicity is accumulated there. Generally, the 
two helicities generated by the alpha effect, that in the mean field and 
that in the fluctuations, have either to be dissipated in the generation 
region or to be transported out of this region. The latter may lead to the 
appearance of helicity in the atmosphere, in particular in filaments, and 
thus provide valuable information on dynamo processes inaccessible to in 
situ measurements. 

1. Introduction 

The dynamo for the global solar magnetic field is assumed to operate in the 
convection zone and to consist of the cyclic generation of a toroidal (azimuthal) 
field from a poloidal one (whose field lines lie in planes containing the rotational 
axis of the Sun) and the regeneration of a poloidal field from a toroidal one. 
If there exists a poloidal field, then a toroidal field is generated very effectively 
by differential rotation. But the regeneration of the poloidal field represents a 
problem. For this reason the theory of the turbulent dynamo has been developed 
(Krause and Radler 1980). The central mechanism in this theory is the genera
tion of a mean, or large-scale, electromotive force S by turbulently fluctuating, 
or small-scale, parts of velocity and magnetic field, and it is a major result of 
the theory that the presence of kinetic and magnetic helicities is favourable for 
a so-called alpha effect, i.e., a non-vanishing component £|| = a(B) of £ along 
the mean magnetic field (B). The densities per unit volume of kinetic, magnetic 
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and current helicity are defined by 

i f K = v ( V x v ) , J M = A . B , I c = B ' ( V x B), (1) 

where v, B and A denote fluid velocity, magnetic field and a magnetic vector 
potential. Hu and He are closely related (cf., e.g., Seehafer 1990). 

The usually quoted estimate for the alpha-effect parameter a is (Krause 
and Radler 1980, Eq. (3.31)) 

a « _ I ( v ' . V x v ' ) , (2) 

where r is the correlation time of the velocity fluctuations v' (angular brackets 
denote averages and primes the corresponding residuals). This estimate, which 
relates a to the kinetic helicity of the fluctuations, is derived under the following 
approximations and assumptions: 
1) The first order smoothing approximation (FOSA), which consists of neglecting 
the unpleasant term V X (v' x B ' - (v' x B')) in the equation for the time 
evolution of the magnetic fluctuations. This approximation is valid for, e.g., 
wave turbulence, where a disturbance does not lead to the onset of convection 
but only to a wave. It is, however, rather doubtful in the case of conventional, 
convective turbulence, i.e., in the solar convection zone. 
2) (v) = 0. 
3) (B) = constant (in space and time). 
4) Statistically stationary and homogeneous fluctuations. 
5) n (magnetic diffusivity) —> 0. 

The alpha effect is more directly related to current helicity than to kinetic 
helicity, namely (see Sec. 3 and Keinigs 1983, Matthaeus et al. 1986, Radler & 
Seehafer 1990, Seehafer 1994a, b, Seehafer 1996), 

" t f 1 5 F = -<^(B''(V)<B'»' <3) 

For deriving this relation, of the above five conditions only the fourth one is 
needed. On the other hand, the traditional estimate, Eq. (2), gives an informa
tion on which type of fluid motion can produce an alpha effect. 

The majority of dynamo studies, in particular those in the frame of mean-
field theory, have been kinematic. Kinematic dynamo theory studies the con
ditions under which a prescribed velocity field can amplify, or at least prevent 
from decaying, some seed magnetic field, completely disregarding the equations 
governing the motion of the fluid. A step towards a self-consistent, nonlinear 
theory is taken by models containing, mainly on the base of physically plausible 
assumptions, a back reaction of a generated mean magnetic field on the gen
erating turbulent fluid motions. Here, in particular, models with the so-called 
a-quenching are studied, in which the alpha-effect parameter a is a function of 
the mean magnetic field (e.g., Radler et al. 1990). 

