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DENSE SUBGROUPS OF THE AUTOMORPHISM GROUPS
OF FREE ALGEBRAS

ROGER M. BRYANT AND VESSELIN DRENSKY

ABSTRACT  Let F be the free metabelian Lie algebra of finite rank m over a field
K of characteristic 0 The automorphism group Aut F 1s considered with respect to a
topology called the formal power series topology and 1t 1s shown that the group of tame
automorphisms (automorphisms induced from the free Lie algebra of rank m) 1s dense
i AutF for m > 4 but not dense for m = 2 and m = 3 At a more general level,
we study the formal power series topology on the semigroup of all endomorphisms of
an arbitrary (associative or non-associative) relatively free algebra of finite rank m and
vestigate certain associated modules of the general linear group GL,,(K)

Introduction. Let K be a field of characteristic 0 and let L,, be the free Lie algebra
over K of finite rank m freely generated by xy, ..., x,,. The general linear group GL,,(K)
acts naturally on the m-dimensional subspace of L,, spanned by {x|,...,x,} and we
can extend this action so that GL,,(K) becomes a group of algebra automorphisms of
L. If m > 2 and f belongs to the subalgebra of L,, generated by {x,,...,x,} then the
endomorphism 7¢ of L, defined by

T(x) =xi+f, ) =x @#I),

is clearly an automorphism of L,,. By a result of Cohn [8], Aut L,, is generated by GL,,(K)
and the automorphisms 7;.

The main purpose of this paper is to study the automorphism group of the free
metabelian Lie algebra L, /L;, where L;, is the second derived algebra of L,,. Those
automorphisms which belong to the image of the canonical homomorphism AutZ,, —
AutL, /L) are called tame. One of the questions which motivated our work was the
question of whether every automorphism of L, /L], 1s tame.

The analogous question has been answered completely for the free metabelian groups
[ /Ty, (where T, is the free group of rank m): every automorphism of I, /T, is tame
when m # 3 (see [2, 4, 12]) but I'; /T§ has non-tame automorphisms (see [7, 3]).

By Cohn’s result, AutL, = GLy(K). It follows that L, / L) has non-tame automor-
phisms: if v is a non-zero element of the derived algebra of L, /L/ then the mapping of
L, /L defined by u — u + [u,v] for all u € L, /LY is an automorphism which is clearly
not induced by an element of GL,(K) (see also [14, Proposition4]). To study AutL,, /L;,
for m > 3 we make use of a topology on AutL,, /L), called the formal power series
topology (see Section 2). We prove in Section 3 that the set of tame automorphisms is
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dense in AutL,, /L), for all m > 4 but is not dense when m = 3. In particular L3 /L has
non-tame automorphisms.

Since the completion of our work we have been informed by Yu. A. Bahturin that he
and S. Nabiyev have now proved that L,, / L;, has non-tame automorphisms for all m > 2
[6]. This nicely supplements our main result and shows that no exact analogue exists of
the group theoretic results.

In order to study AutL,,/L;, we develop techniques which apply in a wider setting.
We investigate the endomorphisms of arbitrary finitely generated relatively free algebras
over K. The relevant background on relatively free algebras is described in Section 1.
Our techniques are based on a combination of the methods of Anick [1] and Drensky
and Gupta [9]. Anick considered the formal power series topology on the set of endo-
morphisms of the polynomial algebra K|xj, ..., x,]. He proved that the endomorphisms
with invertible Jacobian matrix form a closed subset J and that the group of tame auto-
morphisms is dense in J. Drensky and Gupta applied the representation theory of GL,,(K)
to investigate the automorphisms of relatively free nilpotent Lie algebras. We shall de-
velop some of these ideas further.

Let U be any variety of algebras over K, let F = F,,(11) be the relatively free algebra
of U of rank m, and let E = End F be the semigroup of all algebra endomorphisms of F.
As in the special case where F' = L,, we can regard GL,,(K) as a subgroup of Aut F; thus
GL,,(K) C E. For k > 2 and any subsemigroup H of E, let I, H be the set of elements
of H which induce the identity map on F/F". Thus H D ILbH O ItH O --- and each
I H is a subsemigroup of H. For ¢, ) € E write ¢ =,; ¥ if ¢ and ¢ induce the same
endomorphism on F/ F**1_Then it is easily verified that =, is a congruence on E. We
show in Section 1 that the quotient semigroup ItE/ =, can be given the structure of a
K GL,,(K)-module, where the action of GL,,(K) comes from conjugation within E, and
we determine the structure of this module. Furthermore, in Section 2 we show that the
direct sum

L(E) = P IE/] =k
k>2
acquires the structure of a graded Lie algebra over K.
If H is any subgroup of AutF then I,H /I, H can be identified with a subgroup
of ILtE/ =,. Making this identification we show that if H is GL,,(K)-invariant then
IH /11,1 H is a K GL,,(K)-submodule of LE/ =, and

LH) =@ LH/.H
£>2

is a subalgebra of L(E). Furthermore we prove that if H; and H; are subgroups of Aut F
such that GL,,,(K) C H; C H; then H is dense in H, with respect to the formal power se-
ries topology if and only if £(H;) = L(H>).In Section 3 we apply these ideas to the study
of L, /L), by means of representation theory. We completely determine the K GL,,(K)-
modules [, T/ I, T and It A | I,; A where T is the group of tame automorphisms of L,, / L},
and A = AutL,,/L].
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1. Relatively free algebras. Throughout this paper K will be a field of characteris-
tic 0. By an “algebra” we shall mean a vector space R over K endowed with a multipli-
cation which satisfies the left and right distributive laws and the law a(r ;) = (ar))r; =
ri(ary) for all r|,r, € R, a € K. (Thus R is non-unitary and need not be commutative
or associative.) Let R be the class of all algebras and denote by F(R) the absolutely
free algebra freely generated by the countable set {x;,x,...}. Thus the elements of
F(N) may be regarded as polynomials without constant terms in non-commuting and
non-associative variables. For each positive integer m, F,,(i) denotes the subalgebra of
F(N) generated by {x|,...,%n}.

Iff = f(xi,...,xm) € F(NR) we say that f is a polynomial identity of an algebra R
iff(r1,...,rm) = O forall ry,...,r, € R. Fora given subset W of F(R), the class U
of all algebras in which all elements of W are polynomial identities is called the variety
of algebras defined by W. The set T(11) of all elements of F(JR) which are polynomial
identities of all algebras of U is an ideal invariant under all endomorphisms of F(3).
The quotient algebra F(11) = F(3t)/T(11) is the so-called relatively free algebra of 1l of
countable rank, freely generated by the set {y,ys,...} where y, = x; + T(1l) for all i.
Similarly F,,(11) = F,,(R)/ (Fm(‘ﬁ) N T(l])) is a relatively free algebra of I of rank m.
We identify it with the subalgebra of F(11) generated by {y,...,¥m}, so that F,,(11) is
freely generated by {yi,...,ym}. If r1,..., 1y are elements of any algebra R of U then
there is a unique homomorphism ¢: F,,,(11) — R such that ¢(y,) = r, (1 <i < m). For a
fixed variety I and fixed m we now write F = F,,(11).

