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We present ensemble Bayesian model averaging (EBMA) and illustrate its ability to aid scholars in the social

sciences to make more accurate forecasts of future events. In essence, EBMA improves prediction by pooling

information from multiple forecast models to generate ensemble predictions similar to a weighted average of

component forecasts. The weight assigned to each forecast is calibrated via its performance in some

validation period. The aim is not to choose some ‘‘best’’ model, but rather to incorporate the insights and

knowledge implicit in various forecasting efforts via statistical postprocessing. After presenting the method, we

show that EBMA increases the accuracy of out-of-sample forecasts relative to component models in three

applied examples: predicting the occurrence of insurgencies around the Pacific Rim, forecasting vote shares

in U.S. presidential elections, and predicting the votes of U.S. Supreme Court Justices.

1 Introduction

Testing systematic predictions about future events against observed outcomes is generally seen as the most
stringent validity check of statistical and theoretical models. Yet, political scientists rarely make predic-
tions about the future. Empirical models are seldom applied to out-of-sample data and are evenmore rarely
used to make predictions about future outcomes. Instead, researchers typically focus on developing and
validating theories that explain past events.

In part, this lack of emphasis on forecasting results from the fact that it is so difficult to make accurate
predictions about complex social phenomena. However, research in political science could gain im-
mensely in its policy relevance if predictions were more common and more accurate. Improved forecast-
ing of important political events would make research more germane to policymakers and the general
public who may be less interested in explaining the past than anticipating and altering the future. From
a scientific standpoint, greater attention to forecasting would facilitate stringent validation of theoretical
and statistical models since truly causal models should perform better in out-of-sample forecasting.

In this article, we extend a promising statistical method—ensemble Bayesian model averaging
(EBMA)—and introduce software that will aid researchers across disciplines in making more accurate fore-
casts. In essence, EBMA makes more accurate predictions possible by pooling information from multiple
forecast models to generate ensemble predictions similar to a weighted average of component forecasts.
The weight assigned to each forecast is calibrated via its performance in some prior period. These component
models can be diverse. They need not share covariates, functional forms, or error structures. Indeed, the com-
ponentsmay not even be statisticalmodels butmay be predictions generated by agent-basedmodels or subject-
matter experts.
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In the rest of this article, we briefly review existing political science research aimed at forecasting and
then present the mathematical details of the EBMA method. We then illustrate the benefits of EBMA by
applying it to predict insurgency events on the Pacific Rim, U.S. presidential elections, and voting on the
U.S. Supreme Court.

2 Dynamic Forecasting in Political Science

Although forecasting is a rare exercise in political science, there are an increasing number of exceptions. In
most cases, ‘‘forecasts’’ are conceptualized as an exercise inwhich the predicted values of a dependent variable
are calculated based on a specific statistical model and then compared with observed values (e.g., Hildebrand,
Liang, and Rosenthal 1976). In many instances, this reduces to an analysis of residuals. In others, the focus
is on randomly selecting subsets of the data to be excluded during model development for cross-validation.
However, there is also amore limited tradition ofmaking true forecasts about events that have not yet occurred.
(See Brandt, Freeman, and Schrodt 2011a for a recent and thorough survey of forecasts in political science
and economics with a focus on strategies to perform more meticulous comparisons of their accuracy.)

An early proponent of using statistical models to make predictions in the realm of international rela-
tions (IR) was Stephen Andriole (Andriole and Young 1977). In 1978, a volume edited by Nazli Choucri
and Thomas Robinson provided an overview of the then current work in forecasting in IR. Much of this
work was done in the context of policy-oriented research for the U.S. government during the VietnamWar.
Subsequently, there were a variety of efforts to create or evaluate forecasts of international conflict, in-
cluding Freeman and Job (1979), Singer andWallace (1979), and Vincent (1980). In addition, a few efforts
began to generate forecasts of domestic conflict (e.g., Gurr and Lichbach 1986). Recent years, however,
have witnessed increasing interest in prediction across a wide array of contexts in IR.1 The 2011 special
issue of Conflict Management and Peace Science on prediction in the field of IR exemplifies this growing
emphasis on forecasting (cf. Bueno de Mesquita 2011; Brandt, Freeman, and Schrodt 2011b; Schneider,
Gleditsch, and Carey 2011). Ward, Greenhill, and Bakke (2010) and Greenhill, Ward, and Sacks (2011)
provide additional discussion of forecasting in IR.

Outsideof IR, forecasting inpolitical sciencehas largely takenplace in the contextof election research. In
the 1960s, de Sola Pool, Abelson, and Popkin (1964) published a volume describing their work on the 1960
and 1964 presidential elections. They reported their efforts to use a computer simulation to predict election
outcomes, which was initially undertaken in the context of providing campaignmanagement advice for the
1960 campaign of JohnF.Kennedy.Rosenstone (1983) published perhaps themost influential earlywork on
elections forecasting, which surveyed the then state-of-the-art and included examples going back to 1932.

In the 1990s, political scientists renewed their interest in predicting presidential elections (Campbell and
Wink 1990; Campbell 1992). This work was anticipated by the efforts of several economists, most notably
the forecast established by Fair (1978). As we discuss below, predicting U.S. presidential and congressional
elections has since developed into a regular exercise. Moreover, researchers have begun to forecast election
outcomes in France (e.g., Jerome, Jerome, and Lewis-Beck 1999) and the United Kingdom (e.g., Whiteley
2005).2

Although efforts to predict future outcomes remain uncommon, research that combines multiple forecasts
is nearly nonexistent. To our knowledge, the only non-IR examples are the PollyVote project (cf. Graefe et al.
2010), which combines multiple predictions using simple averages of forecasts to predict U.S. presidential
elections, and Lock and Gelman (2010), who use Bayesian methodology to combine information from
historical state-level election returns, current polling data, and forecasting models to generate election fore-
casts.

Yet, methods for combining forecasts, and ensemble models in particular, have been shown to substan-
tially reduce prediction error in two important ways. First, across subject domains, ensemble predictions are

1An incomplete list of recent work would include Krause (1997), Davies and Gurr (1998), Pevehouse and Goldstein (1999), Schrodt
and Gerner (2000), King and Zeng (2001), O’Brien (2002), Bueno de Mesquita (2002), Fearon and Laitin (2003), de Marchi, Gelpi,
and Grynaviski (2004), Enders and Sandler (2005), Leblang and Satyanath (2006), Ward, Siverson, and Cao (2007), Brandt,
Colaresi, and Freeman (2008), Bennett and Stam (2009), and Gleditsch andWard (2010). A summary of classified efforts is reported
in Feder (2002). An overview of some of the historical efforts, along with a description of current thinking about forecasting and
decision support, is given by O’Brien (2010).

2Lewis-Beck (2005) provides a more in-depth discussion of election forecasting in a comparative context.
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usually more accurate than any individual component model. Second, they are significantly less likely to be
dramatically incorrect (Bates and Granger 1969; Armstrong 2001; Raftery et al. 2005).3 Combining fore-
casts not only reduces reliance on single data sources and methodologies (which lowers the likelihood of
dramatic errors) but also allows for the incorporation of more information than any one model is likely to
include in isolation.

