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Abstract

Strain, temperature and strain rate are crucial factors governing the development of crystallo-
graphic preferred orientations (CPO) in ice. To better understand how CPO patterns change
in response to these variables, we performed quantitative analyses on neutron diffraction data
between 2010 and 2019, collected in situ during uniaxial compression experiments on deuterium
ice. At strains >10% and temperatures <−10°C, the c-axis pattern switches from a single max-
imum (‘cluster’) to small circle (‘cone’), both oriented parallel to shortening. The diameter
and mean width of the cone pattern decrease as strain and/or strain rate increases. Prismatic
axis (a and m) patterns are characterised by great circles parallel to the pole figure margin and
may be distinguishable from the patterns in ice deformed under simple shear. While strain
has the main influence on the degree of preferred orientation (or CPO ‘strength’), both tempera-
ture and strain rate have minor influences, which limits the extent to which CPOs can be used to
measure strain. As cluster patterns can be observed in the c-axes of ice deformed under both pure
and simple shear settings, this may complicate interpretations of flow geometry in terrestrial ice
unless the prismatic axis patterns are also considered.

Introduction

Flow behaviour in terrestrial ice sheets is intimately linked to the mechanical properties of the
ice mass, which in part are governed by crystallographic preferred orientations (CPOs; also
described in the literature as ‘fabric’, ‘lattice preferred orientation’ or ‘texture’) in the polycrys-
talline framework. In addition to CPO development, the flow rates of ice sheets are enhanced
by changes in grain size, the magnitude of strain and temperature (Budd and Jacka, 1989).
Many studies of ice-sheet mechanics assume that differential changes in viscosity are primarily
due to CPO development (Azuma, 1994; van der Veen and Whillans, 1994; Morland and
Staroszczyk, 2009; Hruby and others, 2020). Indeed recent deformation experiments by Fan
and others (2021a) suggest that CPO development predominantly governs strain weakening
in ice samples. Modelling works from Rathmann and Lilien (2021) show enhancement
(which they attribute solely to CPO) must be accounted for in order to accurately infer
basal friction of ice masses. In order to understand the constitutive flow laws in a viscously
anisotropic material such as natural water ice (Duval and others, 1983) and its deuterium
(D2O) analogue (Wilson and others, 2020) there are synergies if we compare CPOs identified
in drill cores (Gow and others, 1997; Thorsteinsson and others, 1997) with observations from
laboratory experiments.

It is well accepted that precipitation of snow on ice-sheet surfaces induces a vertical flatten-
ing at upper regions of the sheet, with the ice deforming mainly by compression along the
vertical direction (Alley, 1988). At greater depth, the deformation changes toward bedrock-
parallel flow (Budd and Jacka, 1989; Hudleston, 2015). In the majority of ice cores drilled
from the surface to intermediate depths there are corresponding changes in the CPO of the
(0001) or ‘c-axis’ in ice, from a randomly oriented distribution at the surface to a non-random
or ‘preferred’ orientation at depth (Fig. 1) (Gow and others, 1968; Gow and Williamson, 1976;
Gow and Weeks, 1977; Gow and Kohnen, 1978, 1979; Kohnen and Gow, 1979; Hudleston,
1980; Weeks and Gow, 1980; Faria and others, 2014). The spatial variation in CPO patterns
in ice cores are generally in good agreement with our wider understanding of ice-sheet
mechanics at depth, and are therefore considered to be a promising macroscopic flow indicator
(Alley, 1992). When combined with the ice microstructure and independent temperature mea-
surements, these CPO patterns may be used to estimate the rheological changes in the flow of
ice sheets (Gow and others, 1997; Thorsteinsson and others, 1997; Azuma and others, 1999),
or to decipher historical flow events (Dansgaard and others, 1969; Thwaites and others, 1984;
Budd and Jacka, 1989; Thorsteinsson and others, 2003; Donoghue and Jacka, 2009; Wilson
and Peternell, 2011; Lilien and others, 2021). The Schmid factors can also be incorporated
into a CPO-based flow law (Azuma, 1994).

