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SIZE DISTRIBUTIONS IN RANDOM TRIANGLES

BY D. J. DALEY, SVEN EBERT AND R. J. SWIFT

Abstract

The random triangles discussed in this paper are defined by having the directions of their
sides independent and uniformly distributed on (0, π). To fix the scale, one side chosen
arbitrarily is assigned unit length; let a and b denote the lengths of the other sides. We
find the density functions of a/b, max{a, b}, min{a, b}, and of the area of the triangle,
the first three explicitly and the last as an elliptic integral. The first two density functions,
with supports in (0,∞) and ( 1

2 ,∞), respectively, are unusual in having an infinite spike
at 1 which is interior to their ranges (the triangle is then isosceles).

Keywords: Random directions

2010 Mathematics Subject Classification: Primary 60D05
Secondary 52A22; 53C65

1. Introduction

The problem discussed in this paper is classical, yet it has apparently escaped attention:
we found no relevant discussion in Mathai (1999). By ‘classical’ we mean that its topic has a
Croftonian flavour as in Kendall and Moran (1963, p. 5); this can be contrasted with ‘modern’
stochastic geometry where measure-theoretic techniques are more common (cf. Kendall’s
(1974) introduction to the collection of papers by Davidson and others). Our solution is also
purely classical.

Our problem concerns random triangles defined by three coplanar lines that intersect and
whose directions are independent and uniform on (0, π). Almost surely, no two lines are
parallel, so every pair of lines has a finite intersection point: these points are the vertices of our
random triangle. Richard Cowan (email communication to DJD) remarked that, for ‘random
triangles’, matters of shape have been of more concern than the relative lengths of the sides.

Given the angles α, β, and γ of a triangle, the sine rule enables us to determine the relative
lengths a, b, and c of its sides:

a

sin α
= b

sin β
= c

sin γ
. (1)

Shape is described by just two angles α and β, say (because α + β + γ = π ), and these two
angles transform directly into the relative lengthZ0 = a/b of two sides, so we might as well put
c = 1. In Proposition 1 we find the probability density function (PDF) f0 of Z0 as just defined.

Our interest in the problem arose from a different setting (see Daley et al. (2014)), and is
akin to the following. Given the side length c = 1 say, find the distribution of the larger of a and
b when the angles α and β can be regarded as being uniformly and independently distributed
on (0, 1

2π) and (0, π), respectively, where we require the triangle to be constructed on one side
or the other of the given side c according to whether α+β is less than or greater than π (and in
the latter event, it is not β but π −β that is the angle internal to the triangle, but the sine rule as
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Figure 1: PDFs.

at (1) remains). In Proposition 2 we find the PDF f1 of Z1 := max(a, b), and in Proposition 3
deduce the PDF f2 of Z2 := min(a, b).

The three PDFs are plotted in Figure 1(a), (b), and (c). Each PDF involves a logarithmic
function of its argument z. All three distributions are heavy tailed: all moments of positive
order less than 1 are finite, and the means are infinite. Z0 andZ1 have PDFs with infinite spikes
at z = 1 when the triangle from which they come is isosceles. Z0 and 1/Z0 have the same
distribution, so their median equals 1. P{Z1 ≤ 1} = 1

3 = P{Z2 ≥ 1}, Z1 and Z2 have medians
approximately 1.145 and 0.608, and P{Z1 ≤ 2} = 2

3 + 1
2 (log 2)2/π2 = 0.7640. Some further

numerical illustrations of the tail behaviour are shown in Table 1 in Section 6.
In Section 5 we apply the conditional probability argument used to find the density functions

of the Zi to study the area V of the random triangle as defined. The integral for its density
function leads to an elliptic integral from which we have computed the PDF ofV ; see Figure 1(d).
In principle, there is a power series representation for the PDF; we give the simplest case.