The idea of ensemble learning itself has a long history in the machine learning community. The most
thorough treatment is found in Hastie, Tibshirani, and Friedman (2009). A wide range of statistical ap-
proaches including bagging, random forests, as well as boosting and penalized methods may be properly
considered ensemble approaches. They are different from EBMA, however, which comes from another
branch on the ensemble family tree—Bayesian statistics. Bayesian methods themselves can generally be
viewed as ensemble methods since they produce a large number of candidate ‘‘models’’ that are averaged
to create a posterior distribution of parameters (Hastie, Tibshirani, and Friedman 2009, 605).

These advances in the statistical literature parallel additional research in formal theory, which shows
that groups of agents using diverse decision rules or composed of agents with different viewpoints on
a problem can produce superior outcomes in difficult decision environments (Page, Sander, and
Schneider-Mizell 2007; Page 2008, 2011). That is, social systems, organizations, and institutions that
are better able to combine insights and knowledge from diverse actors are more functional, successful,
and adaptive in complex environments.

This last strain of thought is related to research that suggests the use of prediction markets as a method of
aggregating a large number of individual predictions about particular events. For example, Berg, Nelson, and
Rietz (2008) discuss prediction markets and demonstrate that they can be more accurate than polls when
forecasting elections. One important prediction market in political science is the Iowa Electronic Market,
in which individuals buy futures on politicians which are paid after election results are revealed.

3 Ensemble Bayesian Model Averaging

Predictive models remain underutilized, yet an increasing number of scholars have developed forecasting
models for specific research domains. As the number of forecasting efforts proliferates, however, there is
a growing benefit from developing methods to pool across models and methodologies to generate more
accurate forecasts. Very often, specific predictive models prove to be correct only for certain subsets of
observations. Moreover, specific models tend to be more sensitive to unusual events or particular data
issues than ensemble methods.

To aid the newfound emphasis on prediction in political science, we are advancing recent statistical
research aimed at integrating multiple predictions into a single improved forecast. In particular, we are
adapting an ensemble method first developed for application to the most mature prediction models in
existence—weather forecasting models. To generate predictive distributions of outcomes (e.g., temper-
ature), weather researchers apply ensemble methods to forecasts generated from multiple models (Raftery
et al. 2005). Thus, state-of-the-art ensemble forecasts aggregate multiple runs of (often multiple) weather
prediction models into a single unified forecast.

The particular ensemblemethodwe are extending for application to political outcomes is ensembleBayes-
ianmodel averaging (EBMA). First proposed byRaftery et al. (2005), EBMA pools across various forecasts
whilemeaningfully incorporating a priori uncertainty about the ‘‘best’’ model. It assumes that no particular
model or forecastingmethodcan fully encapsulate the truedata-generatingprocess.Rather, various research
teams or statistical techniques will reflect different facets of reality. EBMA collects all the insights from
multiple forecasting efforts in a coherent manner. The aim is not to choose some best model, but rather to
incorporate the insights and knowledge implicit in various forecasting efforts via statistical postprocessing.
In recent years, variants of the EBMAmethod have been applied to subjects as diverse as inflation (Wright
2009; Koop and Korobilis 2009; Gneiting and Thorarinsdottir 2010), stock prices (Billio et al. 2011), eco-
nomic growth andpolicymaking (Brock,Durlauf, andWest 2007;Billio et al. 2010), exchange rates (Wright
2008), industrial production (Feldkircher 2012), ice formation (Berrocal et al. 2010), visibility (Chmielecki
and Raftery 2010), water catchment streamflow (Huisman et al. 2009), climatology (Min and Hense 2006;

3The case for using predictions heuristically can also be found in early work by Dawid (1982, 1984).
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Min, Simonis, and Hense 2007; Smith et al. 2009), and hydrology (Zhang, Srinivasan, and Bosch 2009).
Indeed, research is underway to extend the method to handle missing data (Fraley, Raftery, and Gneiting
2010; McCandless, Haupt, and Young 2011) as well as calibrate model weights on nonlikelihood criteria
(e.g., Vrugt et al. 2006).

3.1 Overview of Method

EBMA is designed for application in the context of a subject domain with ongoing forecasting efforts.
That is, it assumes the existence of multiple teams or individuals making regular predictions about a com-
mon set of outcomes. For example, there may be multiple analysts or teams making predictions about the
likelihood of violent conflict in specific regions of the world, quarterly economic growth for the United
States, or the votes of members on bills before Congress. As we show in our examples below, these pre-
dictions might originate from the insights and intuitions of individual subject experts, traditional statistical
models, nonlinear classification trees, neural networks, agent-based models, or anything in between.

EBMA is a method for taking the predictions made by multiple teams and combining them—based on
their past performance and uniqueness—to create a new ensemble forecasting model. This ensemble
model can then make predictions about unobserved outcomes in the future and usually outperforms
its components. Roughly speaking, it generates forecasts by creating weighted averages of component
predictions or component predictive probability distribution functions (PDFs). The weight assigned to
each component forecast, denoted wk below, reflects two aspects of the components’ past forecasts. First,
ceteris paribus, the EBMAmodel will give greater weight to forecasts that were more accurate in the past.
Second, ceteris paribus, it will assign a greater weight to models that made unique (but correct) predic-
tions. That is, component forecasts that are too highly correlated may jointly have a large weight but will
individually be penalized.

There are two important aspects of EBMA that distinguish it from the alternative model selection or
averaging methods referenced above. First, EBMA is more flexible in not requiring any information about
the actual covariates that go into the component models. A second, and related, point is that EBMA does not
require researchers to develop metrics to penalize component forecasts for the number of parameters in-
cluded, the number of covariates, or their complexity more generally. In the case of subject-expert opinions,
there may not even be any covariates or statistical models involved, a point we return to in the Supreme Court
example below. Another nonstatistical component model that researchers might include is prices on predic-
tion markets. In other instances, predictions may come from models whose ‘‘complexity’’ is not easily de-
fined or enumerated (e.g., agent-based models). Of course, overly complex ‘‘garbage can’’ models will
generally perform poorly when making predictions over any outcome and therefore receive a lower weight
in the ensemble forecast. Yet, this lower weight is a function of the model’s predictive performance rather
than a prespecified preference for parsimony. The upshot is that EBMA forecasts will implicitly penalize
overfitting of component models since the weight assigned to component models is based on predictive
performance. However, it can do so without explicitly penalizing components for complexity.4

3.2 Mathematical Foundations

EBMA itself is an extension of the Bayesian model averaging (BMA) methodology (cf. Madigan and
Raftery 1994; Draper 1995; Raftery 1995; Hoeting et al. 1999; Clyde 2003; Raftery and Zheng 2003;
Clyde and George 2004) that has received considerable attention in the field of statistics. BMAwas first
introduced to political science by Bartels (1997) and has been applied in a number of contexts (e.g., Bartels

4To fully capture the ability of EBMA to reduce overfitting when using statistical models, it is necessary to divide the data into three
periods (Hastie, Tibshirani, and Friedman 2009). The first period, the training period, is used to fit the parameters for each component
model. The second period, the validation period, is used to calculate model weights and other parameters for the EBMAmodel using
out-of-sample predictions generated from the componentmodels.We then generate ensemble predictions for the third period, the test
period, using the EBMAmodel parameters calculated in period two. This approach is explicit in the insurgency forecasting example
below and implicit in the Supreme Court example below since the subject experts and classification algorithm were ‘‘trained’’ on
data not included in the study. This three-stage method is adjusted in the election forecasting example as the component models are
already sparse (somewhat ameliorating concerns about overfitting), and there are far fewer observations. In this example, component
models are trained over the period beginning in 1916 and the EBMAparameters are calculated only for the period beginning in 1952.
However, there is significant overlap in the training and validation samples.
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and Zaller 2001; Gill 2004; Imai and King 2004; Geer and Lau 2006). Montgomery and Nyhan (2010)
provide a more in-depth discussion of BMA and its applications in political science.