There are, however, some variations in the c-axis CPO patterns that form. In many cases,
the c-axis poles may orient parallel with the loading axis to form a cluster (Herron and others,
1985; Gow and Meese, 2007; Faria and others, 2014). In other cases, a small circle of poles
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about the axis of ice loading, typically referred to as an ‘open
cone’ or ‘cone’, will develop at greater depths (Gow and
Williamson, 1976; Thorsteinsson and others, 1997; Azuma and
others, 1999; Faria and others, 2014). Other workers have
observed a great circle oriented normal to shortening or ‘vertical
girdle’ (Lipenkov and others, 1989; Wang and others, 2002). The
variations in the c-axis CPO patterns, and the depth at which they
occur, are by no means systematic across the range of ice cores
studied (Fig. 1; Faria and others, 2014). Moreover, the empirical
evidence from the natural ice record offers only the end-product
and cannot inform us of the physical conditions that controlled
the observed pattern, let alone an explanation for the differences
in CPO patterns across various ice cores. This means that, in gen-
eral, more work is required to fully understand the array of CPOs
in terrestrial ice, and the physical conditions that influence the
commonly observed patterns (Fan and others, 2021a).

Controlled experimental deformations in the laboratory have
provided important insights into the physical determinants for
these patterns (Kamb, 1972; Bouchez and Duval, 1982; Wilson,

1982; Jacka and Maccagnan, 1984; Montagnat and others, 2015;
Qi and others, 2017; Wilson and others, 2020). Historically, the
majority of studies have employed uniaxial compression experi-
ments, where the compression direction is parallel to the sample
shortening axis (Fig. 2b). Most of these studies have found that,
when deformed, the initially random c-axes of ice samples will pref-
erentially align in a cone centred around the compression axis
(Wilson, 1982; Piazolo and others, 2013; Qi and others, 2017).
Additional insights into c-axis CPO development with a cone-like
distribution, in a pure shear environment, are also provided by
the power law models of Azuma (1994), which considers the
Schmid factor for basal slip in ice crystals as part of its calculations.

When ice samples are uniaxially compressed at temperatures
below −20°C and at strains between 8 and 20%, characteristic
of many terrestrial ice environments, the c-axis cones become
tighter and may often take the form of a cluster (Fan and others,
2020, 2021b). A similar cluster pattern may emerge with increased
stress (Qi and others, 2017). The transition from cone- to cluster-
shaped c-axis distributions suggests many ice basal-planes rotate

a

b

Fig. 1. Common CPO patterns in ice. (a) Empirical CPO observations from ice cores (001 axis only). Modified from Faria and others (2014). (b) Synthesis of common
CPO patterns from both natural and experimental studies (refer text for references).
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from easy (basal) to hard-glide slip orientations (Wilson and
others, 2014).

Combining experimental and natural CPO observations, there
is some general consistency in the c-axis patterns but uncertainty
elsewhere (Fig. 1b). Firstly, ice that is experimentally deformed
under simple shear conditions typically develop a cluster of
c-axes aligned parallel with shortening axis at high shear strains
(γ > 2); as they do in low-temperature uniaxial deformations
(Bouchez and Duval, 1982; Journaux and others, 2019). At
lower strains, a second maximum is commonly observed at a
low angle to the shear plane, together forming a ‘double-cluster’
c-axis pattern (dashed lines in Fig. 1b) (Bouchez and Duval,
1982; Journaux and others, 2019; Qi and others, 2019). The
angle between these two clusters has been shown to decrease
with higher strains (Qi and others, 2019). In the former of
these cases, there is an ambiguity when interpreting the cluster-
bearing c-axis patterns observed in ice core records, given that
experiments suggest they form under low-temperature pure
shear or high strain simple shear (Fig. 1a).

A second uncertainty is that it is unclear whether the c-axis
CPO patterns previously interpreted as cones in ice cores are in
fact collections of clusters oriented about the shortening axis or
‘multi-maxima’ (Gow and Williamson, 1976; Tison and
Hubbard, 2000; Monz and others, 2021). Both these circum-
stances mean that it may be difficult to interpret the deformation
histories from the c-axis CPO patterns observed in ice cores and,
moreover, to draw meaningful insights about ice mechanics.