2. The simplest random triangle

Proposition 1. For a random triangle as defined, the PDF f0 of Z0 := a/b is given by

f0(z) = 2

π2 z
log

z+ 1

|1 − z| , 0 < z < ∞. (2)

Proof. Write ψ = α for the angle we choose to constrain by symmetry to 0 ≤ ψ ≤ 1
2π , and

θ = β lying in (0, π). From (1), it follows that Z0 = sinψ/ sin θ , and then by the symmetry
about 1

2π of the sine function we can also constrain θ to (0, 1
2π) in seeking the distribution

of Z0 which is a function on the square R0 := {(θ, ψ) ∈ (0, 1
2π)× (0, 1

2π)}, where (θ, ψ)
has the joint density function dθ dψ/ 1

4π
2. This makes it easy to evaluate P{Z0 ≤ z} via a
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conditional probability argument:

1

2
πP{Z0 ≤ z} =

∫ π/2

0
P{Z0 ≤ z | θ} dθ. (3)

Subject to z sin θ ≤ 1, or, equivalently, θ ≤ arsin(1/max(1, z) ), {Z0 ≤ z | θ} = {sinψ ≤
z sin θ | θ} = {ψ ≤ arsin(z sin θ) | θ}. Consequently, the right-hand side of (3) is expressible
as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ π/2

0
arsin(z sin θ) dθ for 0 < z ≤ 1,∫ arsin(1/z)

0
arsin(z sin θ) dθ +

[
1

2
π − arsin

(
1

z

)]
1

2
π for 1 < z < ∞.

(4)

Each case of (4) is differentiable in z and yields

1
4π

2f0(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ π/2

0

sin θ√
1 − z2 sin2 θ

dθ for 0 < z ≤ 1,∫ arsin(1/z)

0

sin θ√
1 − z2 sin2 θ

dθ for 1 < z < ∞.

(5)

For the first case of (5), the substitutions v = z sin θ followed by x = √
(z2 − v2)/(1 − v2),

for which v = 0 and z for θ = 0 and 1
2π , and then x = 0 and z for v = z and 0, facilitate

explicit evaluation of f0(z) for 0 ≤ z < 1 as follows:

1

4
π2f0(z) =

∫ z

0

(v/z) dv√
(1 − v2)(z2 − v2)

(6)

=
∫ z

0

1

z(1 − z2)

[√
1 − v2

z2 − v2 −
√
z2 − v2

1 − v2

]
v dv

=
∫ z

x=0

1

z(1 − z2)

[
1

x
− x

]
1 − z2

(1 − x2)2
x dx

= 1

2z

∫ z

0

(
1

1 − x
+ 1

1 + x

)
dx

= 1

2z
log

1 + z

1 − z
. (7)

For 1 < z < ∞,

1

4
π2 f0(z) =

∫ 1

0

(v/z) dv√
(1 − v2)(z2 − v2)

=
∫ 1

0

1

z(z2 − 1)

[√
z2 − v2

1 − v2 −
√

1 − v2

z2 − v2

]
v dv

=
∫ 1/z

x=0

1

z(z2 − 1)

(
1

x
− x

)
z2 − 1

(1 − x2)2
x dx

(
here x =

√
1 − v2

z2 − v2

)
= 1

2z

∫ 1/z

0

(
1

1 − x
+ 1

1 + x

)
dx

= 1

2z
log

z+ 1

z− 1
. (8)

Combining (6) and (8) yields (2), as asserted.
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Two simple checks are available. First, 1/Z0 has the same density as Z0. Second, we check
that

∫ ∞
0 f0(z) dz = 1 by computing separately

1

2z

∫ 1

0
log

1 + z

1 − z
dz =

∫ 1

0

∞∑
n=1

z2n−2

2n− 1
dz =

∞∑
n=1

1

(2n− 1)2
= π2

6

(
1 − 1

4

)
= π2

8
,

1

2z

∫ ∞

1
log

1 + 1/z

1 − 1/z
dz =

∫ ∞

1

∞∑
n=1

z−2n

2n− 1
dz =

∞∑
n=1

1

(2n− 1)2
= π2

8
;

the sum of the two contributions equals 1
4π

2, as required.

3. The length of the larger of two sides

Proposition 2. For a random triangle with c = 1, the PDF f1 of Z1 := max(a, b) is given by

f1(z) = 4

π2 z
log

z

|1 − z| ,
1
2 < z < ∞. (9)

Proof. In our original setting for Z1 (see Daley et al. (2014)), a point P0 is at the origin,
with a line through P0 coincident with the x-axis, and P1 is the point of a unit-rate Poisson
process closest to the origin. Without loss of generality, take P1 in the first quadrant and let
P0P1 make an angle ψ with the x-axis. Let a line through P1, for the third side of the triangle
(P0, P1, P01), make an angle θ to the x-axis, meeting it at the point P01. Then the larger of the
two sides of the triangle meeting in P01 is of length RZ1, where

Z1 sin θ =
{

sinψ when ψ ≥ 1
2θ ,

sin(θ − ψ) when ψ < 1
2θ ,

(10)

and R = P0P1 is of no concern here. We shall ultimately deduce that this function Z1 of the
pair of independent random variables (θ, ψ) has density as at (9).