We may write F,,(R) = B> Fu(R)w where F(N)y is the subspace of F,(R)
spanned by all monomials of total degree k in xi,. .., x,. Since K is infinite we may see
by a Vandermonde determinant argument that

Fn(R) N T = P (Fu(R) N T(D)).

k>1

Thus we may write F as a sum of homogeneous components, F' = @y~ F), where
Fuy = Fu(R)y / (Fn(P)wy N TAD)

and Fy, is the subspace of F spanned by all monomials of total degree k in yi, ..., yn.
Each element f of F' may be written uniquely in the form f = 4> fi) With fg) € Fy
for all k and fy) = O for all but finitely many k. We say that fi, is the homogeneous
component of f of degree k. Similarly, for any m-tuple @ = («ay, .. ., @) of non-negative
integers we write Fy = F(q4,, ., for the multi-homogeneous component corresponding
to «; that is, the subspace of F spanned by all monomials of total degree «, in y, for
i = 1,...,m. Then, by similar arguments to those above, F' = @,F, where a ranges
over all m-tuples. Note that, for each positive integer k, F* = @,> F(,).

We write G for the general linear group GL,,(K) and let G act in the natural way on the
subspace F,(N)(1) of F,y(R) spanned by xi, ..., x,. We extend this action so that G acts
on F,,(N) by algebra automorphisms. Clearly the subspaces F,,())NT(11) and F,,,(R) 4,
k > 1, are G-invariant. Thus G acts as a group of automorphisms of F such that each
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F( is a KG-submodule. From now on we assume that Ul is non-trivial, i.e., x; (;é T(11).
Thus F(;) has basis {y1,...,yn} and F(;) is the natural KG-module. In particular G acts
faithfully on F and we may regard G as a subgroup of Aut F. We write £ = End F for
the semigroup of all (algebra) endomorphisms of F.

For each integer k, k > 2, let I, E be the set of endomorphisms of F which induce the
identity map on F/Fk and write /[E = LE. Thus

EDIE=LEDLED ---

and each I, E is a subsemigroup of E. For ¢,1 € Eand k > 1 we write ¢ =; ¢ if ¢
and 1 induce the same endomorphism on F/F* or, equivalently, ¢(y,) — ¥(y,) € F* for
i = 1,...,m. It is easily verified that =; is a congruence on E. For k > 2 we write
IkE | =4 for the quotient semigroup of I E corresponding to the congruence =, .

For any element ¢ of IE let vi(¢) = (fi,...,fm) Where f, = (czb(y,))(k) is the homo-
geneous component of ¢(y,) of degree k, i = 1,...,m. Thus ¢(y,) = y, +f, (mod F**'),
i=1,...,m,and v (¢) € ﬁ;” (the direct sum of m copies of the additive group Fy,).
It is easily verified that v;: LE — I"(*Z;” is an epimorphism of semigroups. Clearly, for
¢, € LLE, vi(¢) = vi(¢) if and only if ¢ =;,; 9. Thus v, induces an isomorphism
of semigroups 7y: LE/ =p1— Ff%" In particular, ILtE/ =, is an abelian group. Fur-
thermore, since @;” is a vector space over K we can give [} E / =+1 a similar structure
so that 7, becomes a vector space isomorphism. More explicitly, if [¢] € LE/ =4, is
represented by ¢ € I,E and if a € K then a[¢] is represented by the endomorphism ¢,
defined by ¢, (y,) = y, + af,, for all i, where v;(¢) = (fi,....[n)-

As observed above, F( is the natural KG-module with basis {yi,...,yn}. It will
sometimes be convenient to regard elements of G as m X m matrices, corresponding to
the ordered basis {y), ..., ym } of F(1). Since G C E we can let G act by conjugation on E.
Then it is easily verified that each I E is G-invariant and that if ¢ and ¢ are elements of
I,E satisfying ¢ =, Y thenggg ' =41 gg ' forallg € G. Thus Gacts on LE/ =,;.
It is also easy to see that the action of G on [} E / =+1 commutes with multiplication by
elements of K. Thus [LE/ =y, is a KG-module.

The action of G on ILE / =+1 1s most easily written down using the map v,. Let
¢ € LE, g € G and vi(¢) = (f1,...,fn). Then v, maps gpg~' to (g(f]), .. ,g(f,,,))g’l.
Here g(f,) is calculated in the G-module F;, g~! is regarded as an m x m matrix, and
multiplicationby g~! is multiplication of a 1 X m matrix by an m X m matrix. Let N(1)* be
the vector space of 1 x m row-vectors over K regarded as a left KG-module in which, for
each g € G, g acts as right multiplicationby g~! (in other words, N(1)* is the dual of the
natural KG-module N(1)) and regard F ) @k N(1)* as a KG-module under the “diagonal”
action of G. Then the map

V@) = (fi,.. .o f) — ARA,0,...,0)+- - +£,®(0,...,0,1)

determines a KG-module isomorphism from IkE/ =441 to Fgy @k N(1)*. Thus we have
established the following result.
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THEOREM 1.1. Let U be a non-trivial variety of algebras, let F = F,,(11) be the
relatively free algebra of finite rank m in U and let G = GL,,(K). Then, for k > 2, there
is a KG-module isomorphism

LE] == Fy @k N(1)*
where N(1)* is the dual of the natural KG-module N(1).

The proof we have given applies to any infinite field K (without need of our assump-
tion that char K = 0) and is based on the proof of [9, Theorem 2.1].

Before proceeding further we need to summarise some information about KG-
modules, particularly (finite dimensional) polynomial KG-modules (see [10] for basic
facts and definitions). For an arbitrary integer n we write (det)” to denote a one-dimen-
sional KG-module which affords the representation g +— (det g)” for all g € G (where
det g is the determinant of g). Every polynomial KG-module s a direct sum of irreducible
ones. The irreducible polynomial modules are indexed (up to isomorphism) by the m-
tuples of non-negative integers A = (Ay, ..., Ay), where A; > - -- > A,. Such an m-tuple
with A\ +- - -+ A, = kiscalled a partition of k into m parts and Part(k) denotes the set of
all such partitions. For A = (Ay,..., A,) the irreducible polynomial module correspond-
ing to A\ will be denoted by N(\) or N(\y, ..., A\). The modules N()\) with A € Part(k)
are precisely those irreducible polynomial modules which are homogeneous of degree k.
Associated with each polynomial module W is an element of Z[X, ..., X,,] called the
character of W; and the character of N()) has leading term X;\' ---X)». When writing
partitions we shall make use of standard abbreviations: thus, for example, (2,2, 1,1, 1,0)
may be written as (22, 1°).

It is well known (and easy to verify by inspecting characters) that the m-dimensional
natural KG-module is isomorphic to N(1), and (det)' ®x N(1)* = N(1™~"). Thus N(1)* =
(det)™! ®x N(1™!) and Theorem 1.1 may be re-stated as follows.