Assumewe have some quantity of interest to forecast, yt
�
, in some future period t� 2 T�. Further assume

that we have extant forecasts for events yt for some past period t 2 T that were generated from K fore-
casting models or teams,M1;M2; . . . ;MK . Each model, Mk, is assumed to come from the prior probability
distributionMk � pðMkÞ, and the PDF for yt is pðytjMkÞ. The outcome of interest is distributed p

�
yt

� jMk

�
.

Applying Bayes’s rule, we get that

p
�
Mkjyt

�
5

pðytjMkÞpðMkÞPK
k5 1

pðytjMkÞp
�
Mk

� ð1Þ

and the marginal predictive PDF is

p
�
yt

��
5

XK
k5 1

p
�
yt

� jMk

�
pðMkjytÞ: ð2Þ

The BMA PDF (equation (2)) can be viewed as the weighted average of the component PDFs where the
weights are determined by each model’s performance within the already observed period T. Likewise, we
can simply make a deterministic estimate using the weighted predictions of the components, denoted

E
�
yt

��
5

PK
k5 1

E
�
yt

� jMk

�
pðMkjytÞ.

3.2.1 EBMA for dynamic settings

In generating predictions of future events, the task is to first build a set of statistical models for some set of
observations S in the past time periods T#, which we refer to as the training period. Using these models, we
then generate predictions f

sjt
k for some period T, which has already occurred but which was not included in

the training sample. We refer to this as the validation period, and we will use these data to calibrate the
EBMA model.5 Finally, using the same K models, we assume that there are true forecasts (f

sjt�
k ) for

observations s 2 S in future time periods t� 2 T�.6 We either (a) treat these raw predictions as a component
model in the steps below or (b) statistically postprocess the predictions for out-of-sample bias reduction
and treat these recalibrated predictions as a component model.

As a running example, let us assume that we have K forecasting efforts for modeling insurgencies in
a set of countries S ongoing throughout the training (T#) validation (T) and test (T�) periods. We will
associate each component forecast with a component PDF, gkðyjfsjt;t

�

k Þ, which may be the original pre-
diction from the forecast model or the bias-corrected forecast.

The EBMA PDF is then a finite mixture of the K component PDFs, denoted

pðyjfsjt1 ; . . . ; f
sjt
K Þ5

XK
k5 1

wkgkðyjfsjtk Þ: ð3Þ

The wk’s 2 ½0; 1� are model probabilities and
PK
k5 1

wk 5 1. Roughly speaking, they are associated with each

component model’s predictive performance in the validation period controlling for the degree to which
they offer unique insight (i.e., a model’s predictions are distinct from those of other component models).
We provide additional discussion about the model weights in the election forecasting example below.

5In the case of subject experts, the training period is implicitly the period over which experts have gained their experience. Forecasts
will only be necessary for the validation period.

6Sloughter et al. (2007) make predictions for only one future time period and use only a subset of past time periods (they recommend
30) in their validation period. Thus, predictions are made sequentially with the entire EBMA procedure being recalculated for each
future event as observations are moved from the test period into the validation period T. Another alternative is to simply divide all the
data into discrete training, validation, and test periods for the entire procedure. We use both approaches in our examples below.
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Details for parameter estimation are provided in the Appendix. The ensemble PDF for an insurgency in the
test period t� in country s is then

p
�
yjf sjt

�

1 ; . . . ; f
sjt�
K

�
5

XK
k5 1

wkgk

�
yjf sjt

�

k

�
: ð4Þ

3.2.2 EBMA for normally distributed outcomes

To gain a fuller understanding of the EBMA method, it is easiest to imagine an effort to predict some
normally distributed outcome. When forecasting outcomes that are distributed normally, Raftery et al.
(2005) propose approximating the conditional PDF as a normal distribution centered at a linear transfor-
mation of the individual forecast, gkðyjfsjtk Þ5Nðak01ak1f

sjt
k ; r

2Þ. Prior applications have found that this
adjustment of the component models’ forecasts reduces overfitting and improves the performance of the
final ensemble forecasting model (Raftery et al. 2005).7 Using equations (3) and (4) above, the EBMA
PDF is then

pðyjfsjt1 ; . . . ; f
sjt
K Þ5

XK
k5 1

wkN
�
ak01ak1f

sjt
k ; r

2
�
; ð5Þ

and the predictive distribution for some observation y is

p
�
yjf sjt

�

1 ; . . . ; f
sjt�
K

�
5

XK
k5 1

wkN
�
ak01ak1f

sjt�
k ; r2

�
: ð6Þ

Thus, the predictive PDF is a mixture of K normal distributions each of whose mean is determined by
the component prediction (f

sjt�
k ) and whose ‘‘height’’ (i.e, the total area under the curve for component k) is

determined by the model weight wk.

4 Empirical Applications

In this section, we provide empirical applications of EBMA to predict insurgency in the Pacific Rim,
presidential election outcomes in the United States, and votes of Justices of the United States Supreme
Court. These three examples demonstrate the usefulness of the method for diverse domains of political
science research, different types of outcomes of interest (i.e., dichotomous and continuous), and different
forms of component models (i.e., statistical models versus expert predictions).

4.1 Application to Insurgency Forecasting

Our first example applies the EBMA method to data collected for the Integrated Crisis Early Warning Sys-
tems (ICEWS) project sponsored by the Defense Advanced Research Projects Agency (DARPA). The task of
the ICEWS project is to train models on data (focusing on five outcomes of interest) for 29 countries for every
month from 1997 through the present and to then make accurate predictions about expected crisis events.8

For purposes of demonstration, we focus on only one of these outcomes—violent insurgency.
The bulk of the data for the ICEWS project is gleaned from natural language processing of a contin-

uously updated harvest of news stories (primarily taken from Lexus/Nexus and Factiva archives). These
are digested with a version of the TABARI processor for events developed by Philip Schrodt and col-
leagues in the context of the Event Data Project (see http://eventdata.psu.edu/ for more details). These
data are augmented with a variety of covariates, including country-level attributes (coded on a monthly or

7Our adjustments to the basic EBMAmethod for application to dichotomous outcomes, as well as details of parameter estimation, are
shown in the Appendix.