Start by examining Z1 on the rectangle R = {(θ, ψ) : 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 1
2π}; partition

R by its diagonalψ = 1
2θ , along whichZ1 = 1

2 sec 1
2θ . We haveZ1 = 1 on the base ({0 < θ <

π}, ψ = 0), on the equidiagonal 0 < θ = ψ < 1
2π , and on two lines meeting in ( 2

3π,
1
3π),

one from ( 1
2π, 0) and the other from ( 1

2π,
1
2π), i.e. excepting a spur on the right-hand side of

the base, Z1 = 1 on a quadrilateral, inside which Z1 < 1 and outside which Z1 > 1. We have
Z1 = cosec θ on the top of R and on the shifted diagonal where 0 ≤ ψ = θ − 1

2π ≤ 1
2π , and

Z1 = ∞ on the two sides θ = 0 and π , 0 < ψ < 1
2π . The quadrilateral inside which Z1 < 1

is of area 1
6π

2, so, since R is of area 1
2π

2, P{Z ≤ 1} = 1
3 .

To find the conditional distributions P{Z1 ≤ z | θ} analogous to the integrand at (3), we
examine the behaviour of Z1 on each line segment Lθ := {(θ, ψ) : 0 < ψ < 1

2π}. As ψ
increases on Lθ , Z1 first decreases from 1 to its minimum 1

2 sec 1
2θ at ψ = 1

2θ , then increases
through 1 at ψ = θ to its maximum on Lθ of cosec θ at ψ = 1

2π . As ψ increases but for
θ > 1

2π , Z1 increases from 1 to a local maximum cosec θ where ψ = θ − 1
2π , decreases to a

local minimum atψ = 1
2θ , and then increases to regain its maximum value cosec θ atψ = 1

2π .
It follows from the last paragraph that, for given z ∈ ( 1

2 ,∞) and given θ , the equationZ1 = z

may have 0, 1, 2, or 3 different roots for ψ ∈ (0, 1
2π) (i.e. the same number of intercepts in

ψ on Lθ ). When θ ≤ 1
2π and z < 1

2 sec 1
2π (which, it will be noted, is less than 1 for all

θ < 2
3π ), no roots exist. If 1

2 sec 1
2θ < z < 1, two roots exist, at ψ1 = θ − arsin(z sin θ) and

ψ2 = arsin(z sin θ), but if 1 < z < cosec θ , one root exists, at ψ3 = arsin(z sin θ). No root
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exists for z > cosec θ . Thus, on Lθ for given θ ≤ 1
2π ,

1
2π P{Z1 ≤ z | θ} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for z ≤ 1

2 sec 1
2θ ,

ψ2 − ψ1 = 2
(
arsin(z sin θ)− 1

2θ
)

for 1
2 sec 1

2θ < z ≤ 1,

ψ3 = arsin(z sin θ) for 1 < z ≤ cosec θ ,
1
2π for cosec θ < z.

(11)

On Lθ for θ > 1
2π , there are no roots for z < 1

2 sec 1
2θ < 1, and two roots when 1

2 sec 1
2θ <

z < 1, at ψ1 = arsin(z sin θ)− (π − θ) and ψ2 = θ − arsin(z sin θ). If 1 < z < 1
2 sec 1

2θ (and
this is possible only for θ > 2

3π ), there are three roots, at ψ1 and ψ2 as already detailed, and
ψ3 = arsin(z sin θ). When 1

2 sec 1
2θ < z < cosec θ , there is one root, at ψ3 as just given; there

are no roots when z > cosec θ . So, for θ > 1
2π ,

1
2π P{Z1 ≤ z | θ}

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for z < 1
2 sec 1

2θ ,

ψ2 − ψ1 = 2
(
arsin(z sin θ)− 1

2θ
)

for 1
2 sec 1

2θ < z < 1,

ψ1 + (ψ3 − ψ2) = 3 arsin(z sin θ)− π for 1 < z < 1
2 sec 1

2θ ,

ψ3 = arsin(z sin θ) for 1 < 1
2 sec 1

2θ < z < cosec θ ,
1
2π for cosec θ < z.