COROLLARY 1.2 (SEE [9, THEOREM 2.1]). For k > 2 there is a KG-module isomor-
phism
LE/ =™ (det) ™ @k NI™ 1) @k Fu-

It is easily verified that Fy, is a homogeneous polynomial KG-module of degree k.
Thus F, can be decomposed as a direct sum of modules each of which is isomorphic to
some N(A) with A € Part(k).

We shall be particularly interested in varieties of Lie algebras (see [5]). Then, in all the
above, we may replace F(R) by the free Lie algebra L freely generated by {x;,x,,...}
and replace F,,(}R) by the free Lie algebra L,, of rank m freely generated by xi,. .., Xn.
We may take polynomial identities as coming from L and take relatively free Lie algebras
of rank m as quotient algebras of L,,. The following result is well known. (For a proof
see, for example, [9, Lemma 3.4].)
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PROPOSITION 1.3.  Let F = L,,/L;) be the free metabelian Lie algebra of finite rank
m > 2 and let G = GL,,(K). Then the homogeneous components of F satisfy the KG-
module isomorphisms F;y = N(1) and F) = N(k — 1, 1), k > 2.

The tensor product of polynomial modules can be calculated by means of the
Littlewood-Richardson rule. (For the rule itself see [11]. The application to GL,,(K) is
well known and is stated in [9, Proposition 1.4].) Thus by Proposition 1.3 and Corol-
lary 1.2 we can find the structure of the modules I,tE/ =, inthe case where F = L, /L],.
The results are as follows (essentially as stated in [9, Lemma 3.5]).

PROPOSITION 1.4. Let F = L,, /L), where m > 2.
(i) Form =2, 12E/ == N(l)andIkE/ = =ENEk—-2,1)ENKk—1), k> 3.
(ii) Form >3, LE| =3 ((det)—‘ ®k N2, 1'"—3)) @ N(1) and

LE] == ((det) ' @k N(k,2,1" ) @ N(k—2, 1) &Nk — 1), k>3

2. Endomorphisms and automorphisms. We now return to the general situation
where F' = F,(l1) and U is a non-trivial variety of algebras. We shall continue to use all
the notation of Section 1. In particular, £ = End F and G = GL,,(K).

We consider the topology on F corresponding to the series F O F? D F*> D .-
that is, the topology in which the sets f + F* (f € F, k > 1) form a basis for the open
sets. Since each element ¢ of E corresponds uniquely to an m-tuple (d)(yl), ey ¢>(y,,,))
we may give E the topology of the direct product F X - - - X F of m copies of F. We call
this topology the formal power series topology on E, following Anick [1]. (This topology
can be described by the metric satisfying d(¢,v¥) = 0 if ¢ = ¢ and d(¢, V) = exp(—k)
if ¢ # 1) and k is maximal subject to ¢ = 1.)

We aim to construct a graded Lie algebra L(E). In order to do this it is convenient
to utilise the completions of F and E. The completion F of F with respect to the series
F D F? D - - - may be identified with the complete (unrestricted) direct sum @, F,. It
has a natural algebra structure such that F is a subalgebra of F. Each element of £ may
be regarded as an infinite formal sum f = 3,5, f,) with f(,, € F{, forall i. For each k > 1
let 70 be the set of all such elements f with f;) = 0 for i < k. (In other words F®
is the completion of F*.) Clearly the topology that £ inherits from F is the same as the
topology on F obtained from the series £ D F® D - .1t is straightforward to prove the
following result.

LEMMA 2.1.  Ifwy,...,w, are arbitrary elements of F then there is a unique contin-
uous endomorphism ¢ ofI:" such that p(y,)) =w,i=1,...,m

Let £ be the semigroup of all continuous endomorphisms of F. Then Lemma 2.1
shows that each element ¢ of E corresponds uniquely to an element (¢(y|), R d)(y,,,))
of the direct product F x - - - x F of m copies of F. Clearly the set £ with the topology of
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this direct product may be identified with the completion of E and we call this topology
on E the formal power series topology. Note also that E is a subsemigroup of E.

Because F™® is the closure of F¥, ¢(F¥) C F® forall ¢ € E. Fork > 2 we let I, E be
the set of all elements of £ which induce the identity map on F/ﬁ"‘). Thus ENLE = LE
and I, E is the completion of I E. We also write IE = LE.

LEMMA 22. IEisa group.

PROOF. Clearly IE is a subsemigroup of E. Let ¢ € IE. Then it is easy to see that
¢ induces the identity map on each factor F0 / F**D_Thus ¢ induces an automorphism
of f’/ﬁ”‘*”. It follows that for each & there is an element ¢, of E such that ¢¢; and ¢;¢
induce the identity map on £/ F**1). The limit of the maps ¢y is an inverse of ¢ in IE.
Thus each element of /E is invertible.

It follows from Lemma 2.2 that each I, £ is a normal subgroup of /£ and the topology
induced on IE from E is the same as the topology associated with the series IE = LE D
L ED.--.

For each k > 2 we can extend the homomorphism v: [E — F(,:;" to a group ho-
momorphism v: [LE — F(kg” in the obvious way. Thus v induces a group isomorphism

v LE ) I E — F. For each k > 2 we write

LE = LE/Iih E = (LEYLin E) [ i E.

Thus LE = IkE/ =+1. Furthermore we can use the map 7, to give IE the structure
of a vector space over K so that 7: [E — F?,ﬂ;” is a vector space isomorphism. Since
G C E C E, G acts by conjugation on E and I, E becomes a KG-module. Clearly I,E and
IkE/ =4 are isomorphic as KG-modules.

The following result is similar to several well known results and is straightforward to
prove by direct calculation.

LEMMA 2.3. Let ¢ € I}l:? and Y € ILE U,k > 2). Then the group commutator
¢~ W oy satisfies ¢ lpy € Iﬁk,[E. Furthermore, if v/(¢) = (fi,....fm) and
ve(Y) = (g1,...,8m) then 1/J+k,1(<i)"w’l¢d)) = (hy,...,hyn) where, fori =1,...,m,

h, = (g:(yl + ooy Ym +f'"))(/+kfl) - (ﬁ(yl +81s--5Vm +gm))(/+k7|)-

(Recall that, for f € F, f.x—1) denotes the homogeneous component of f of degree j +
k—1.)

REMARK 2.4. In the notation of Lemma 2.3 we can write
(01 + 81y +8m) gy =L O Yo 81 &),
(801 + 1oy ) ) = 8O oo fon)s

where f is linear in gy, .. ., g (that is, a linear combination of monomials in yi, ..., Ym,
g1, ---»8&nm each of which contains precisely one factor from gy, ..., g,) and g/ is linear
infi,.... m
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PROPOSITION 2.5. Let E = End F where F = F,,(11). Then the vector space direct
sum L(E) = @>2 LE has the structure of a graded Lie algebra over K with I,E as
component of degree k — 1 in the grading and Lie multiplication given by

(Sl E, Yl E) = (97" o)Lk E

forall ¢ € I,E, ¥ € LE (j,k > 2). Furthermore G = GL,(K) acts on L(E) as a group
of Lie algebra automorphisms.