Our incomplete understanding here is due in part to the limita-
tions of methods in previous studies. Many historical studies in ice
cores employed a universal stage to obtain measurements of c-axis
orientations. As this procedure is time- and labour-intensive, and
often performed on coarse-grained samples, only a small sample
of orientations were collected per study (Gow and Williamson,
1976; Gow and others, 1997; Thorsteinsson and others, 1997).
As a result, the maximum tends to be over-estimated and hard
to quantify. Furthermore, there is no information on other import-
ant crystal axes, such as the prismatic (a and m) axes, which may
also be important kinematic indicators (Schmid and Casey, 1986).
Contemporary methods, such as electron backscatter diffraction or
‘cryo-EBSD’ (Prior and others, 2015), are capable of producing
much larger datasets, while also measuring the complete crystal
orientation and the grain microstructure. However, there remains
some limitation when studying coarse-grained ice samples, which
is a common characteristic of high-temperature (>−10°C)

deformations where grain boundary migration is a dominant
recrystallisation mechanism (Monz and others, 2021).

Experiments involving in situ neutron diffraction offer a solu-
tion. This bulk technique allows non-destructive measurement of
textures as a function of applied load while acquiring 3-D data in
samples up to 250 cm3 in volume. The technique can therefore
return CPO data of high-statistical quality, even from very coarse-
grained samples (Wenk, 2006; Hunter and others, 2017b).
Unfortunately, combining deformation experiments with in situ
neutron diffraction is time-intensive and only a small number of
individual samples can typically be measured within the project
timeframe. However, by combining data from multiple studies, pro-
vided that the experimental set-up is consistent, we can leverage the
strong sampling power of the neutron diffraction technique, while
gaining insights about the sensitivity of ice, in terms of its CPO pat-
tern, to a wider array of strains, temperatures and strain rates.

D2O ice is used as a proxy for ice because of its transparency
for neutrons, which is not the case for H2O. Single-crystal studies
have found no significant structural difference between D2O and
H2O (Peterson and Levy, 1957) and both materials have similar
mechanical properties and deformation behaviour (McDaniel
and others, 2006; Middleton and others, 2017).

In this contribution, we combine and synthesise nearly a dec-
ade of existing experimental data by performing detailed quanti-
tative analyses of the CPO patterns. The data presented here is a
secondary analysis of data from coupled in situ deformation and
texture diffraction experiments performed at the Australian
Nuclear Science and Technology Organisation (ANSTO) in
Sydney, Australia between 2010 and 2019. Our primary aim is
to investigate the physical conditions that lead to cluster and
cone pattern development in the c-axis during uniaxial compres-
sion of ice. At a high level, we aim to strengthen the gap between
experimental and natural insights of these common c-axis topolo-
gies, and the physical conditions that influence their development.
In particular, we will emphasise how the findings inform the
interpretation of ice CPO patterns in terrestrial ice.

Methods

Experimental deformations

Most data presented in this contribution have been published
elsewhere (Piazolo and others, 2013; Wilson and others, 2019,
2020), but are briefly described here for context. Cylindrical

a b

Fig. 2. (a) Experimental set-up for combined axial com-
pression deformation and in situ CPO acquisition using
neutron diffraction. (b) Orientation of D2O samples dur-
ing deformation experiments. Red arrows signify the
shortening axis.
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samples of D2O were deformed in an Instron 100 kN load frame
while in situ neutron diffraction measurements were being per-
formed on the residual stress diffractometer KOWARI at
ANSTO (Fig. 2a) (Kirstein and others, 2009). All experiments
were unconfined and conducted under uniaxial compression
loading conditions. In all cases, neutron diffraction data were col-
lected after the deformation experiment using a two-circle
Eulerian goniometer. All data used in this study represent the
final microstructure of the deformed sample.

The samples investigated in this study are composed of poly-
crystalline D2O ice prepared using the technique described by
Wilson and others (2019). The average length and diameter of
D2O samples were ∼3.2–4 cm × 2.5 cm for a length to diameter

ratio of ∼1.5 to 1 (Fig. 2b). The testing took place in a chamber
that controls the temperature to within ±0.2°C.