(12)

Analogously to the first case of (4), the first two cases of (11) and (12) imply that, for z ≤ 1,

1

2
π2

P{Z ≤ z} =
∫ 2π/3

0
2

(
arsin(z sin θ)− 1

2
θ

)
+

dθ.

Then, by differentiation and with g(z, θ) = sin θ/
√

1 − z2 sin2 θ (cf. (5)), for z ≤ 1,

1
2π

2 f1(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

∫ 2 arcos(1/2z)

0
g(z, θ) dθ for 1

2 < z < 1
2

√
2,

2

[∫ π/2

0
+

∫ π/2

2 arsin(1/2z)

]
g(z, θ) dθ for 1

2

√
2 ≤ z ≤ 1,

(13)

the latter expression exploiting the symmetry about 1
2π of sin θ . Proceeding much as around

(6) with v = z sin θ , for the first case of (13) (with 1
2 ≤ z ≤ 1

2

√
2),

1

2
π2 f1(z) = 2

∫ √
1−1/4z2

0

(v/z) dv√
(1 − v2)(z2 − v2)

= 2
∫ √

1−1/4z2

0

1

z(1 − z2)

[√
1 − v2

z2 − v2 −
√
z2 − v2

1 − v2

]
v dv

= 2
∫ z

x=1−2z2

1

z(1 − z2)

(
1

x
− x

)
1 − z2

(1 − x2)2
x dx

(
x =

√
z2 − v2

1 − v2

)
,

= 1

z

∫ z

1−2z2

(
1

1 − x
+ 1

1 + x

)
dx

= 1

z
log

[
1 + z

1 − z

2z2

2(1 − z2)

]
= 2

z
log

z

1 − z
. (14)
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For the second case of (13), so 1
2

√
2 < z < 1,

1

2
π2 f1(z) = 2

[∫ z

0
+

∫ z

√
1−1/4z2

]
(v/z) dv√

(1 − v2)(z2 − v2)

= 2

[∫ z

x=0
+

∫ 2z2−1

0

]
1

z(1 − z2)

(
1

x
− x

)
1 − z2

(1 − x2)2
x dx

(
x =

√
z2 − v2

1 − v2

)
= 1

z

[∫ z

0
+

∫ 2z2−1

0

](
1

1 − x
+ 1

1 + x

)
dx

= 1

z

[
log

1 + z

1 − z
+ log

2z2

2(1 − z2)

]
= 2

z
log

z

1 − z
. (15)

Equations (14) and (15) establish (9) for the case z < 1.
The remaining cases of (11) and (12) show first, from (11), that

1

2
π2

P

{
Z1 ≤ z, θ ≤ 1

2
π

}
=

∫ arsin(1/z)

0
arsin(z sin θ) dθ +

[
1

2
π − arsin

(
1

z

)]
1

2
π.

When θ < 1
2π and z > 1, differentiation now gives as a contribution to 1

2π
2 f1(z) the quantity∫ arsin(1/z)

0

sin θ dθ√
1 − z2 sin2 θ

=
∫ 1

0

(v/z) dv√
(1 − v2)(z2 − v2)

=
∫ (1/z)

x=0

1

z(z2 − 1)

(
1

x
− x

)
z2 − 1

(1 − x2)2
x dx

(
x =

√
1 − v2

z2 − v2

)
= 1

2z

∫ 1/z

0

(
1

1 − x
+ 1

1 + x

)
dx

= 1

2z
log

z+ 1

z− 1
. (16)

From (12) we have for the rest of R where z > 1 and now θ > 1
2π ,

1
2π

2
P
{
Z1 ≤ z, θ > 1

2π
}

=
[
π − arsin

(
1

z

)
− 1

2
π

]
1

2
π +

∫ 2 arcos(1/2z)

π−arsin(1/z)
3

(
arsin(z sin θ)− 1

3
π

)
dθ

+
∫ π

2 arcos(1/2z)
(arsin(z sin θ)− (π − θ)) dθ. (17)

Because θ > 1
2π in the two integrals here and sin θ is symmetric about 1

2π , their sum equals∫ 2 arsin(1/2z)

0
(arsin(z sin θ)− θ) dθ +

∫ arsin(1/z)

2 arsin(1/2z)
3

(
arsin(z sin θ)− 1

3
π

)
dθ.