PROOF. By Lemma 2.3 the mutual commutator groups (I,E, ILE) of the terms of the
series Izl:? DLED--- satisfy (I]E, IkE') C IM,,E for all j,k > 2. Therefore the direct
sum of abelian groups L(E) = @kzjz(lkﬁ / I E) may be given the structure of a graded
Lie ring in the standard way such that

(Sl E, Yl E) = (9 o)L E

forall ¢ € LE, v € LE, j,k > 2. (See [13, Part I, Chapter II].)
We have to show that £(E) is a Lie algebra over K. Let ¢ € I,l:?, Y € LE U,k > 2)
and let a € K. In the notation of Lemma 2.3 and Remark 2.4,

a((¢_l¢_l¢’w(yl))(]+k_l)) = agll(yl" .. 7ym’f11 .. ’fm) - af,l()’l, e ’ymsgl" .. ,gm)

= g:(yl,---,)’m,afl,--- ,afm) _af;/(yl’---7ymvgl"~'agm)
= (gz()"l +af1s~--,)’m +afm>)(]+k71)

- (aﬁ(Yl +81- s Ym +g’"))(1+k-l)
= (61" 7'01900) )

where ¢; € IE is defined by ¢1(y,) = y, +af,, i = 1,...,m. Thus
al¢l E, Yl E1 = [adl i E, Yy EN,

and L(E) is a Lie algebra over K. It is easy to verify that the action of G on £ by conju-
gation induces an action of G on L(E) by Lie algebra automorphisms.

Note that, for ¢ € LE, ¥ € LE, (¢ ¢y)l+E depends only on the elements
(d)(y,)) 0 and (w(y,)) @ Thus the Lie algebra operations on L(F) can be defined purely

in terms of E rather than E.

For any subgroup H of AutF we write LH = HNIE, k > 2, and IH = I,H. Thus
I H is the set of elements of H which induce the identity map on F/F* and is a normal
subgroup of H. We also write LH = L H(I;.1 E) /I, E. Since LH N I E = I, H, [LH
is naturally isomorphic to IH /I;1 H. It is convenient to use I, H rather than I[,H /I H
because of the inclusion ,H C IE. Thus if H, and H, are subgroups of AutF with
H, C H, we have I.tH, C IH,. The topology induced on H from E is clearly the same
as the topology corresponding to the series H D LH D 3H D - - -.
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PROPOSITION 2.6. Let H be a subgroup of Aut F which is invariant under conjuga-
tion by elements of G. Then, for k > 2, I,H is a KG-submodule of I,E.

PROOF. It is easy to verify that I,H is invariant under the action of G. It remains to
show that it is closed under multiplication by elements of K. We repeat arguments from
(1, Lemma 6] and [9, Lemma 3.1]. Let ¢ € I,H and a € K. Since 7;: [LE — F(}' is a
vector space isomorphism, it is enough to prove that av(¢) € vy (IyH). Suppose first that
a is rational: a = p/q where p and q are integers (q # 0). Let d be the scalar matrix of
G with all diagonal entries equal to 1 /g and let n = pg*~2. Then, by an easy calculation,

vi((dgd™")") = nvi(dgd™") = n(1/ g Wwi(¢) = avi(@).

Thus avi(¢) € vi(IH), as required. Now let a be a non-rational element of K. For
r=20,1,...,k—1, let d, be the scalar matrix of G with all diagonal entries equal to a+r.
Then

vildrdd, ") = @+ vi(9)

and so (a + N* v(¢) € v, H) for r = 0,1,...,k — 1. But a can be written as a
linear combination of (a + 0)°!,..., (a + (k — 1))k_l with rational coefficients. Thus
avi(¢) € vi(I H), as required.

PROPOSITION 2.7.  Let H be a G-invariant subgroup of Aut F. Then L(H) = @kzzikH
is a graded Lie algebra over K which is a G-invariant graded subalgebra of L(E).

PROOF. By Proposition 2.6, I,H is a subspace of IE for all k. By the definition of
the Lie product in L(E), [[,H,[;H] C I .4 H for all j,k > 2. The result follows.

If I,H is identified with [,H /I;,;H for each k then it is clear that L(H) is the same
as the Lie algebra @y>,(IyH / I+ H) obtained by means of group commutators from the
series[H=1LH DO H DO ---.

PROPOSITION 2.8. Let Hy and H, be G-invariant subgroups of Aut F such that Hy C
H;. Then IH| is dense in IH, with respect to the formal power series topology on End F
if and only if L(H)) = L(H>).

PROOF. Suppose that /H; is dense in /H, and let ¢ € I;H,, k > 2. Then there exists
Y € IH, such that "¢ € I, H,. Hence v € ItH; and so ItH, = (ItH1)(I4+1H>). Thus,
for all k, I,H; = I,H, and so L(H,) = L(H,). The converse is similar.

COROLLARY 2.9. Let H) and Hy be subgroups of AutF such that G C H; C H,.
Then H, is dense in H, if and only if L(H) = L(H>).

PROOF. Note that H, = G(IH,), i = 1,2. If H; is dense in H; then clearly IH is
dense in IH,. Conversely, if IH| is dense in IH; then, for all k > 2, IH, = (IH;)(I;4+1H>)
and so

Hy = G(IHy) = G(IH\) (1 H) = Hi(I1+1Ha),

which implies that H; is dense in H,. The result now follows from Proposition 2.8.
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3. Automorphisms of free metabelian Lie algebras. Let m > 2 and let L,, be
the free Lie algebra of rank m freely generated by xi,...,x,. We shall study the free
metabelian Lie algebra L,, /L), of rank m freely generated by yi,...,y, Where y, = x, +
Ly,i=1,...,m. From now on we write F = L, /L, and use all the notation previously
developed for F = F,(11) in the special case where 1l is the variety of all metabelian Lie
algebras. In particular, recall that E = End F, A = Aut F and G = GL,,(K). Furthermore
T will denote the group of all tame automorphisms of F. We use commutator notation for
the Lie multiplication in F: thus F*, as used previously, now denotes [F, F, ..., F] with

k factors.
Let Q = K[t,...,t,] be the (commutative, associative, unitary) polynomial algebra
over K freely generated by variables 1, ..., t,,. For k > 0 write Q;, for the homogeneous

component of Q of degree k and Q¥ = @, Q). Note that every element of the derived
algebra F’ of F may be written in the form

Z b’u)’]]ﬁj(ad}’l yooosadyy)
1<1,j<m
where f, (t1,...,tn) € Qforalli,j. (Foreach v € F,adv: F — F is defined by u(ad v) =
u,v] forall u € F.)

We shall use a special case of the idea of the wreath product of Lie algebras as intro-
duced by Shmel’kin [14]. Let A, and B,, be abelian Lie algebras (in other words vector
spaces over K) with bases {ay,...,an,} and {tm, ..., 1}, respectively, and let C,, be the
free right Q-module with free generators ay, ..., a,. Then the wreath product A,, wr B,,
is defined to be the vector space C,, & B,, made into a Lie algebra over K in such a way
that C,, and B,, are abelian subalgebras and

laf(ti,....tw), )] = af(ty, ..., tw)t

for all f(#y,...,tn) € Qand all i,j € {1,...,m}. Thus C, is an ideal and A,, wr B,, is
metabelian.