The initial dataset comprised of 54 samples (Table 1). Three
constant displacement rates and starting strain rates were used
across the experimental data: 1 × 10−5 s−1 (‘fast’), 2.5 × 10−6 s−1

(‘medium’) and 6.0 × 10−7 s−1 (‘slow’). The temperatures ranged
from −3°C to −20°C, and strains ranged from 0 to 40% shorten-
ing. The melting temperature (Tm) of D2O ice is +3.8°C. This
means that experimentally deforming D2O in a temperature
range of −10°C to −1°C (0.92–0.99Tm) corresponds to a H2O
ice temperature range of −13.8°C to −4.8°C (0.95–0.986Tm).
The temperature and strain rates used across these experiments
were chosen due to their approximation with natural ice

Table 1. Quantitative summary of deformed ice sample characteristics

Sample Temp. °C Strain rate s−1 Strain

Second
phase
content CtC

Cone
colatitude°

Pattern
observed J-index

Texture
entropy Eigenvalue 1 Eigenvalue 2 Eigenvalue 3

13_17 – – 0.00 1.43 66 Cluster 1.0067 −0.0035 0.3224 0.3349 0.3427
13_24 – – 0.00 1.43 84 Cluster 1.2038 −0.0801 0.3926 0.3261 0.2813
MD14 −7 1.00 × 10−5 0.05 1.20 54 Cluster 1.0058 −0.0031 0.3311 0.3283 0.3406
MD21 −7 1.00 × 10−5 0.05 1.02 40 Cluster 1.0086 −0.0044 0.3577 0.3194 0.3229
13_32B −7 1.00 × 10−5 0.10 1.21 25 Cluster 1.034 −0.0169 0.3895 0.3081 0.3025
13_26 −10 1.00 × 10−5 0.10 1.17 24 Cluster 1.0487 −0.0245 0.2943 0.3084 0.3973
13_S1 −10 1.00 × 10−5 0.10 0.00 0 Cluster 1.2043 −0.0944 0.2631 0.2669 0.47
D5-2 2.50 × 10−6 0.00 0.2 1.16 66 Cluster 1.0192 −0.0096 0.3464 0.3344 0.3192
13_22 −10 2.50 × 10−6 0.10 1.13 24 Cluster 1.0337 −0.0169 0.392 0.3024 0.3056
MD8 −7 2.50 × 10−6 0.10 1.05 23 Cluster 1.0227 −0.0111 0.3116 0.3081 0.3804
GG_04 −7 2.50 × 10−6 0.10 0.4 1.05 38 Cluster 1.0149 −0.0077 0.3619 0.3194 0.3187
D2-2 −7 2.50 × 10−6 0.20 1.73 22 Cluster 1.3046 −0.1582 0.4843 0.2549 0.2608
FFC_03 −7 1.00 × 10−5 0.10 0.4 0.94 27 Cone 1.0746 −0.0374 0.4133 0.2942 0.2925
MD12 −7 1.00 × 10−5 0.10 0.92 35 Cone 1.2194 −0.113 0.4653 0.2677 0.267
13_30 −3 1.00 × 10−5 0.10 0.00 36 Cone 1.2446 −0.1264 0.2615 0.2719 0.4667
MD15 −10 1.00 × 10−5 0.20 0.95 24 Cone 1.4218 −0.216 0.5214 0.2369 0.2417
FC_01 −7 1.00 × 10−5 0.20 0.2 0.94 24 Cone 1.3875 −0.1978 0.5147 0.2404 0.2449
MD23 −10 1.00 × 10−5 0.20 0.87 32 Cone 1.3744 −0.1982 0.5091 0.2438 0.2471
G_02 −7 1.00 × 10−5 0.20 0.2 0.78 37 Cone 1.1813 −0.0933 0.4476 0.2754 0.2769
CC_06 −7 1.00 × 10−5 0.20 0.2 0.00 34 Cone 1.4307 −0.2179 0.516 0.2446 0.2394
MD7 −7 1.00 × 10−5 0.20 0.00 28 Cone 1.8748 −0.4077 0.5778 0.2041 0.218
MD4 −7 1.00 × 10−5 0.20 0.00 37 Cone 1.6683 −0.2227 0.5078 0.2467 0.2455
MD22 −7 1.00 × 10−5 0.40 0.00 30 Cone 2.4356 −0.718 0.6552 0.1748 0.1699
13_21 −10 2.50 × 10−6 0.10 0.98 27 Cone 1.0882 −0.0446 0.4197 0.2922 0.2881