Differentiation of (17) (with the modified integrals) gives as the contribution to 1
2π

2 f1(z) for
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z > 1 from the part of R where θ > 1
2π the quantity[∫ 2 arsin(1/2z)

0
+3

∫ arsin(1/z)

2 arsin(1/2z)

]
g(z, θ) dθ

=
[∫ √

1−1/4z2

0
+3

∫ 1

√
1−1/4z2

]
(v/z) dv√

(1 − v2)(z2 − v2)

=
[∫ √

1−1/4z2

0
+3

∫ 1

√
1−1/4z2

]
1

z(z2 − 1)

[√
z2 − v2

1 − v2 −
√

1 − v2

z2 − v2

]
v dv

=
[∫ 1/z

x=1/(2z2−1)
+3

∫ 1/(2z2−1)

0

]
1

z(z2 − 1)

(
1

x
− x

)
z2 − 1

(1 − x2)2
x dx

(
x =

√
1 − v2

z2 − v2

)

= 1

2z

[∫ 1/z

1/(2z2−1)
+3

∫ 1/(2z2−1)

0

](
1

1 − x
+ 1

1 + x

)
dx

= 1

2z
log

[
1 + 1/z

1 − 1/z

2(z2 − 1)

2z2

]
+ 3

2z
log

2z2

2(z2 − 1)

= 1

2z
log

[
(z+ 1)2

z2

z6

(z2 − 1)3

]
. (18)

Combining (18) and (16) gives, for z > 1,

1

2
π2 f1(z) = 1

2z
log

[
z+ 1

z− 1

z4

(z+ 1)(z− 1)3

]
= 2

z
log

z

z− 1
.

This establishes (9) for z > 1.

As a check on (9), evaluate
∫ ∞

1/2 f1(z) dz, or, equivalently, find

π2

4

∫ ∞

1/2
f1(z) dz =

∫ 1

1/2

1

z
log

z

1 − z
dz+

∫ ∞

1

1

z
log

z

z− 1
dz := J1 + J2 say.

The second integral J2 = − ∫ ∞
1 z−1 log(1 − z−1) dz and an argument similar to that at the end

of Section 2 gives J2 = 1
6π

2. For the other term, substitute z = 1
2 (1 + w), so

J1 =
∫ 1

0

1

1 + w
log

1 + w

1 − w
dw.

Now
∫ 2

1 v
−1 log v dv = 1

2 (log 2)2, and, for the rest, absolutely convergent series arise on
grouping terms in pairs:

lim
T ↑1

∫ T

0
(1 − w + w2 − · · · )(w + 1

2w
2 + 1

3w
3 + 1

4w
4 + · · · ) dw

= lim
T ↑1

∞∑
n=1

[
T 2n

(
1

2n
− T

2n+ 1

)(2n−1∑
j=1

(−1)j−1

j

)
+ T 2n+1

(2n+ 1)(2n)

]
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= 2
∞∑
n=1

1

2n(2n+ 2)
−

∞∑
n=1

1

2n(2n+ 1)

n−1∑
j=1

1

2j (2j + 1)

= 2(1 − log 2)− 1

2

( ∞∑
n=1

1

2n(2n+ 1)

)2

+ 1

2

∞∑
n=1

(
1

2n(2n+ 1)

)2

= 2(1 − log 2)− 1
2 (1 − log 2)2 + 1

2

( 1
6π

2 − 1 − 2[1 − log 2])
= 1

12π
2 − 1

2 (log 2)2.

Thus, J1 + J2 = 1
4π

2, as is consistent with f1 being a PDF.
As yet another check, MAPLE® evaluates∫ ∞

1/2
f1(z) dz = 1.000 000 000.

4. The length of the smaller of two sides

Proposition 3. For a random triangle with c = 1, the PDF f2 of Z2 = b := min(a, b) is
given by

f2(z) =

⎧⎪⎪⎨⎪⎪⎩
4

π2 z
log

1 + z

1 − z
for 0 < z ≤ 1

2 ,

4

π2 z
log

1 + z

z
for 1

2 < z < ∞.

(19)

Proof. We could adopt a similar setup to that of the last section, concentrating now on the
smaller of the two sides that meet in P01, of length RZ2 say, for which analogously to (10) we
have

Z2 sin θ =
{

sin |θ − ψ | when ψ ≥ 1
2θ ,

sinψ when ψ < 1
2θ .