As a special case of Shmel’kin’s embedding theorem [14, Theorem 1], the homo-
morphism e: F — A,, wr B,, defined by (y,) = a,+¢ (1 < i < m)is a Lie algebra
monomorphism. If

f=2buylfyadyr,... ady,)
then
e(f) = Y (aty — at) fy(tr, ..., tm).
LEMMA 3.1.  The element 3" | afi(ti, ..., tn) of Cy belongs to e(F') if and only if
Yrotfilt, . te) = 0.

PROOF.  This follows from [14, Theorem 2]. It may also be proved directly as in [4,
Proposition 3.1].

Our next objective is to give a matrix representation for /E which is similar to the well
known representation for endomorphisms of a free metabelian group (see [4]).
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Let M = M,,(Q) be the associative algebra of all m X m matrices with entries from
Q. For k > 0let My, = M,,(Q)) be the subspace of M consisting of those matrices (f,)
such thatf,, € Q, foralli,j and let MY = @,5; M,). The series M = M@ D M D - ..
determines a topology on M with completion M where M = ®,>0M,) (complete direct
sum). Thus M may be identified with the algebra of all m x m matrices over the formal
power series algebra K[[¢1,...,,]].

Let S be the subspace of M defined by

Sz{mpeM:g%ﬁ:Othuwm}

and, fork > 1,letSy) = SNM, and S® = SNM®. Ttis easily verified that S = @>1 Sy
and S% = @54 Sy, k > 1. The condition Y™, #,f, = 0,j = 1,...,m, may be written as
(1, .. t)(fy) = (O,...,0), or, alternatively, (1, ... ,tm)(l + (f,,)) = (t1,...,tn), where
1 denotes the identity matrix. Thus S is a right ideal of M and 1 + S is a multiplicative
semigroup. We write S for the closure of S in M and S® for the closure of S®, k > 1.
Thus S = @kzlS(k) and S(k) = ®'st(l)'

For ¢ € IE we can write ¢(y,) = y,+f, withf, € F, j = 1,...,m. Thus, by Lemma 3.1,
we can write

m
E(¢(y])):a]+tl+za(ﬁ19 j: l’-'~’m’
=1

where the f; are elements of Q such that (f;)) € S. Let p(¢) denote the endomorphism of
the free Q2-module C,, defined by

H(¢)(aj):aj+zalf;j, j=1....m,
=1

and identify the endomorphism algebra of C,, with M in the obvious way. Thus p(¢) €
1+ Sforall ¢ € IE.

PROPOSITION 3.2. The mapping p:1E — 1 + S is a semigroup isomorphism such
that, for all k > 2, w(IkE) = 1 +S*~Y and u(IA) is the set of invertible matrices of 1 + .
Furthermore i extends to a continuous group isomorphism fi: IE — 1 + 8.

PROOF. It is straightforward to check that p is a semigroup monomorphism. By
Lemma 3.1, for every matrix (f,) € S there exist elements fi,...,f,, € F’ such that
e(f) = X0 afy,j = 1,...,m, and consequently the element ¢ of IE defined by ¢(y)) =
v +f.J = 1,...,m, satisfies p(¢) = 1 + (f,)). Thus p is surjective.

It may easily be verified that, for f € Fand k > 2, e(f) € =" | ¢, Q%" if and only if

f € F*. Thus

pE) = 1+ (SN M* D) = 14541,
Since 1 + S is the set of matrices fixing (¢y,..., ), the inverse of an invertible matrix
of 1 + S also belongs to 1 + S. Thus, for ¢ € IE, we have ¢ € IA if and only if u(¢) is
invertible.
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By the above description of £(f) for f € F*, we see that, for ¢, € IE and k > 2,
¢ = v if and only if u(¢) — u(y) € M*=V. Hence u sends Cauchy sequences of IE
to Cauchy sequences of M. It follows easily that u extends to a continuous semigroup
isomorphism fi: IE — 1 + 8. Since IE is a group (by Lemma 2.2) sois 1 + §, and i is a
group isomorphism.

Since S is a graded associative algebra, S = @;>; S, it has the structure of a graded
Lie algebra over K under the commutator operation defined by [s}, s2] = s152 — 525 for
all 54,5, € 8.

PROPOSITION 3.3.  For k > 2, i induces a semigroup epimorphism pi: ILE — Sy,
Sfrom ILE to the additive group Sy—1). The maps py induce vector space isomorphisms
fix: IkE — S 1y and an isomorphism of graded Lie algebras from L(E) to S.

PROOE. Clearly A(IE) = 1+ 8% for all k > 2. There is a group homomorphism
from 1+ 8%~ on to the additive group Sy, defined by 1 + ug_ )+ g +- - - — 1)
where u(;, € S for all i. This induces a group isomorphism & from (1+8*~1) /(1 +8®))
to S—1). Thus we obtain a group epimorphism p: LE — Sy_1) and a group isomor-
phism fi: LE — Sg—1). It is easy to check that fi; is a vector space isomorphism. Since
f: IE — 1+ 8 is a group isomorphism and fi(I,E) = 1+8% for all k > 2 we obtain an
isomorphism from L(E) to the graded Lie ring

L1+8) = PA+8%) /1 +5P).
k>2
It is easy to prove that the maps §; give an isomorphism of graded Lie rings from
L+ S’) t0 S = @i>2 Sk—1)- (One can calculate directly or use the logarithm map and
the Campbell-Hausdorff formula.) Thus the maps ji; give an isomorphism of graded Lie
rings from L(E) to S. Clearly this isomorphism is also an isomorphism of Lie algebras
over K.

By Proposition 3.2, IE = 1 + S. We next calculate the action of G on 1 + S which
corresponds to the action of G by conjugationon /E. Let G act in the natural way on Q(j,
and extend this action so that G becomes a group of unitary algebra automorphisms of
Q. Let ¢ € IE and pu(¢) = 1 + (fjj). It is easy to see that, for all g € G,

ugpg ) = g<1 + (g(ﬁy)))g*'

where (g(ﬂj)) € M, g € G C M and the triple product on the right hand side is the matrix
product in M. We can identify M with Q @k M,,,(K). Then the action of G on 1 + S is the
restriction to 1 + S of the “diagonal” action of G on Q ®g M,,(K) where G acts on £ as
described above and G acts by conjugation on M,,(K). From now on when we regard M
or a subspace of M as a KG-module it is always assumed that the G-action is the one just
described. It is straightforward to prove the following fact.

LEMMA 3.4. The maps fiy: LE — Sg_1), k > 2, are KG-module isomorphisms. Here
Sw—1) is a submodule of M1y = Qu—1) @k Mm(K).