DH_28 −15 2.50 × 10−6 0.10 0.88 21 Cone 1.4029 −0.2079 0.5136 0.2392 0.2472
MDCC1 −7 2.50 × 10−6 0.10 0.2 0.87 36 Cone 1.1959 −0.1004 0.461 0.272 0.267
MDCC2 −7 2.50 × 10−6 0.10 0.2 0.84 36 Cone 1.2845 −0.1478 0.482 0.261 0.257
MD10 −7 2.50 × 10−6 0.10 0.81 32 Cone 1.3752 −0.1938 0.5085 0.2415 0.2499
MDG4 −7 2.50 × 10−6 0.10 0.2 0.00 37 Cone 1.3149 −0.1659 0.2539 0.2602 0.4859
13_20 −3 2.50 × 10−6 0.10 0.00 32 Cone 1.2584 −0.1288 0.4621 0.2643 0.2737
LDH_35 −7 2.50 × 10−6 0.20 0.1 0.97 37 Cone 1.1189 −0.0602 0.4277 0.2877 0.2846
GG_03 −7 2.50 × 10−6 0.20 0.4 0.94 35 Cone 1.1253 −0.064 0.4279 0.2878 0.2844
DH_26 −15 2.50 × 10−6 0.20 0.94 24 Cone 1.3875 −0.1978 0.5194 0.2342 0.2464
DH_24 −20 2.50 × 10−6 0.20 0.87 34 Cone 1.2745 −0.1435 0.4856 0.2548 0.2596
D1-7 −7 2.50 × 10−6 0.20 0.71 35 Cone 1.4142 −0.2161 0.508 0.2477 0.2443
FFC_04 −7 2.50 × 10−6 0.20 0.4 0.69 28 Cone 1.2352 −0.1156 0.4669 0.2645 0.2686
LDH_20_1 −7 2.50 × 10−6 0.20 0.66 39 Cone 1.3125 −0.1634 0.4582 0.2657 0.276
D1-5 −3 2.50 × 10−6 0.20 0.66 33 Cone 1.4087 −0.2123 0.5079 0.2528 0.2393
D5-5 −7 2.50 × 10−6 0.20 0.2 0.58 36 Cone 1.4946 −0.259 0.2369 0.2405 0.5226
MD9 −10 2.50 × 10−6 0.20 0.56 36 Cone 1.7278 −0.3853 0.5711 0.2166 0.2123
CC_05 −7 2.50 × 10−6 0.20 0.2 0.00 35 Cone 1.4786 −0.2401 0.5204 0.236 0.2436
FC_07 −7 2.50 × 10−6 0.20 0.2 0.00 31 Cone 1.3362 −0.1669 0.495 0.2503 0.2547
MDG1 −10 2.50 × 10−6 0.20 0.2 0.00 38 Cone 1.2694 −0.1409 0.4743 0.2618 0.264
D1-1 −1 2.50 × 10−6 0.20 0.00 36 Cone 1.8501 −0.4427 0.5726 0.2055 0.222
DH_06 −7 2.50 × 10−6 0.20 0.00 36 Cone 1.6709 −0.3461 0.5483 0.2327 0.219
DH_29 −7 2.50 × 10−6 0.20 0.00 36 Cone 1.8931 −0.4546 0.2088 0.2184 0.5728
LDH_20_2 −7 2.50 × 10−6 0.20 0.00 34 Cone 1.4316 −0.2275 0.5085 0.2478 0.2438
LDH_23 −7 2.50 × 10−6 0.20 0.00 37 Cone 1.9004 −0.4758 0.2061 0.2246 0.5693
MD3 −7 2.50 × 10−6 0.20 0.00 35 Cone 1.8107 −0.4268 0.5718 0.2132 0.215
MD13 −3 2.50 × 10−6 0.20 0.00 30 Cone 2.4246 −0.7083 0.6384 0.1823 0.1792
D5-3 −1 2.50 × 10−6 0.40 0.2 0.00 30 Cone 2.6468 −0.7613 0.6561 0.1693 0.1747
D5-4 −3 2.50 × 10−6 0.40 0.2 0.00 36 Cone 2.0912 −0.5252 0.2029 0.1948 0.6023
D5-1 −7 2.50 × 10−6 0.40 0.00 32 Cone 2.1427 −0.5429 0.6087 0.1972 0.1941
MD6 −10 6.00 × 10−7 0.10 0.00 37 Cone 1.4232 −0.2227 0.5078 0.2467 0.2455

Descriptions for the ‘cluster-to-cone ratio’ (CtC) ratio and ‘cone colatitude’ are provided in the Supplementary material. The J-indices of sample CPOs were calculated using the method of
Bunge (1982). Texture entropy calculations follow the method of Schaeben (1988). The eigenvalues of the c-axis orientation data were derived using the method of Scheidegger (1965).
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conditions (10−5–10−10 s−1) (Paterson, 1977 and references
therein; Vaughan, 1993).