In principle totally self-consistent are numerical simulations of the com
plete system of the nonlinear magnetohydrodynamic (MHD) equations (e.g., 
Meneguzzi et al. 1981, Meneguzzi and Pouquet 1989, Glatzmaier 1984, 1985). 
In some sense still a step further goes a bifurcation, or qualitative, analysis, 
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by which one tries to get an overview of the attractor structure of the system, 
i.e., of the set of the possible time-asymptotic states. In Sec. 2 an example of 
a numerical bifurcation analysis is presented. The Reynolds numbers reachable 
here presently are by many orders of magnitude smaller than those at the Sun. 
Therefore, the statistical mean-field approach remains indispensible. In Sec. 3 
it is demonstrated that the alpha effect generates simultaneously and at equal 
rates fluctuating (turbulent) and mean-field magnetic helicities of opposite signs. 
Section 4 then gives a final discussion. 

2. Bifurcation Analysis of a Magnetofluid with Helical Forcing 

Simple examples of strongly helical flows are provided by the so-called ABC 
flows (see, e.g., Dombre et al. 1986), given by 

v = VABC = (A sin z + C cos y, B sin x + A cos z, C sin y + B cos x), (4) 

where A, B and C denote constant coefficients. The ABC flows are steady 
solutions of the incompressible Navier-Stokes equation [Eq. (6) below with the 
magnetic field dropped] if an external body force 

f = -AvABC = VABC (5) 

- in the following called ABC forcing - just compensating for viscous losses is 
applied. Here we report results of numerical studies of the complete system 
of the incompressible MHD equations with this kind of forcing as well as with 
a generalized ABC forcing with a variable degree of helicity. Comprehensive 
accounts of the corresponding studies may be found in Seehafer et al. (1996), 
Feudel et al. (1995,1996), and Schmidtmann et al. (1998). 

We use the incompressible MHD equations in the nondimensional form 

-1 + (v • V)v = Av - Vp - - V B 2 + (B • V)B + f, (6) 

- ^ + ( V - V ) B = P - 1 A B + ( B - V ) V , (7) 

V - v = 0, V B = 0, (8) 

where p is the thermal pressure and Pm the magnetic Prandtl number (the 
ratio between magnetic diffusivity and kinematic viscosity). Periodic boundary 
conditions are applied and the spatial means of v and B, and consequently also 
off are assumed to vanish. The ABC forcing, given by Eqs. (4) and (5), is used 
with with 

A = B = C = R (9) 

where R is referred to as Reynolds number. For this forcing the MHD equations 
are equivariant with respect to a discrete symmetry group which is isomorphic 
to the octahedral group 0 (the rotation group of the cube). 

Besides the pure ABC forcing also a generalized ABC forcing is applied, 
given by 

f = (1 - X)vABC + \v~ABC, (10) 
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Figure 1. Schematic bifurcation diagram for pure ABC forcing. 

where 

vABC = (Acosz + Csiny, B cos x + A sin z, Ccosy + Bsinx) (11) 

and A is a parameter varying between 0 and 0.5. vABC satisfies V X vABC = 
~VABC>

 a n d f°r ^ = 0-5 its addition in the forcing term "kills" the helicity on 
average in the volume, while A = 0 corresponds to the original ABC forcing. 

We restrict ourselves to the case of Pm = 1 and R and A are our bifurcation 
parameters. 

An overview of the bifurcation structure for pure ABC forcing is depicted 
in Figure 1. For weak forcing (small R), there exists a stable stationary solution, 
namely the ABC flow [given by Eq. (4)] with vanishing magnetic field, and all 
system trajectories are attracted by this solution. If R is raised, the steady 
state loses stability in a Hopf bifurcation, leading to a periodic solution with a 
magnetic field as the only time-asymptotic state. The periodic magnetic solution 
is at first symmetric to the full group 0, but for further raised R it bifurcates 
into four new periodic solutions, which can be be transformed into each other by 
certain elements of 0. Besides that another periodic magnetic branch appears, 
consisting of three solutions which can be transformed into each other. Both 
branches undergo secondary Hopf bifurcations leading to quasiperiodic or torus 
solutions, which in turn eventually decay to chaotic states. 