We shall now summarise some properties of (finite dimensional) rational KG-
modules. For the purposes of this paper we may define a rational KG-module as one
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which is isomorphic to a module of the form (det)™ ®x V where V is a polynomial
module, 7 is a non-negative integer, and (det) " is as defined in Section 1. Most of the
properties of rational modules we need follow from elementary properties of polynomial
modules as given in [10].

For i,j € {1,...,m}, let e, be the element of M,,(K) or of M = M,,(€2) which has
entry 1 in the (i, j)-th position and O elsewhere. For zj,...,z» € K\ {0} let

dzi,....2m) = 1€11 +* * * + ZmCm

be the corresponding diagonal element of G. If W is any rational KG-module and o =

(ay,...,an) is any ordered m-tuple of integers, the weight space W* of W is defined
to be the set of those elements w of W for which d(zy,...,z,)(w) = z‘l" -+ - zomw for all
Zs---»2m € K\ {0}. The elements of W* are called homogeneous of weight c. Each

rational module W is the vector space direct sum of its weight spaces: W = @,W?. If
weE Wandw = 3, w, withw, € W* for each « then we shall call w, the component
of w of weight «. Every rational module is a direct sum of irreducible ones. The only
irreducible rational modules (up to isomorphism) are the modules (det) " ®x N(\), where
n > 0 and N()) is the irreducible polynomial module corresponding to A = (A, ..., Ap)
with A\; > --- > A, > 0as in Section 1. The weight spaces of (det) ™ @k N(\) and N(\)
are related by

)(oq—n, 0ty —n)

((det)_" Rk N(A) = (det)™" @ NO)@+ o),

Furthermore, N(\)* # {0} only if «, ..., a,, are non-negative integers satisfying o +
“ o+ Ay = M + -+ A\, and the dimension of N()\)® in this case is the number of
semistandard tableaux of shape A and content «. (In the terminology of [11], dim N(\)“
is the number of tableaux of shape A and weight a: see also [9, Proposition 1.3].)

Regard M,,(K) as a KG-module, as before, with G acting by conjugation. Then M,,(K)
is easily seen to be rational, and for i,j € {1, e, m} the element ¢, is homogeneous of
weight (¢1,...,e,) where e, = Oforr ¢ {i,j}, e, = ¢ = 0ifi = j,ande, = 1
and ¢, = —1if i # j. It follows that the module My_;) = Qu_1) ®x M,(K) is also
rational and for all non-negative integers «y,..., o, with o) +--- + a,, = k — 1 the
element 1" - - - 18" @ e, is homogeneous of weight (ct; +¢1,..., A +ey) Where ey, ..., &y
are as above. Consequently each weight space of M(_) is spanned by those elements
£ - 18" ® e, which belong to it, and the weight components of any element of M_,,
may be calculated by expressing it as a linear combination of elements ] - - - 19" ® e,,.

We shall now begin a detailed study of A = AutF. For ¢ € [LE C LE it will be
convenient to write ¢ = ¢l E to denote the corresponding element of I,E.

For each element f of the subalgebra F(y,,...,y,) of F generated by y,,...,ym We
define 7, € A by 7¢(y1) = y| +f and 74(y,) = y, (i # 1). By the description of AutL,,
given in the introduction, each 7y is tame and the group T of tame automorphisms of
F is generated by G together with the set of elements 7;. If f = fi + -+ + f, where
fi € Fya,oocsym)wy» i = 1,...,n,thent;, € Gand 7y = 75, - - -77,. Thus T is generated
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by G together with those 7 for which f is homogeneous of degree at least 2. Since g7y =
(g7y g g forall g € G, T can be written as a product of subgroups,

T= <g7fg*‘ 1g€G.fel F(yz,...,ym)(k,>G.
>2

Since ITN G = {1} it follows that

IT= (g8 -0 €G.f € U FOn, oyl ).
k>2

For k > 2 let Py be the KG-submodule of I,E generated by those elements 7 for
which f € F(y2,...,ym)w- Note that when m = 2 we have P, = {0} for all k. For
f € Fyy,....ymuw © Fu we can write f as a finite sum f = ¥, f, where each « has
the form o = (3, . .., a,,) for non-negative integers oy, ..., withay + -+ o,y = k
and where f, € Fo(y2,...,Ym) is the multi-homogeneous component of f corresponding
to a. Then 74 is the product of the automorphisms 7z, . Hence Py is generated by those 7;
for which f € F(y2,...,ym)w and f is multi-homogeneous.

For each u € F’' define £, € Eby £&,(v)) = y. + [y, ul,i = 1,...,m. Since F is
metabelian it follows that £,(w) = w+[w, u] for allw € F and so £, is an automorphism
with inverse €_,. (In fact, since [w, u,u] = 0,

Euw) =w+[w,ul /11 +[w,u,ul /2! + - - - = exp(ad u)(w)

and so &, is an “inner” automorphism.) Let O, = {0} C LE and for k > 3 let Q; =
{& :u € Fy_y} C IkE. 1t is easily verified that if k > 3, ¢ € AutF, u,uj,us € Fy_y)
and a € K, then ¢€,0 " = €40 Euy€uy = Euyru, @and a€, = &,,. Hence Qy is a KG-
submodule of I,E.

Let ® = K(sy,...,sn) be the free associative algebra (without identity) freely gen-
erated by variables sy,...,s, and let G act on @ in the obvious way. (Thus ® can be
identified with the tensor algebra on the natural KG-module N(1).) For k > 1 let @, be
the homogeneous component of @ of degree k. Furthermore let ®f;, be the subspace of
® ;) spanned by the elements of the form Y5 s, -5, where 1 <ij <--- < i <m
and o ranges over all permutations of {1,...,k}. (This may be identified with the space
of symmetric tensors of degree k.) It is well known and easy to prove that @f;, is a KG-
submodule of ® isomorphic to £, (the k-th symmetric power of N(1)). But ) = N(k)

(see, for example, [10, p. 54]). Thus d)fk) =~ N(k) as KG-module.

For each element A(sy,...,s,) of <I>(*k‘,), k > 2, define n, € ILE by n,(y,) = y, +
yh(adyy,...,ady,), i = 1,....,m. Fork > 2let Ry = {ij, : h € ®j_, } C LLE. 1t
is easily verified that if g € G, h,h;,hy € <D(*,H) and a € K, then gnhg*' = Ngth»

T, Thy = Tln,+h, and aily, = 7., Hence Ry is a KG-submodule of ILE.
PROPOSITION 3.5. [n the above notation let k > 2.
(i) LE = Py & O @ Ry. Furthermore Py = {0} form = 2 and P, = (det) ' @k
N(k,2,1™ 3 form > 3, 0 = {0} and Qy = N(k — 2,1) for k > 3, and
R, = Nk —1).
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(ii) LA = P, ® Q.