Neutron diffraction measurements were performed in situ with
the deformation experiments. The method has been described in
detail elsewhere (Wilson and others, 2020). Pole figure data used
in this contribution are from diffraction measurements taken at
the completion of the deformation experiment. In all experi-
ments, three ice diffraction peaks were measured: (002), (100)
and (101). The raw diffraction data patterns were fit with
Gaussian peaks to remove background intensity and converted
to regular 3° × 3° pole figure mesh grids.

Secondary data analysis

Quantitative analysis of CPO topologies was undertaken using the
MTEX toolbox for MATLAB (http://mtex-toolbox.github.io/).
MTEX provides a versatile platform for detailed orientation distri-
bution function (ODF) and pole figure analysis, which allows pole
figures to be quantitatively analysed with high precision. The
three experimental pole figures were used to reconstruct the
ODF, using a ‘de Vallee Poussin’ kernel and 5° half width. In
this contribution, all pole figures reconstructed from the ODF
are equal-area, lower hemisphere projections.

For this study, we used a collection of novel parametric rou-
tines to analyse the characteristic topologies of the deformed spe-
cimens. These routines are briefly summarised here, and further
detail is provided in the Supplementary material. There exist a
number of measurements that quantify the degree of preferred
orientation in a given sample (hereafter described as the CPO
‘strength’). In this study, we used the J-index (Bunge, 1982), tex-
ture entropy (Schaeben, 1988) and orientation tensor
(Scheidegger, 1965) (Table 1). Both the J-index and texture
entropy functions calculate strength from the ODF, whereas the
orientation tensor is calculated from the eigenvalues of individual
axes in their spherical form (i.e. azimuth and plunge). Where
feasible, we conducted same-temperature and same-strain ana-
lyses to understand the effects of either parameter on the texture
strength.

We measured the variation in multiples of uniform distribu-
tion around the pole figure, using a modification of the ‘intensity
spectrum’ routines described by Hunter and others (2018). Here,
a line transect is made across the entire pole figure (e.g. E–W) at
azimuthal angles between 1 and 180°. This provides a 2-D cross
section of the multiples of uniform distribution, which can then
be visualised on a Cartesian plot. All transects (n = 180) were sub-
sequently averaged to define the mean intensity distribution
across the pole figure hemispheres. For the analysis of prismatic
axes, where a great circle parallel to the pole figure margin is
the common pattern (Fig. 2b), we also measured the mean inten-
sity spectrum along a transect oriented parallel with the great cir-
cle (i.e. about the Z-axis; Fig. 2b).

We computed two topological parameters for features com-
monly observed in the c-axes of ice CPO patterns. The cone
colatitude describes the mean plunge angle of cone girdle maxima
within the c-axis pole figure. The cluster-to-cone (CtC) ratio
defines the proportional difference in maxima intensity between
cluster and cone maxima in the c-axis pole figure. This is calcu-
lated by detecting two peaks from the mean intensity spectrum:
the cluster from peaks at >80° plunge (Pcluster); and the cone
from peaks at <80° plunge (Pcone). The ratio is subsequently cal-
culated as Pcluster/Pcone, which thus produces a means of distin-
guishing cluster-dominant (CtC > 1) and cone-dominant (CtC
< 1) CPOs. For cone-dominant samples, we quantified the ‘cone
diameter’, the mean angle between the two cone girdle centres;
and the ‘girdle width’, the mean angle between the start and
end of the girdle peaks.