8The twenty-nine countries are Australia, Bangladesh, Bhutan, Cambodia, China, Comoros, Fiji, India, Indonesia, Japan, Laos,
Madagascar, Malaysia, Mauritius, Mongolia, Myanmar, Nepal, New Zealand, North Korea, Papua NewGuinea, Philippines, Russia,
Singapore, Solomon Islands, South Korea, Sri Lanka, Taiwan, Thailand, and Vietnam. This set is not a random sample but rather
constitutes the countries of population greater than 500,000 that are in the area of responsibility of the U.S. Pacific Command.
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yearly basis) from the Polity andWorld Bank data sets, information about election cycles (if any), events in
neighboring countries, and the length of shared borders with neighboring countries.

4.1.1 Component models

We apply EBMA to make predictions for the occurrence of insurgency in these 29 countries for each
month in the year 2010 (the last year in the data set). As a first step in the process, we must choose some
set of observations that we wish to treat as a training period for the component statistical models and
a second set of data to treat as a validation set with which to calibrate the EBMA model.

Unfortunately, there is no clear guidance available on how to choose the relative sizes of the training set,
the validation set, or the test set. Hastie, Tibshirani, and Friedman (2009, chap. 7) discuss this in some
detail, wherein they note (p. 195): ‘‘It is difficult to give a general rule on how to choose the number of
observations in each of the . . . parts, as this depends on the signal-to-noise ratio in the data and the training
sample size.’’ The basic point is that there is no general rule. Moreover, the appropriate size of the training
and test set depends on the prevalence of the signal in the training data. In the case of predictive studies like
ours, the only general rule is: it depends.

In this case,weestimated threeexemplar statisticalmodelsusingdata for the trainingperiod ranging from
January 19999 to December 2007 and fit an EBMA model using the component model predictions for the
validation period ranging from January 2008 to December 2009.We thenmake forecasts for the test period
ranging from January 2010 to December 2010 using both the component and EBMA models. To provide
variation in the complexity (as well as accuracy) of the components, we included the following models.

� Strategic Analysis Enterprise (SAE): This is one model developed as part of the ICEWS project and
was designed by Strategic Analysis Enterprises. It is specified as a simple generalized linear logistic
model including 27 different independent variables.10 All the variables are taken from the ICEWS
event-stream data.

� Generalized Linear Model (GLM): For the purposes of demonstrating the properties of the EBMA
method, we estimated a crude logistic model that includes only population size, GDP growth (both
lagged 3 months), the number of minority groups at risk in the country, and a measure of anocracy
supplied in the Polity IV data set (Marshall, Jaggers, and Gurr 2009).

� Linear Mixed Effects Regression (LMER): This is a generalized linear mixed effects model using
a logistic link function and including a random effects term for lagged GDP per capita and the lagged
number of conflictual events involving the United States in the country of interest.11 The list of
additional covariates includes the number of conflictual events involving the military within the
country of interest (lagged three months), the number of days elapsed since the last election,12

the number of new insurgencies that began in the previous 2 years, and a spatial lag that reflects
recent occurrences of domestic crises in the countries’ geographic neighbors.13

4.1.2 Results

Table 1 shows the EBMA model parameters as well as fit statistics associated with the individual com-
ponent models and the EBMA predictions for the validation time period (2008–09). The first column
shows the weights that the EBMA model assigned to each component. As can be seen, the GLM model
is effectively excluded, whereas the LMER model carries the greatest weight ðwk 5 0:85Þ followed by the
SAEmodel ðwk 5 0:14Þ. The constant term associated with each component corresponds to the term ak0 in
equation (8), whereas the predictor corresponds to ak1. The other columns in Table 1 are fit statistics. AUC

9Because some of the models include lagged data, this is the first year for which all the component models produce fitted values or
predictions.

10See strategicanalysisenterprises.com for more details.
11It is worth noting that the mixed effects model is a kind of ensemble mixture in that it averages the so-called within model with the
between model.

12This is calculated as the number of days between the middle of the current month and the last federal election regardless of the
legitimacy of the election.

13Geographical proximity is measured in terms of the length of the shared border between the two countries.
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is the area under the receiver-operating characteristic (ROC) curve. The advantage of using ROC curves is
that it evaluates forecasts in a way that is less dependent on an arbitrary cutoff point. A value of 1 would
mean that all observations were predicted correctly at all possible cutoff points (King and Zeng 2001).

We compare the models using three additional metrics. The proportional reduction in error (PRE) is the
percentage increase of correctly predicted observations relative to some predefined base model. In this
case, the base model is predicting ‘‘no insurgencies’’ for all observations. Insurgencies are relatively rare
events. Thus, predicting a zero for all observations leads to a 91.8% correct prediction rate. The Brier score
is the average squared deviation of the predicted probability from the true event (0 or 1). Thus, a lower
score corresponds to higher forecast accuracy (Brier 1950). Finally, we calculate the percentage of ob-
servations that each model would predict correctly using a 0.5 threshold on the predicted probability scale.

Note that the EBMA model does at least as well (and usually better) than all the component models on
almost all of our model fit statistics. The EBMA model has the highest PRE and % correct and the lowest
Brier score. Although the LMER model has a slightly higher AUC, that model’s overall performance
suggests that it may be overfit.

Figure 1 shows separation plots for the EBMAmodel and the individual components (Greenhill, Ward,
and Sacks 2011). In each plot, the observations are ordered from left to right by increasing predicted
probabilities of insurgency (as predicted by the particular model). The black line corresponds to the pre-
dicted probability produced by the relevant model for each observation, and actual occurrences of insur-
gencies are colored red. Figure 1 shows visually that the GLM model performs very poorly, whereas the
LMER model performs very well but tends to assign high probabilities to a large number of observations
where we observe no insurgencies (i.e., it overpredicts insurgencies). More importantly, the overall best
performance is associated with the EBMA forecast. The separation plots show that the EBMA model
produces few false negatives and significantly fewer false positives than any of the component models.

However, the more interesting evaluation of the EBMA method is its test-period predictive power.
Table 2 shows fit statistics for the individual components as well as the EBMA forecasts for observations
in the 12 months following the validation period. The EBMA model outperforms the component models
on all metrics. In particular, the EBMA model has the highest PRE at 0.43. Since it is possible to predict
89.9% of these observations correctly by forecasting no insurgency, a 43% reduction of error relative to the
baseline model is quite substantial.

Importantly, EBMA clearly outperforms all component models in regard to the Brier score. Research
regarding scoring rules for forecasts has shown that the Brier score is one of the best statistically proper
scoring rules for evaluating predictions of binary dependent variables (Gneiting and Raftery 2007). Thus,
to generally compare and rank the different models, one should use the Brier score (Gneiting and Raftery
2007). As can be seen in Tables 1 and 2, the EBMAmodel has the lowest Brier score in both the validation
and test-period forecasts.14

Table 1 Validation period results (2008–09)

Weight Constant Predictor AUC PRE Brier % Correct

LMER 0.85 21.89 2.58 0.97 20.58 0.08 87.07
SAE 0.14 21.25 3.11 0.92 20.21 0.07 90.09
GLM 0.00 21.76 1.42 0.66 0.00 0.08 91.81
EBMA 0.96 0.65 0.04 97.13
n 5 696

Note. The table shows estimated model weights, parameters, and fit statistics for the EBMA deterministic forecast and all component

forecasts of insurgency in 29 countries of the U.S. Pacific Command. EBMA outperforms any single model on most measures.