(20)

A simpler proof is based on the formulae in Propositions 1 and 2 and the following fact. In
a random triangle with c = 1 fixed, the length Z̃, say, of another specified side, opposite the
(random) angle ψ , say, equals sinψ/ sin θ (in our standard description via angles (θ, ψ) as in
Proposition 1). Then {Z̃ ≤ z} = {sinψ ≤ z sin θ}, and, thus (cf. below (3)), Z̃ and Z0 have
the same distribution.

Let Z2 at (20) have density function f2. Then because Z̃ = Z1 or Z2 with equal probability,
the density function f̃ of Z̃ is related to the densities f1 and f2 via f0 = f̃ = 1

2 (f1 + f2), and,
thus,

f2(z) = 2 f0(z)− f1(z) = 4

π2 z
log

z+ 1

|1 − z| −
⎧⎨⎩0 for 0 < z < 1

2 ,
4

π2 z
log

z

|1 − z| for 1
2 ≤ z < ∞.

The relation asserted at (19) follows directly.

5. Area

In this section we discuss the area, V say, of a random triangle as defined. As for our earlier
propositions, we find the density f (y) = (d/dy)P{V ≤ y}.
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Proposition 4. For a random triangle with c = 1, the area V has PDF

f (y) = 2

π2

∫ 2 arcot(4y)

0

4 sin θ√
1 − (cos θ − 4y sin θ)2

dθ (21)

= 8

π2

∫ 2 arcot(z)

0

dθ√
1 − z2 + 2z cot θ

(z = 4y) (22)

= 16

π2

∫ 1/z

0

1

1 + t2

√
t

(t + z)(1 − zt)
dt

(
t = tan 1

2θ
)

(23)

= 8

π2

∫ ∞

(z2−1)/2z

dx

(1 + x2)
√

1 − z2 + 2zx
(x = cot θ in (22)). (24)

Proof. We use the setting of Section 3 and the rectangle R there. Any triangle has area
1
2 (base × height), so, for the triangle in which P0P1 has unit length, and, therefore, height
sinψ ,

V = sinψ sin |ψ − θ |
2 sin θ

=

⎧⎪⎪⎨⎪⎪⎩
cos(θ − 2ψ)− cos θ

4 sin θ
if π > θ > ψ > 0,

cos θ − cos(2ψ − θ)

4 sin θ
if 1

2π > ψ > θ > 0.

(25)

Equation (25) shows that V = 0 along the edge of R where ψ = 0, and on the diagonal ψ = θ

of the left square of R. We have V = 1
2 | cot θ | on the top edge ψ = 1

2π , and V = ∞ on the
two sides θ = 0, π . We have V = 1

4 tan 1
2θ on the diagonal ψ = 1

2θ of R, and V = 1
4 sin 2ψ

along θ = 1
2π .

For given θ ∈ (0, 1
2π), asψ increases from 0 to 1

2π , V increases from 0 to a local maximum
1
4 tan 1

2θ atψ = 1
2θ , decreases to 0 at θ = ψ , and then increases again to another local maximum

1
2 cot θ at ψ = 1

2π . For given θ in [ 1
2π, π), V = 0 at ψ = 0, increases to a maximum 1

4 tan 1
2θ

at ψ = 1
2θ , and then decreases to 1

2 | cot θ | at ψ = 1
2π . Let θc := 2 artan( 1

2

√
2 ) be a critical

value of θ such that 1
2 | cot θ | is greater than, equal to, or less than 1

4 tan 1
2θ according to whether

θ is less than, equal to, or greater than θc, respectively.
For given (y, θ) in R+×[0, π ], there may be 0, 1, 2, or 3 roots inψ ofV = y,ψi := ψi(y, θ)

say (i = 1, 2, 3). For θ > ψ , V = y holds if either cos(θ − 2ψ1) = cos θ + 4y sin θ or
cos(2ψ2 − θ) = cos θ + 4y sin θ , while, for θ < ψ , V = y holds only when cos(2ψ3 − θ) =
cos θ − 4y sin θ . Thus,

ψ1 = 1
2 [θ − arcos(cos θ + 4y sin θ)], ψ2 = 1

2 [θ + arcos(cos θ + 4y sin θ)],
ψ3 = 1

2 [θ + arcos(cos θ − 4y sin θ)]. (26)

As a check, for θ ∈ (0, π) and y > 0, 0 < ψ1 <
1
2θ < ψ2 < min(θ, 1

2π) and 1
2π > ψ3 > θ .