The volume-averaged magnetic helicity [cf. Eq. (1)] is negative, thus oppo
site in sign to the kinetic helicity, as also found by Galanti et al. (1992). 

For the case of the generalized ABC forcing given by Eq. (10), the loca
tions of primary and secondary bifurcations in the parameter plane are shown 
in Figure 2. For weak forcing (small R), there always exists a stable stationary, 
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Figure 2. Locations of primary and secondary bifurcations of the 
original stationary solution in the A-R plane. Solid line and dashed-
dotted line: a single pair of complex conjugate eigenvalues crosses the 
imaginary axis; dashed line: two real eigenvalues pass through zero; 
dotted line: two pairs of complex conjugate eigenvalues cross the imag
inary axis. Asterisks indicate points at which, by means of simulations, 
non-magnetic chaotic time-asymptotic states have been found, while 
circles correspond to magnetic periodic attractors. 

nonmagnetic, globally attracting solution (which coincides with the the origi
nal ABC flow only in the special case of A = 0). Keeping fixed A and raising 
R, this steady-solution branch has been traced. Thick solid and dashed lines, 
respectively, indicate the primary bifurcation of the original steady state. For 
A < 0.4 the steady state loses stability in a Hopf bifurcation, but at A = 0.4 
the type of the first bifurcation, as well as the character of the time-asymptotic 
states after this bifurcation, change. While for A < 0.4 a magnetic periodic 
state is the (only) new attractor, for A between 0.4 and 0.5 new non-magnetic 
states emerge. Only if the helicity exceeds a certain threshold value, a Hopf 
bifurcation leads to a magnetic periodic state (i.e., to a dynamo effect). For he-
licities below the threshold value the transition is more complex, but always the 
ensuing time-dependent states, including chaotic ones, are non-magnetic (which 
does not exclude, of course, a dynamo effect for higher Reynolds numbers). 

3. Alpha Effect and the Generation of Magnetic Helicity 

The mean value of the magnetic helicity can be written as the sum of two con
tributions resulting from the mean and fluctuating magnetic fields, respectively, 
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namely 
/ r r \ _ ffMEAN , rrFLUC / 1 9 \ 

with 
Jff^

EAN = (A)-(B) , < L U C = (A ' -B ' ) . (13) 

For the time evolutions of # $ E A N and Hu
wc one finds (Seehafer 1996) 

QjjMEAN 

dt 
-2T?V x (B) • (B) + 2£ • (B) 

+ («JC=) 
\ / transport 

and 

3 < L U C 

dt 
-2r)(VxB'-B')-2£-(B) 

\ / transport 

These equations show that the alpha effect (the terms ^2£ • (B) on the right-
hand sides) corresponds to the simultaneous generation of magnetic helicities 
in the mean field and in the fluctuations, the generation rates being equal in 
magnitude and opposite in sign. The mean total magnetic helicity, which is an 
invariant of ideal magnetohydrodynamics, is not influenced by the alpha effect. 
This may equally be considered as a transfer of magnetic helicity between the 
fluctuating (or small-scale) and the mean (or large-scale) fields, mediated by the 
alpha effect, or as a helicity cascade (cf., Frisch et al. 1975, Pouquet et al. 1976, 
Stribling and Matthaeus 1990,1991). 

Consider now a situation in which the magnetic fluctuations are statistically 
stationary. Actually it is assumed throughout traditional turbulent-dynamo the
ory that the magnetic fluctuations have settled down to a statistically stationary 
state. If then, furthermore, the fluctuations are spatially homogeneous, Eq. (15) 
implies that the alpha-effect parameter a is connected to the mean current he
licity of the fluctuations by Eq. (3). 