14One alternative approach to generating ensemble forecasts would be to use the simple average of each component forecast. However, this
causes difficulties because the researcher must use their own judgment to decide which alternative models are sufficiently accurate and
diverse for inclusion. EBMA offers a more statistically motivated and straightforward method for achieving the same end. In any case,
these simple averages do not perform well against the EBMA forecast. In the current example, a simple unweighted average results in
AUC5 0.885, PRE5 0.123, Brier5 0.052, and %Correct5 92.8 for the test period. This is not surprising given that simple averaging
weights an inaccurate model the same as an accurate one. EBMA, on the other hand, is able to detect the superiority of components and
calibrates weights accordingly. Likewise, simple averages cannot identify pairs or groups of highly correlated forecasts and will tend to
give these groupings too much weight.
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Figure 2 shows the separation plots for the components as well as the EBMA forecasts for 2010. The
EBMAmodel again performs better than any of the individual components with very high predicted prob-
abilities for the majority of actual events without overpredicting too many events. Taking both the fit
statistics and the visual evidence together, we can conclude that the EBMA model leads to a substantial
improvement in test-period forecasts relative to its components. This is true even in data sets with rare
events and even when the individual components are already performing well.

4.2 Application to U.S. Presidential Election Forecasts

For the past several U.S. election cycles, a number of research teams have developed forecasting
models and published their predictions in advance of Election Day. For example, before the 2008
election, a symposium of forecasts was published in PS: Political Science and Politics with forecasts
of presidential and congressional vote shares developed by Campbell (2008), Norpoth (2008), Lewis-Beck
and Tien (2008), Abramowitz (2008), Erikson and Wlezien (2008), Holbrook (2008), and Lockerbie
(2008). Responses to the forecasts were published in a subsequent issue. Earlier, in 1999, an entire issue
of the International Journal of Forecasting was dedicated to the task of predicting presidential elections
(Brown and Chappell 1999). Predicting presidential elections has also drawn the attention of economists
seeking to understand the relationship between economic fundamentals and political outcomes. Two
prominent examples include work by Fair (2010) and Hibbs (2000).

Fig. 1 Separation plots for validation-period predictions of the ICEWS data (n 5 696). For each model, observations
are shown from left to right in order of increasing predicted probability of insurgency (shown as the black line).
Observations where insurgency actually occurred are shown in red. EBMA outperforms all component models in
assigning high predicted probabilities to more observed insurgencies and to fewer non-insurgencies.

Ensemble BMA 279

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

ps
00

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mps002


4.2.1 Component models

In the rest of this subsection, we replicate several of these models and demonstrate the usefulness of the
EBMA methodology for improving the prediction of single important events.15 We include forecasting
models from six of the most widely cited presidential forecasting teams. Note that we do not, in every case,
replicate the particular model which the authors identify as their definitive forecast.

� Campbell: Campbell’s ‘‘Trial-Heat and Economy Model’’ (Campbell 2008).

� Abramowitz: The ‘‘Time-for-Change Model’’ created by Abramowitz (2008).

� Hibbs: Hibbs’s ‘‘Bread and Peace Model’’ (Hibbs 2000).

� Fair: Fair’s presidential vote-share model.16

� Lewis-Beck/Tien: Lewis-Beck and Tien’s ‘‘Jobs Model Forecast’’ (Lewis-Beck and Tien 2008).

� EWT2C2: Column 2 from Table 2 in Erikson and Wlezien (2008).

With the exception of the Hibbs forecast, the models are simple linear regressions. The dependent variable
is the share of the two-party vote received by the incumbent-party candidate.17

4.2.2 Results

Rather than selecting a single partition of the data into training, validation, and test periods (as in the
insurgency analysis), we generate sequential predictions. For each year from 1976 to 2008, we use all
available prior data to fit the component models.18 We then fit the EBMA model using the components’
performances for election years beginning with 1952 (the year when all models begin generating predic-
tions). For example, to generate predictions for the 1988 election, we used the performance of each com-
ponent for the 1952–84 period to estimate model weights.19

Table 2 Test-period results (2010)

AUC PRE Brier % Correct

LMER 0.97 0.11 0.08 91.09
SAE 0.96 0.20 0.06 91.95
GLM 0.72 0.00 0.09 89.94
EBMA 0.97 0.43 0.04 94.25
n 5 348

Note. The table shows fit statistics for the EBMA deterministic forecast and all component model forecasts of insurgency in 29

countries of the Pacific Rim for the test period. EBMA equals or outperforms any single model on all measures.

15It is important to note that we attempted to replicate each of the models for the 2008 election as closely as possible given the model
descriptions in the articles and the data provided by the authors. We then proceeded to use the same model specifications as used in
the 2008 articles to forecast all elections previous to 2008. Thus, prior to 2008, the individual model results are not exact replications
of the author’s given prediction for that election year, and results may vary from what was presented by the authors as the forecast
for a given election. This may be due to changes in the model specification over time and data updates. Thus, we neither attempted
nor succeeded in replicating the exact forecasts for all election years for all components.

16The model here replicates equation (1) in Fair (2010).
17The data to replicate the models by Abramowitz (2008), Campbell (2008), Erikson and Wlezien (2008), and Lewis-Beck and Tien
(2008) were provided in personal correspondence with the respective authors. The remaining data were downloaded from the Web
sites of Ray C. Fair (http://fairmodel.econ.yale.edu/vote2012/tbl1.txt) and Douglas Hibbs (http://www.douglas-hibbs.com/).

18For example, the Fair model uses data for election results beginning in 1916 while the Abramowitz model begins with data from the
1952 election.

19See footnote 4 for additional discussion of the implications of the overlapping training and validation samples. Results in this
section were computed using modifications of the ‘‘ensembleBMA’’ package (Fraley, Raftery, and Gneiting 2010, 2011). Because
of the paucity of data, we did not apply any bias correction to these forecasts. Thus, the predictor and constant, denoted a0k and a1k
above, are constrained to zero and one, respectively.
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Table 3 provides exemplar results for the 2004 and 2008 elections. Table 3 shows the weights assigned
to each model as well as the validation period root mean squared error (RMSE) and mean absolute error
(MAE) for the components and the EBMA forecasts.20 It also shows the prediction errors, calculated as the
difference between predicted and actual values in each year for each component model and the EBMA
forecast.

The example results in Table 3 illustrate three important points. First, the EBMAmodel does better than
any individual component on validation-sample measures of model fit such as RMSE andMAE.20 Second,
these results demonstrate that EBMA is not guaranteed to generate the most accurate prediction for any
single observation. In each year, at least one component model comes closer to predicting the actual out-
come. However, the EBMA forecasts will very rarely provide egregiously wrong predictions (e.g., as
found in the Campbell model in 2008 and the Fair model in 2004) since it borrows strength from multiple
components. Moreover, as we show below, in the aggregate, the EBMA model tends to provide the best
forecast over time.

Third, Table 3 shows that there is not a clean relationship between validation-sample model perfor-
mance and model weights. For instance, the weight for the Abramowitz model in 2008 is 0.001 even
though it has the lowest RMSE and MAE of any component. The diminished relationship between

Fig. 2 Separation plots for the test-period predictions of the ICEWS data (n 5 348). For each model, observations are
shown from left to right in order of increasing predicted probability (shown as the black line). Observations where
insurgency actually occurred are shown in red. EBMA outperforms all component models in assigning high predicted
probabilities to more observed insurgencies and to fewer non-insurgencies.