PROOF. (i) We apply an idea from the proof of [9, Theorem 2.2]. Assume thatk > 3
and m > 3. (The other cases are treated similarly.) By Proposition 1.4, we can write
ILE = N; @ N, @ N3 where N; = (det)”! ®¢ N(k,2,1"3), N, = N(k — 2,1) and
N3 = N(k — 1). Suppose f € F(y2,...,Ym)w Where f is multi-homogeneous of multi-
degree (0, a2, ..., ay) in y1,y2,...,ym. Then it is easy to verify that y(7s) has the form
S, fieq wherefy € Qu_yy,i =2,...,m,and where f;; = 0if @, = 0 and f;; has multi-
degree (0,00,..., 01,0 — 1,01, ) if 0 > 0. It follows that p(7y) € Sj_,,
where 3 = (—1,@a,...,a,). Thus, by Lemma 3.4, 7+ € (LE)® = N/ ® N & Nj. But
N‘; = Ng = {0} since the first co-ordinate of 3 is negative. Thus 7y € Ny and so Py C Nj.
Since N is irreducible and P, # {0}, P, = N.

The map F_;) — Oy defined by u — €. is a non-zero KG-module epimorphism,
and F_) = N(k — 2, 1) by Proposition 1.3. Thus Oy = N(k — 2, 1). Similarly, using the
map O, — Ry, h+— i, we obtain R, = N(k—1). It follows that LE = Py & Oy © Ry

(i1) By Proposition 2.6, ;A is a KG-submodule of [;E. Since the 77 and the £, are
automorphisms, Py ® Q¢ C [A. Let h = si~! € ®}_,,. Thus n,(y)) = y, +y,(ad* " y))
for all i and

pOm) = 1+ 472 ((—nein +t1€2) + - -+ (—tweim + 1€mm)).
Since 7, € Ry it is enough to prove that 7j, ¢ I;A. Suppose to get a contradiction that
in € LA. Then 1, =, ¢ for some ¢ € [,A. Hence u(n;) = u(¢) (mod M¥) and the
determinants of j.(n;,) and 1(¢) are congruent modulo Q®. But
detp(ny) = A+ T =1+@m— DA (mod QW)

Hence det u(¢) = 1 + (m — DA (mod Q%). On the other hand, by Proposition 3.2,
1(¢) is invertible and so det p(¢) is a unit of Q. This is a contradiction.

By Proposition 2.6, I, T is a KG-submodule of I;A, k > 2. Our main task now is the
calculation of these submodules.

REMARK 3.6. LT = P, = LA forall m > 2, since Q; = {0}. When m = 2,
I,T = {0} for all k > 2, since IT = {1}.

LEMMA 3.7. LT =TLAforallm >3,k >4.

PROOF. By Proposition 3.5, [A = Py & Qi and P; and Qy are irreducible KG-
modules. Since P, C LT it suffices to show that Oy N I,T # {0}. Define x; € I,T
by

X1) = ys+yd ), i) =y (#£3).

Then, by an easy calculation, u(x1) = 1 —#2tye13+#5 ' ey3. Define g; € G by g1(y1) =
Y1 +YB, gl()’,) =W (l ?é 1) Then

weixigr) = eai(l = g1 *nes + giti Heas ) gy
= (I +e3)(1 — (1 + 1) ey + (11 + 1) ea3) (1 —e31)

k=2
=1+ (t1+ 1) (nlen +e31 — €13 — e33) + (1 + 13)(e23 — e21)),
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gixig ) = (1 +13) 2(1‘2(611 +e3 —ei3 —e33)+ (1 +13)(e3 — €21))

If W 1s any KG-submodule of M, ;) and we write W as the sum of weight spaces
W = oW then W* C M(;_,, for all & Thus the weight components of an element w
of W coincide with those obtained by regarding w as an element of M,_,

The component of p(g1X18, 1y of weight (k—2,1,0, ,0)n My 4 1seasily calcu-
lated to be

A (ni(taen — hex +13ea3 — thexs) + (k — 2)t3(—hrer3 +11e23))
Thus, since j1;(g1x18, ') € (I T), there exists ¢, € [T such that
(G = 1 (1(t2en — tiea + 13ea3 — taes3) + (k — 2)ta(—tre1s + hexs) )

Similarly define x2 € I, T by

X23) = y3 +ya(ad® Py)ady), xa00) =y @ #3),

and g2 € G by g2(y2) = y2 + y3, g220) = y, (t # 2) By considering the component of
i(g2x28, ') of weight (k —2,1,0, ,0), we find that there exists ( € I;T such that
Q) = 1y *(na(ne12 — hen — 3ers + 1iex3) + 13(—hers + hex3))

Simularly define 7 € LT by 7(y;) = y; + [y2, 3], 7(y.) = y. ¢ # 1) and g3 € G by
g3(n) = y1 +y2, &3(») = y, (1 # 2) Consideration of the component of p(g37g4 " of
weight (0,0,1,0, ,0) shows that there exists 0 € [T such that p2(0) = t3e)) —t€31 —
t3e22 + tres; Finally define (3 € i1 T by G(y3) = y3 + ya(ad® > y1), GO) =y (1 # 3)
Thus pi 1(G) = 8 *(—nei3 +tiex)

We apply Proposition 3 3 to the subalgebra £(T) of L(E) Letw; = o '¢; '0¢3 Then
wy € Ik T and

() = [2(0), e 1(G)]
= t’f 3(t%e21 —hhey + 13612 — hihey — hitye|y — Hitzexs + 2t hes3)

By Proposition 2 6 there exist w3, wo € ;T such that

1
fr(ws) = ;_—3(,Uk(CI) — Q) + wn)) = 8 “na(—hers +tex),
pwo) = —(uC) + (@) — kpa(ws)) = 8 P (t1(—rerr + 11e21) + ta(—tern + 1ex))

By replacing y3 with y, (3 < p < m) in the above calculation we obtain automorphisms
wp € I T such that

prlwp) = A 3l‘p(—tzelp + teyp)
Let w = wowiwsy wm Then w € I, T and
e N k3
(W) = p(wo) + D pwy) = D 1) “ty(—taerp + tieap)
p 3 p 1

Hence p(w) = p(€,) where u = —yz(ad" 2yl) Thus @ = &, 1s a non-zero element of
o NI,T
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LEMMA 3.8. LT = LA forall m > 4.

PROOE.  Asin Lemma 3.7 it is enough to show that Q3 NI T # {0}. Define 01,0, €

DT by 01(ys) = ya + [y1,y3], 1(v) = v, (i # 4), 02(33) = y3 + V2, 74], 0200) = w
(i #3). Thus

wa(o1) = e — tiezs, pa(02) = tser3 — hess.

Let Y, = o705 '0102. Then | € ;T and
u3(1) = [u2(op), pa(02)] = ta(—tze13 +t1e33) + t1(tse24 — treqq).

Analogously, define py, p» € LT by p1(ys) = ya + [y2,y31, p1() =y (0 # 4), p2(y3) =
yi+ 11, yal, p2(0) = ¥, (i # 3). Let Y2 = py'py ' pipa € GTand ¥y = v,Y; ! € I3T. Then

u3(V2) = ti(—tex3 +1re33) + ta(tsers — tieqs),
13(Y) = p3(V1) — u3(V2) = t3(—te3 + t1e23) + ta(—tregs + tyexs).