For θ < 1
2π , when y < 1

4 tan 1
2θ , there are at least two roots, ψ1 and ψ2; ψ3 is another root

when y < 1
2 cot θ . When θ < θc and 1

4 tan 1
2θ < y < 1

2 cot θ , there is one root, ψ3, and no
roots for y > 1

2 cot θ . When 1
2π > θ > θc, there are no roots for y > 1

4 tan 1
2θ and otherwise

3 or 2 roots according to whether y is less than or greater than 1
2 cot θ .

For θ ≥ 1
2π , when y < 1

2 | cot θ |, there are two roots, ψ1 and ψ2; when 1
2 | cot θ | < y <

1
4 tan 1

2θ , there is one root, ψ1; and there are no roots when y > 1
4 tan 1

2θ .
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Continuing as in Section 3,

1
2πF(y | θ) := 1

2π P{V ≤ y | θ} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ3 − ψ2 + ψ1 if three roots of V = y,
1
2π − ψ2 + ψ1 if two roots,

ψ3 if one root and θ < 1
2π ,

ψ1 if one root and θ > 1
2π ,

1
2π if no roots.

(27)

Define h±(y | θ) = (2 sin θ)/
√

1 − (cos θ ± 4y sin θ)2 .Combining (27) with the relations for
ψi given in (26) yields

1
2π f (y | θ) := dF(y | θ)

(2/π) dy
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if no root of V = y on Lθ ,

h+(y | θ) if one root and θ > 1
2π ,

h−(y | θ) if one root and θ < 1
2π ,

2h+(y | θ) if two roots,

2h+(y | θ)+ h−(y | θ) if three roots.

Let 1
2π

2 f (y) dy = 1
2π

2
P{V ∈ (y, y + dy)}. Then

1

2
π2 f (y) =

∫ 2 artan(4y)

0
h− dθ +

∫ arcot(2y)

2 artan(4y)
[2h+ + h−] dθ +

∫ π−arcot(2y)

arcot(2y)
2h+ dθ

+
∫ π

π−arcot(2y)
h+ dθ.

For 0 < θ < π , h+(y, θ) = h−(y, π − θ), so the last integral here equals
∫ arcot(2y)

0 h− dθ .
More generally, for 0 < α < 1

2π ,
∫ π/2
α

h+ dθ = ∫ π−α
π/2 h− dθ . This yields the condensed form

1
2π

2f (y) = ∫ π
2 artan(4y) 2h+ dθ .

For 1
4 tan 1

2θc < y < 1
4 ,

1

2
π2 f (y) =

∫ arcot(2y)

0
h− dθ +

∫ π−arcot(2y)

2 artan(4y)
2h+ dθ +

∫ π

π−arcot(2y)
h+ dθ

=
∫ arcot(2y)

0
2h− dθ +

∫ π/2

arcot(2y)
2h− dθ +

∫ π/2

2 artan(4y)
2h+ dθ

=
∫ π

2 artan(4y)
2h+ dθ

=
∫ 2 arcot(4y)

0
2h− dθ.

Finally, for 1
4 < y < ∞,

1

2
π2 f (y) =

∫ arcot(2y)

0
h− dθ +

∫ π−arcot(2y)

2 artan(4y)
2h+ dθ +

∫ π

π−arcot(2y)
h+ dθ

=
∫ arcot(2y)

0
2h− dθ +

∫ 2 arcot(4y)

arcot(2y)
2h− dθ

=
∫ 2 arcot(4y)

0
2h− dθ.

This establishes (21) in our final result; the indicated substitutions show the rest.
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We have used both MAPLE and MATHEMATICA® symbolic manipulation packages to
express this PDF f for the area V in terms of elliptic integrals of the third kind, but the
manipulations are delicate. We found the following expression after substituting t = u2 in (23)
and further manipulation:

!
16π

2 f (y) = ν1
(
	

( 1
2π, ν1, ν1

) −	
( 1

2π,−ν1, ν1
))
.

Here

	(ϕ, n, k) =
∫ sin ϕ

0

(1 + nx2)−1 dx√
(1 − x2)(1 − k2x2)

and ν1 = 1/(4iy). Since Figure 1(d) is based on numerical computation via Proposition 4, we
see little point in further elaboration here.