20As we noted above, these models are fit sequentially, so the validation periods change. For example, the validation period for the
forecast of the 2004 election is 1952–2000. The validation period RMSE is therefore calculated for those observations. For the 2008
election, the validation period is 1952–2004.
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validation-sample performance and weight is a result of high correlations between forecasts.21 For in-
stance, fitted values for the Abramowitz model are correlated at 0.94 with the Campbell model and at
0.96 with the Lewis-Beck/Tien model. Thus, conditioned on knowing these forecasts, the Abramowitz
component provides limited additional information.

In general, as the number of models included as EBMA components increases, the risk of including
highly correlated forecasts will also rise. Researchers should be aware of the fact that adding additional
forecasts as components will not necessarily improve the performance of EBMA. EBMA performance
will instead be improved by the inclusion of increasing numbers of diverse and accurate forecasts (see also
Graefe et al. 2010). Including a large number of extremely correlated forecasts may actually reduce the
benefits of ensemble forecasting. However, we note that in practice this is unlikely to be a significant
concern as there are few domains in political science for which there are large numbers of ongoing fore-
casting efforts.

With the 2004 and 2008 examples in mind, we now turn to the relative test-sample performance of the
EBMA and component forecasts across the entire 1976–2008 period. Table 4 shows the test-sample RMSE
and MAE statistics as well as the percentage of observations that fall within the 67% and 90% predictive
intervals for each model. For our purposes here, the main result in Table 4 is that the EBMA model again
outperforms all components. The first two columns show this to be true in terms of prediction error (RMSE
and MAE).22

In addition, the coverage statistics demonstrate better calibration of EBMA forecasts relative to its
component models. For instance, the observed outcome falls within the 67% predictive interval for
the Abramowitz model only three out of nine times, whereas it covers the observed values eight out
of nine times for the Lewis-Beck/Tien model. Meanwhile, the EBMA 90% and 67% predictive intervals
are nearly perfectly calibrated.

Table 3 Test-period prediction errors, model weights, and validation-period fit statistics for component and EBMA
forecasts of the 2004 and 2008 elections

2004 Election 2008 Election

Weights RMSE MAE Prediction errors Weights RMSE MAE Prediction errors

Campbell 0.40 1.71 1.33 0.53 0.36 1.65 1.28 6.33
Abramowitz 0.00 1.50 1.18 2.20 0.06 1.53 1.26 22.37
Hibbs 0.12 1.95 1.38 1.54 0.25 1.92 1.38 21.39
Fair 0.48 2.07 1.47 4.82 0.00 2.22 1.80 22.02
Lewis-Beck/Tien 0.00 1.67 1.42 20.41 0.17 1.61 1.33 22.64
EWT2C2 0.00 2.67 2.06 4.76 0.17 2.81 2.18 20.14
EBMA 1.29 1.02 2.08 1.30 1.01 20.53

Note. The models are trained using all prior data, and the EBMA model is validated on the observations beginning in 1952. The

EBMAmodel does better than all components on validation sample fit statistics. In addition, although it does not necessarily make the

most accurate prediction for any given year, it is less likely to make dramatic forecasting errors for the test period.

21The correlation matrix between fitted values of the models for the 1952–2004 period is
C A H F L E

Campbell 1.00
Abramowitz 0.94 1.00
Hibbs 0.91 0.93 1.00
Fair 0.87 0.89 0.89 1.00
Lewis-Beck/Tien 0.93 0.96 0.91 0.88 1.00
EWT2C2 0.85 0.90 0.87 0.91 0.86 1.00

22Brandt, Freeman, and Schrodt (2011a) survey a variety of metrics in addition to those we employ here. These include measures of
average prediction errors, measures using medians and geometric averages, measures that compare the complete difference in
probability distributions, and sequential rank-based methods. Although there are many candidate metrics, at least for the alternative
metrics we have calculated so far, the substantive conclusions we reach do not change for our examples and are not presented due to
space constraints. However, as suggested by a helpful reviewer, we note that there are reasons to doubt that RMSE or MAE will
necessarily provide a ranking of component models based on accuracy. A more complete approach to evaluating the accuracy of the
component models is to examine the results displayed in Fig. 3 below.
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In a well-calibrated forecasting model, out-of-sample outcomes should fall within predictive intervals
at a rate corresponding to their size. For instance, the goal is for two-thirds of all out-of-sample obser-
vations to fall within their respective 67% predictive intervals. Poorly calibrated models will tend to pro-
duce predictive intervals that are either too narrow, generating inaccurate predictions, or too large,
generating predictions that are accurate but too vague to be useful. The better calibration of the EBMA
model can be seen visually in Fig. 3. The plot shows the point predictions and the 67% and 90% predictive
intervals for each model in each year. The vertical dashed lines show the actual observed outcomes. Note
that two of the most accurate forecasts, the Lewis-Beck/Tien and Erikson/Wlezien models, make very
imprecise predictions. Thus, although they have very good coverage, it is at least partly because their
estimates are so inexact. The Campbell, Abramowitz, and Hibbs models provide more reasonable pre-
dictive intervals but are less accurate than EBMA. Meanwhile, the Fair model falls somewhere between
these two groupings.

Finally, it is worth noting an example—very noticeable in these data—of the kinds of problems that
may arise when relying on a single model for making predictions. From 1952 to 2004, the Campbell model
was consistently one of the strongest performers. Indeed, it made the most accurate forecast of the 2004
election. However, one of the crucial variables in this model comes from polling data measured in early
September. As a result of the particularly late timing of the Republican Convention in 2008, it was the only
model to forecast a victory for John McCain. By relying on a wider array of data sources and method-
ologies, EBMA reduces the likelihood of such large misses without completely eliminating the general
insights captured by individual models that may on occasion be wide of the mark.

4.3 Application to the Supreme Court Forecasting Project

Our final application of EBMA is a reanalysis of data from the Supreme Court Forecasting Project (Ruger
et al. 2004; Martin et al. 2004).23 This example is especially interesting and important as it shows a par-
ticular strength of EBMA that was not utilized in the previous two examples. That is, not only is EBMA
able to combine the forecasts from multiple statistical models, in addition, it can also combine statistical
predictions with forecasts generated by classification trees, subject experts, and other sources. As is shown
below, the EBMA model is able to combine the strength of a statistical forecasting model with the par-
ticular strength of subject-expert predictions and improves on the accuracy of both. Furthermore the Su-
preme Court Forecasting Project offers a clean example for our purpose. Theweights for the EBMAmodel
are calibrated on the performance of the components on actual predictions of Supreme Court Justice votes.
That is, even for the validation period, the predictions were made before the court decisions were issued.
Thus, we can use the performance of the component models on actual predictions to calculate the weights

Table 4 Fit statistics and observed coverage probabilities for sequentially generated test-sample predictions of
presidential elections from 1976 to 2008

RMSE MAE

Coverage

67% 90%

Campbell 2.74 1.99 0.67 0.78
Abramowitz 2.27 2.05 0.33 0.78
Hibbs 2.81 2.24 0.22 0.56
Fair 4.01 3.20 0.44 0.78
Lewis-Beck 2.27 1.82 0.89 1.00
EWT2C2 2.88 2.16 0.78 1.00
EBMA 1.72 1.47 0.67 0.89

Note. EBMA outperforms its component models on all metrics.