Let us, next, examine under which conditions there is a turbulent dynamo 
effect, i.e., under which conditions the turbulent emf increases the energy in 
the mean magnetic field. For that purpose we assume (v) = 0, since we are 
not interested in the dynamo action of the mean flow. For the change of the 
mean-field magnetic energy density one then finds 

Yf^f- = "»?(V x < B » 2 + £ • ( V x < B » + V • ( P o k i n g flux), (16) 

which shows that the alpha effect contributes to the growth of the mean magnetic 
field if a(V X (B) • (B)) > 0 or, equivalently (see the definition of a in Eq. (3), 
£ • (B)(V X (B) • (B)) > 0. For £ • (B)(V x (B) • (B)) < 0 the alpha effect lowers 
the mean-field energy. 

Consider again the case of statistically stationary and homogeneous fluctu
ations. The condition for a dynamo action of the alpha effect, £ • (B)(V x (B) • 
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(B)) > 0, then becomes J?(V X B ' • B')(V X (B) • (B>) < 0, i.e., as first noted 
by Keinigs and Gerwin (1986), the current helicities in the fluctuating and the 
mean magnetic fields must have opposite signs. 

Assume now that the alpha effect really overcomes the dissipative term in 
Eq. (16), i.e., £ • (V X (B)) > ?y(V x (B))2. By using Eq. (3) and the Schwarz 
inequality (V x (B))2(B)2 > (V X (B) • (B))2 one then finds as a necessary 
condition for the growth of (B)2 

- ( V x B ' • B')(V x (B) • (B)) > (V x (B) • (B))2. (17) 

That is, the current helicity of the fluctuations must exceed that of the mean 
field by modulus. 

Condition (17) has an implication for the evolution of the mean-field mag
netic helicity: Since \r](V X B ' • B') | = \£ • (B)| due to the assumed stationarity 
and homogeneity of the fluctuations, |»7Vx(B)'(B)| < |£-(B)|. Then, according 
to Eq. (14) helicity is accumulated in the mean magnetic field, with sign given 
by the sign of £ • (B), i.e., by the sign of a. 

4. Discussion: The Helicity-Sign Puzzle 

The two helicities generated by the alpha effect, that in the mean field and that 
in the fluctuations, have either to be dissipated in the generation region or to 
be transported out of this region. The latter may lead to the appearance of 
helicity in the atmosphere, e.g., in filaments (Martin 1998, these proceedings), 
and through solar eruptions even in interplanetary space. There has been ac
cumulated strong evidence that the atmospheric and interplanetary magnetic 
helicity is predominantly negative in the northern and positive in the southern 
hemisphere (Seehafer 1990, Rust 1994, Rust and Kumar 1994, Pevtsov et al. 
1995, Abramenko et al. 1996). It is not clear yet, however, whether the fields 
observed in the atmosphere, e.g., in active regions, can be interpreted as mean 
fields or fluctuations in the sense of mean-field theory. 

Assume that the observed fields are either mainly mean fields or mainly 
fluctuations. The magnetic helicity accumulated in the mean field has the same 
sign as the alpha-effect parameter a. So a should be negative in the northern 
hemisphere if the observed fields are mean fields. Vice versa, a should be posi
tive in the northern hemisphere if the atmospheric fields have to be interpreted 
as fluctuations. For a proper propagation of the dynamo waves (from the poles 
to the equator), a negative (positive) a requires a decrease (an increase) of the 
angular velocity of the solar rotation with depth in the convection zone. Helio-
seismological measurements (Christensen-Dalsgaard and Schou 1988) indicate 
near the equator a decrease with depth (the decrease occurs rather low in the 
convection zone). Consequently, a < 0 in the northern hemisphere and the 
fields observed in active regions are mean fields. It will be interesting to carry 
out improved helicity measurements in the solar atmosphere as well as in the 
solar wind and to analyze them with respect to signatures of the two helicities. 
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