Remark 1. The tail P{V > y} for larger y can be approximated as follows starting from (23).
This relation implies that

π2

16
f (y) =

∫ 1/z

0

1

1 + t2

√
t

(t + z)(1 − zt)
dt

= h(ε)

∫ 1/z

0

√
t

1 − zt
dt

= h(ε)

∫ 1

0

√
u/z

1 − u

du

z
(t = zu),

where, for ε = 1/z, h(ε) is bounded by 1/
√
z and 1/[√z(1 + ε2)

√
1 + ε ]. Substituting

u = sin2 θ into
∫ 1

0

√
u/(1 − u) du and recalling that z = 4y shows that f (y) = [1/(2πy2)] ×

[1 + o(1)] as y → ∞.

Remark 2. We found (23) to be the simplest relation to use in the numerical computations.
It can be used to check that

∫ ∞
0 f (y) dy = 1 via a substitution x = √

(t + z)/(1 − tz) after
forcing the square root of the denominator into a partial fraction decomposition much as in the
proofs of Propositions 1 and 2. The details are left to the reader.

Remark 3. MATHEMATICA produces formulae for (21) involving both complete and incom-
plete elliptic integrals of the third kind. Power series expansions for f (·) can be developed,
writing g(z) for 1

2π
2f ( 1

4z) (cf. (22)–(23)); the simplest cases are for z ↓ 0 and z ↑ 1, when
from the right-hand sides of (22) and (24) we obtain f (0+) = 8/π = 2.5465 and

g(1) = 4√
2

∫ ∞

0

dx

(1 + x2)
√
x

dx

= lim
a↑1

∫ a

0

2
√

2

1 + x2 (x
1/2 + x−1/2) dx

= 2
√

2 lim
a↑1

∫ a

0

∞∑
n=0

(−)n(x2n+1/2 + x2n−1/2) dx

= 4
√

2
∞∑
n=0

[
1

(4n+ 1/2)(4n+ 5/2)
+ 1

(4n+ 3/2)(4n+ 7/2)

]
,

where we have combined the steps of taking the limit a ↑ 1 and compressing the sums of
alternating series.
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Table 1: Cumulative distribution functions P{· ≤ z} for Z0, Z1, Z2, and V .

z Z0 Z1 Z2 V

0.25 0.102 040 0.0 0.204 080 0.379 937
0.50 0.208 854 0.0 0.417 709 0.564 280
0.75 0.328 530 0.079 996 0.577 064 0.669 148
1.00 0.500 000 0.333 333 0.666 667 0.734 927
1.50 0.713 661 0.662 288 0.765 034 0.811 446
2.00 0.791 146 0.764 027 0.818 265 0.854 075
2.50 0.834 823 0.817 912 0.851 734 0.881 097
3.00 0.863 166 0.851 579 0.874 754 0.899 719
4.00 0.897 959 0.891 524 0.904 393 0.923 676
5.00 0.918 578 0.914 483 0.922 672 0.938 411
10.0 0.959 426 0.958 411 0.960 442 0.968 682

Median 1.0 1.1453 0.608 42 0.394 70

In general, we must distinguish the cases in which z is greater than or less than 1 in (23),
and within each of those cases, we must also distinguish whether |(z2 − 1)/2z| is greater than
or less than 1. However, we do not think it worth presenting the details here.

6. Discussion

The conditional probability argument used to establish most of the results could in principle
be used to find P{Z1 ≤ z1, Z2 ≤ z2} (in the notation of Sections 3 and 4), but with more than
half a dozen cases shown in (11) and (12), and a similar number analogously for conditional
probabilities for Z2, and with the break points in these definitions not all coinciding for Z1 and
Z2, the algebra becomes heavier and more detailed. Nevertheless, an expression would be of
interest because, as the triangle inequality shows,

P{0 ≤ Z1 − Z2 ≤ 1} = 1,

so the joint density function is concentrated in a band of unit width. This same bound and the
argument in the proof of Proposition 2 justifies the assertion that

lim
z→∞

P{Zi > z}
P{Z0 > z} = 1, i = 1, 2,

i.e. the tail behaviour of the distributions of all three Zi, i = 0, 1, 2, is the same, as can also
be seen from Table 1.

A referee suggested an alternative possible route that we have not pursued, namely, the use
of the order statistics θ1, θ2, and θ3 of three independent and identically distributed directions
on [0, π ], and reference to standard integral tables in place of the integrals which we evaluated
explicitly.
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