23Additional details about the project, replication files, as well as a complete listing of cases and expert forecasts are available at http://
wusct.wustl.edu/index.php.
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for the EBMA model. We then compare the EBMA forecasts with the component model predictions on
a separate test sample.

A large literature in political science is concerned with constitutional courts and the Supreme Court in
particular, with one of the most prominent strands of the literature on courts trying to analyze and explain
justices’ voting behavior. In general, however, the theories and models attempt to explain behavior ex post
(e.g., Hausegger and Baum 1999; Segal and Cover 1989; Richards and Kritzer 2002; Klein and Hume
2003; Songer, Segal, and Cameron et al. 1994).

In contrast to most of this literature, a research team consisting of Andrew Martin, Kevin Quinn,
Theodore Ruger, and Pauline Kim (henceforward MQRK) set out to develop methods to predict Supreme
Court decisions in the future. Throughout 2002–03, MQRK generated two sets of forecasts for every
pending case. First, for each case, MQRK collected data on six different case characteristics, such as

Fig. 3 The predicted and actual percentage of the two-party vote going to the incumbent party in U.S. presidential
elections from six component models and the EBMA forecast. For each year, the plots show the point predictions
(circles), 67% predictive intervals (thick horizontal lines), and 90% predictive intervals (thin horizontal lines). The
vertical dashed line is the observed outcome. The EBMA model is better calibrated than its components.
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the ‘‘circuit of origin of the case’’ or ‘‘ideological direction of the lower courts ruling,’’ which were then
used as explanatory variables (Martin et al. 2004, 762). The authors then used classification trees to gen-
erate a binary forecast for the expected vote of each justice on each case (voting to affirm the lower court
opinion is coded as a 1).

As a second method to forecast Supreme Court decisions, MQRK recruited a team of 83 legal experts.
These experts would then predict the decision for each justice and the court as a whole for particular cases
in their specialty area. The list of experts included academics, appellate attorneys, former Supreme Court
clerks, and law school deans. MQRK attempted to recruit three expert forecasts for each case, although
this was not possible for all cases.

The classification trees made predictions for all 67 cases included in the MQRK analysis. We include
these binary model predictions as one component forecast. However, the individual legal experts made
predictions on only a handful of cases. Owing to the paucity of the data for each expert, we pooled them
together and treat all the expert opinions as part of a single forecasting effort. We coded the expert forecast
to be the mean expert prediction. This implies that the expert forecast predicts a vote to affirm if a majority
of experts polled for that case predict an affirming vote.We fit an EBMAmodel using all cases with docket
numbers dating from 2001 (n 5 395) and made EBMA forecasts for the remaining 214 cases with 2002
docket numbers.24

Table 5 shows the component weights for the two forecasts and the test-period fit statistics for the
MQRK classification trees, subject experts, and EBMA forecasts. The EBMA model weights the subject
experts about twice as much as the statistical model. Once again, the results show that the EBMA pro-
cedure outperforms all components (even when there are only two). In terms of AUC, Brier scores, and
percent correct predictions, the EBMA forecast outperforms both the statistical model and the combined
subject experts. In addition, EBMA scores substantially better on the PRE metric.25

There is a long-standing debate in many circles of the relative strengths and weaknesses of statistical
models and subject experts for making predictions (e.g., Ascher 1978). Models that use quantifiable meas-
urements and widely available (if sometimes crude) data to make predictions can make egregious errors in
particular cases. Some cases may be decided by forces invisible to the statistical model but obvious to
experts familiar with the case. Subject experts, on the other hand, can become too focused on minutiae and
miss larger (if more subtle) trends in the data easily recognized by more advanced methodologies. The
EBMA technique offers a theoretically motivated way to combine the strengths of both methods, while
smoothing over their relative weaknesses, to make more accurate predictions.

5 Discussion

As currently implemented, EBMA already offers a method for aiding the accurate prediction of future
events. However, we envision several paths forward for future research in this area. First, we are planning
to extend EBMA into a fully Bayesian framework. Markov chain Monte Carlo estimation of EBMA

Table 5 Test-period results for U.S. Supreme Court example

Weight AUC PRE Brier % Correct

MQRK model 0.32 0.66 20.02 0.29 70.56
Subject experts 0.68 0.62 0.15 0.23 75.23
EBMA forecast 0.70 0.21 0.18 77.10
n 5 214

Note. The table shows fit statistics for the EBMA deterministic forecast and component forecasts of U.S. Supreme Court votes on

cases in the 2002-2003 session with 2002 docket numbers. EBMA outperforms its component models on all metrics.

24As noted above, these cases were heard in the 2002–03 period.We note that the dates on the docket number do not necessarily reflect
the order in which they were argued before the court and the order in which cases were argued did not correspond to when the
decisions were handed down. Thus, there is no obvious way to partition the data into validation and test periods. However, in
general, the docket numbers roughly correspond to the age of the case. Although partitioning the data in this manner is slightly
arbitrary, it serves the limited purpose of demonstrating the method.

25The baseline model here is the prediction that all votes will be to reverse the lower court. This baseline model is correct for roughly
70% of the votes in the test period.
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models promises to more efficiently handle a wider variety of outcome distributions and will provide
additional information regarding our uncertainty about model weights and within-model variances (Vrugt,
Diks, and Clark 2008).

Second, EBMA estimates model weights based exclusively on the point predictions of component
forecasts. Even for continuous data (e.g., the presidential vote forecasts), the current procedure assumes
that the within-forecast variance (r2) is constant across models. In other words, model weights do not
reflect the uncertainty associated with each model’s predictions. Applying both Bayesian and bootstrap
methods, we intend to incorporate the entire predictive PDFs of component forecasts so that model
weights reflect not only components’ accuracy but also their precision. Poorly calibrated models should
be penalized and receive less posterior weight.

However, EBMA as it is currently implemented shows considerable promise for aiding systematic
social inquiry. For many important and interesting events, it is almost impossible for social scientists
to find the ‘‘true’’ data-generating process. Socially determined events are inherently difficult to predict
because of nonlinearities and the complexity of human behavior. This may be one of the main reasons
political scientists so rarely make systematic predictions about the future. Yet, we believe it should be one
ultimate goal of the discipline to make sensible and reliable forecasts. Doing so would make the discipline
more relevant to policymakers and provide more avenues for rigorous testing of theoretical models and
hypothesized empirical regularities.26

EBMA uses the accuracy of in-sample predictions of individual models to calibrate a combined
weighted-average forecast and to make more accurate predictions. Moreover, it does so in a transparent
and theoretically motivated manner that allows us to see which component models are most important in
informing the broader EBMA model. Thus, EBMA can enhance the accuracy of forecasts in political
science, while also allowing the continued development of multiple theoretical and empirical approaches
to the study of important topics. In addition, we have adjusted EBMA to work for dichotomous dependent
variables. The EBMAmodel, therefore, can now be used in a large fraction of research in political science.
However, the method depends fundamentally on the existence of relatively good individual models; other-
wise, the ensemble is empty. Thus, EBMA and other ensemble methods should not discourage the de-
velopment of individual prediction models, but rather leverage their individual contributions with those
from other models in order to achieve more accurate predictions.