Now we make use of (;,(; € [3T as obtained in the proof of Lemma 3.7, but with k = 3.
Let ¢y = (1 € I;T. Then we have

13(G1) = ti(hen — tiea) + 13e23 — hess) + 13(—her3 + 1 e3),
13(G2) = ey — tiexn — t3e13 + t1e33) + 13(—teg3 + ten3),

(1) = ti(taey — tiex)) + t(trern — texn) — 313(tre13 — t1e23).

Similarly there exists 1, € I37T such that

u3(V2) = ti(t2e1) — tiez)) + ta(tre12 — tiexn) — 3ta(tre14 — tiexs).

Thus there exist wy, w3 € [3T such that

1
p3(wo) = §<—M3(¢’|) — u3(2) + 3u3(0)) = ti(—teny + tiear) + (—hen + hex),

1
p3(ws) = g(lﬂ(wo) +13(¥1)) = t3(—ters + hiex).

The proof can now be completed as in Lemma 3.7.

LEMMA 3.9. Form = 3, the Lie algebra L(A) satisfies [[LA,LA] = P3 C LA.
#

PROOF. By Remark 3.6, LA = P, and, by Proposition 3.5, 34 = P3® Q3, where P3
and Qs are non-isomorphic irreducible modules. Since [P, P,] is a submodule of 1A it
suffices to show that [P,, P2] does not contain Q3 and [P,, P2] # {0}. Since Q3 = N(1?)
we have Q{""? # {0}. Therefore it suffices to prove that {0} # [Py, P19 C P;. We
shall work in S(j) and Sz (using Proposition 3.3 and Lemma 3.4). Let V = [1x(P2) =
p2(hA) C Sq),

C = [13([P2, P2]) = [[12(P2), fia(P2)] = [V, V] C 8oy
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and D = [i3(P3) C S@). We wish to prove that {0} # C""'9 C D.
Since V = P, & (det) ™! @k N(2%), V* # {0} only for

ae{(-1,1,1),(1,-1,1),(1,1,—-1),(1,0,0),(0, 1,0), (0,0, 1)},

when V? is one-dimensional. It is easy to verify that, for all ar, 3, [V, V?] C [V, V]**7,
where a + § is the componentwise sum. But C = [ V¥, 3 V%] = 3| VY, VA]. Thus

C»(l,l,()) — Z [VC(, Vﬂ] — [V(l,l‘fl)’ V(0,0.I)J + [V(I,0,0) V(O,],O)J.
a+B=(1,1,0)
Let 7, vy € LA be defined by m(y3) = y3+[y2, y11, 7(0) = y, (i # 3), ¥(y2) = y2+[y3, y11,

Y() =y (i # 2), and let g € G be given by g(y3) = y2 +y3, g(v) = y (i # 3). Let
6, = m)'gyg~! € LA. Then, by easy calculations,

pa(m) = —heiz+tiens, pa(0)) = —heir +tiexn + €13 — tes.
Similarly there exist 8,, 63 € I,A such that

U2(02) = —tzex3 + ez + ey — hoeyy,

p2(03) = —ties) + ey + ez — tzen.

It follows that V(11— yt1.0.0) yA0.10) ' y(0.0.D) are spanned by the elements p2(7), p2(61),
w12(02), p2(83), respectively. Thus ch10 g spanned by ¢; = [ua(m), u2(63)] and ¢; =
[p2(61), 112(82)]. By direct calculation,

c1 = ti(hey — tiear) + a(—their + tiexn) + hitzer3 + titzey — 2t 1hess,

2 = ti(—tey +tex1) + h(—then +t1exn) + 3t3(1e13 — t1e3).

In particular C(10) £ {0}.

Now we use x1,X2,¢1,$ € I3T as in the proof of Lemma 3.7 (but with k& = 3). It
is easy to see that X1, X2 € P3. Thus pus(xi), p3(x2) € D. Because p3((p), u3(() are
weight components of p3(x1), ©3(x2) we obtain u3((;), £3(¢2) € D. It is easy to see that
c1 = u3(G) — u3(Q) and ¢ = —p3(()) — p3(G). Thus C10 C D, as required.

LEMMA 3.10. Form =3, T = P; C GA.
#

PROOF. As we saw earlier, IT is generated by the automorphisms grfg" where g €

G = GL3(K), f isahomogeneous element of F(y,, y3)' and ¢ isdefined by 7/(y1) = y1+f,
T7r(2) = y2, T7(y3) = y3. We have pu(1y) = 1 + fre21 + fzez; where fo,f3 € K[tz,13] C
Kit1, 12, 13]. Hence (u(rp) — 1) = 0. Also, for all g € G,

werg ) = g(1+g(fen +g(fyen)g "

Hence (p,(gffg") - 1)2 =0.

Let ¢ € IT. Since ¢ € IT, there exist homogeneous elements f1, ..., f, of F(y2,y3)
and elements g1, ..., &, of Gsuchthat ¢ = ¢, - - ¢, where ¢, = g8, i=1,....n.
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(Note that (grrg™') ' = gr_sg~".) Write u(¢,) = 1 +u,, i = 1,...,n. Thus each u, is
homogeneous of degree at least 1 and

(@)= L+u) - (L+u) =1+ @+ +u)+ Y wy (mod MY).
1<y

Let those u, of degree 1 be vy, ..., v, (taken in the same order as in uy, ..., u,) and let
those u, of degree 2 be wy,...,w,. Then

)= 1+ + V) + (W +-+wy)+ > vy, (mod MP).
1<J

Since ¢ € IT, u(¢p) =1 (mod M@). Thus v; + -+ - +v, = 0 and

p3(@) = (wy+--- +Wq) + Z ;.
1<j

Since (p(qf),) — 1)2 = 0 for all i we have v% =...= vg = 0. Thus

0=+ +v)" =YWy +vw),

1<y
1
thvj = E Z[VH Vj]y
1<y 1<j
1
//'3(¢) = (Wl +- +Wq) + E Z[Vh Vj]-
1<j
By the definition of wy,...,wy, vi,...,v, we have wy,...,w, € 13(P3)and vy, ..., v, €

f2(P2) = fia(IbA). Thus, by Lemma 3.9, [vi,v,] € fi3(P3) for all i,j. Hence p3(¢) €
[3(P3). This holds for all ¢ € 13T and so T C Ps3. The result follows since P3 C LT
and 03 # {0}.

‘We now obtain the main result of this section.

THEOREM 3.11. Let T be the group of tame automorphisms of the free metabelian
Lie algebra of finite rank m > 2.
(i) Form > 4, T is dense in A = AutF.
(ii) Form = 2 and m = 3, T is not dense in A and so F possesses non-tame auto-
morphisms.

PROOF. (i) By Corollary 2.9 it suffices to show that L(T) = L(A); thatis, I,T = LA
for all k > 2. This follows from Remark 3.6, Lemma 3.7 and Lemma 3.8.

(ii) It suffices to show that £(T) # L(A). For m = 2, L(T) = {0}, by Remark 3.6,
and L(A) # {0} since Q3 # {0}. Form = 3, L(T) # L(A) by Lemma 3.10.
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