Finally, we demonstrated the utility of the EBMA method for improving out-of-sample forecasts in
three empirical analyses. In each, the EBMAmodel outperformed its components and was less sensitive to
idiosyncratic data issues than the individual models. The EBMA method was applied to improve the pre-
diction of insurgencies around the Pacific Rim, U.S. presidential election results, and votes of U.S. Su-
preme Court Justices. However, we believe these applications represent only a portion of the areas to
which the EBMA method could be fruitfully applied. Using the software we have developed for this pro-
ject, it will be possible for researchers to increase the accuracy of forecasts of a wide array of important
events.27
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Appendix

Adjustments for Dichotomous Outcomes

Past work on EBMA does not apply directly to the prediction of many political events because the assumed
PDFs are normal, Poisson, or gamma. In many settings (e.g., international conflicts), the data are not

26In addition, some scholars have advanced the argument that prediction is closely related to the identification of causal processes
(e.g., Spirtes, Glymour, and Scheines 2000). However, this is far from a universally accepted position and is not the basis for our
advocacy of increased forecasting in political science.

27All data used to generate the results in this article will be made available to the public in the journal’s dataverse upon publication at
http://hdl.handle.net/1902.1/17286 (Montgomery, Hollenbach, and Ward 2012). The package for EBMA, EBMAforecast, is avail-
able through the Comprehensive R-Archive Network at http://cran.r-project.org/.
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sufficiently fine-grained to justify these distributional assumptions. Usually, the outcomes of interest are
dichotomous indicators for whether an event (e.g., civil war) has occurred in a given time period and
country. Thus, none of the distributional assumptions used in past work are appropriate in this context.
Fortunately, it is a straightforward extension of Sloughter et al. (2007) and Sloughter, Gneiting, and
Raftery (2010) to deal appropriately with binary outcomes.28

We follow Sloughter et al. (2007) and Hamill, Whitaker, and Wei (2004) in using logistic regression
after a power transformation of the forecast to reduce prediction bias. That is, point predictions are raised
to a power, 1b< 1. This shrinks predictions downward toward zero. The transformation dampens the effect
of extreme observations and helps reduce overfitting that might occur because certain models do slightly
better in predicting high-leverage observations. Since the predictions for dichotomous outcomes are nec-
essarily between21 and 1, our adjustment process is slightly more complex. Nonetheless, the results for
bias reduction are the same.

For notational ease, we assume that fk is the forecast after the adjustment for bias reduction (we will
omit the superscripts for the moment). Therefore, let f#k 2 ½0; 1� be the forecast on the predicted probability
scale and

fk 5

�
ð11logitðf#kÞÞ

1=b
21

�
I

�
f#k >

1

2

�
2

�
ð11logitðjf#kjÞÞ

1=b
21

�
I

�
f#k <

1

2

�
; ðA1Þ

where I½:� is the general indicator function. Hamill, Whitaker, and Wei (2004) recommend setting b5 4,
whereas Sloughter et al. (2007) use b5 3. We use b5 3 in the insurgency example above and b5 4 in the
courts example. However, we found that this choice makes very little difference for these examples.

The logistic model for the outcome variables is

logitPðy5 1jfkÞ[log
Pðy5 1jfkÞ
Pðy5 0jfkÞ

5 ak01ak1fk: ðA2Þ

The conditional PDF of some within-sample event, given the forecast f
sjt
k and the assumption that k is

the true model, can be written

gk

�
yjf sjtk

�
5P

�
y5 1jf sjtk

�
I
h
y5 1

i
1P

�
y5 0jf sjtk

�
I
h
y5 0

i
: ðA3Þ

Applying this to equation (3), the PDF of the final EBMA model for y is

p
�
yjf sjt1 ; f

sjt
2 ; . . . ; f

sjt
K

�
5

PK
k5 1

wk

n
P
�
y5 1jf sjtk

�
I½y5 1�

1P
�
y5 0jf sjtk

�
I½y5 0�

o
:

ðA4Þ

Parameter estimation is conducted using only the data from the validation period T. The parameters a0k
and a1k are specific to each individual component model. For model k, these parameters can be estimated
as traditional linear models, where y is the dependent variable and the covariate list includes only fk and
a constant term.

The difficulty is in estimating the weighting parameters, wk"k 2 ½1; 2; . . . ;K�. For the moment, we
have followed Raftery et al. (2005) and Sloughter et al. (2007) in using maximum likelihood methods.
In future work, we plan to implement a fully Bayesian analysis by placing priors on all parameters and
using Markov chain Monte Carlo techniques to estimate model weights (cf. Vrugt, Diks, and Clark 2008).

The log-likelihood function cannot be maximized analytically, but Raftery et al. (2005) and Sloughter
et al. (2007) suggest using the expectation-maximization (EM) algorithm. We introduce the unobserved

28Themethod for dealing with binary outcomes is implicit in Sloughter et al. (2007) and Sloughter, Gneiting, and Raftery (2010), who
assume a discrete-continuous distribution for outcomes that includes a logistic component. However, they do not explicitly and fully
develop the model for dichotomous outcomes. A related strain of research on dynamic model averaging (cf. Muhlbaier and Polikar
2007; Raftery, Kárný, and Ettler 2010) has recently been extended for direct application to binary outcomes (e.g., McCormick et al.
2011; Tomas 2011).
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quantities z
sjt
k , which represent the posterior probability for model k for observation sjt. The E step involves

calculating estimates for these unobserved quantities using the formula

ẑ
ðj11Þsjt
k 5

ŵ
ðjÞ
k pðjÞ

�
yjf sjtk

�
PK
k5 1

ŵ
ðjÞ
k pðjÞ

�
yjf sjtk

�; ðA5Þ

where the superscript j refers to the jth iteration of the EM algorithm.
w
ðjÞ
k is the estimate of wk in the jth iteration, and pðjÞ

�
:
�
is shown in equation (A4). Assuming these

estimates of z
sjt
k are correct, it is then straightforward to derive the maximizing value for the model weights.

Thus, theM step estimates these as ŵ
ðj11Þ
k 5 1

n

P
s;t

ẑ
ðj11Þsjt
k , where n represents the number of observations in

the validation data set.29 The E and M steps are iterated until the improvement in the log-likelihood is no
larger than some predefined tolerance.30

Ensemble Prediction for Dichotomous Outcomes

With these parameter estimates, it is now possible to generate ensemble forecasts. If our forecasts f
sjt
k are

each generated from a statistical model, we now generate a new prediction f
sjt�
k from the previously fitted

models. For convenience, let âk[
�
âk0; âk1

�
. For some dichotomous observation in the test period t� 2 T�,

we can see that

P
�
y5 1jf sjt

�

1 ; . . . ; f
sjt�
K ; â1; . . . ; âK; ŵ1; . . . ; ŵK

�
5

XK
k5 1

ŵklogit
21
�
âk01âk1f

sjt�
k

�
: ðA6Þ
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