Results

Changes in c-axis patterns

At strains >10%, or temperatures <−10°C, there is a switch in the
c-axis pole figure from a shortening-parallel point maximum (clus-
ter) topology to a shortening-parallel small circle (cone) topology
(Fig. 3). The transition from cluster to cone in the c-axes is a function
of both increasing temperature and strain. As shown in the mean
intensity spectra (Fig. 4), with increasing strains and temperatures,
the samples transit from a weak but dominant single peak at 90°,
or the centre of the pole figure, towards two well-defined peaks at
60° and 120°. These data signify the development of clusters and
cones in the c-axis pole figures, respectively. The characteristic pat-
terns are also captured by the CtC ratio (Fig. 4c). The transition
from clusters (CtC > 1) to cones (CtC < 1) has a negative relationship
with the CPO strength (Fig. 4c). In other words, cluster patterns are
weak whereas cones are well-defined.

Based on the CtC ratio, a total of 12 samples were identified as
exhibiting a cluster-dominant c-axis pattern. Common physical
characteristics of these samples include (1) very low strains (0–
10%); and (2) low-to-medium temperatures. No cluster-dominant
textures were found in samples deformed at temperatures higher
than −10°C. A cluster-dominant texture was found in one sample
deformed at 20% strain (D2-2). Only one of the cluster-bearing
samples contained second phases (GG_04: 40% graphite). In sam-
ples without second phases, there is an increase in the CPO strength
with the transition to cone-bearing c-axis CPOs (CtC < 1; Fig. 4c).

Great circles are present in the prismatic (110) and (100) pole
figures of all samples, regardless of whether the corresponding
c-axis pattern exhibits a cluster or cone. However, the great circles
are substantially more defined in cone-bearing samples (Fig. 5a).
The lack of variation in intensity around the great circles (i.e.
about the sample’s Z-axis; inset in Fig. 5b) demonstrates that
there are no characteristic anisotropies within the pattern (Fig. 5b).

Changes in CPO strength

To test the effects of different physical parameters on the CPO
strength, we filtered the dataset to exclude samples with second
phases, as it has been established that these can affect the resulting
texture strength and, given the purposes of the current study, may
produce ambiguous results (Song and Ree, 2007; Herwegh and
others, 2011; Hunter and others, 2016; Wilson and others,
2019). We also restricted our analyses to samples deformed at
fast and medium strain rate experiments, due to the limited num-
ber of samples deformed at slow strain rates.

Our results suggest that CPOs may become stronger with
increases in either strain, strain rate or temperature (Fig. 6), with
strain having the strongest influence on the CPO strength. The
slope of the data in Figure 6a suggests that, for every 10% increase
in strain the J-index value will increase by 0.3 for medium strain
rates, and 0.4 for fast strain rates (Fig. 6c). This demonstrates how
faster strain rates also play a role in increasing the CPO strength.

Changes in c-axis cone patterns

Using pure ice samples that qualified as cone-dominant (CtC < 1),
we investigated changes in the cone topologies as a function of the
various deformation conditions. Specifically, we quantified the
‘cone width’, taken as the mean angle across cone girdle; and
the ‘girdle width’, the mean angle between the start and end of
the girdle peaks (refer insets in Fig. 7).

In general, both the cone and girdle widths undergo minor
decreases as strains increase, but it is less clear how these aspects
of the cone are affected by temperature (Fig. 7). A slight decrease
in cone width was detected for faster strain rates, from an average
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angle of 70.8° in medium strain rates to 61.6° in faster strain rates.
There is a difference of 4.6° per girdle for a magnitude change in
strain rate, as thus the effect is negligible.

Discussion

From cluster to cone

Combining our data, we have found that, under uniaxial compres-
sion and with increasing strain, the c-axis CPO typically shifts
from a weak cluster to an increasingly sharper cone with narrower
width and thinner girdles. This c-axis pattern transition is in rea-
sonable agreement with previous experiments (Qi and others,
2017; Fan and others, 2020, 2021a) and the decrease in cone
width with increasing strain (Fig. 7) is also in agreement with
Fan and others (2020).

It is currently accepted that cluster patterns in the c-axes of
deformed ice are the result of recrystallisation dominated by lat-
tice rotation, whereas cone patterns are developed when recrystal-
lisation is dominated by grain boundary migration (Alley, 1992).
The recrystallisation mechanism, in turn, is controlled by the
physical conditions. The switch in deformation mechanism
from lattice rotation to grain boundary migration recrystallisation,
or from cluster to cone in the c-axes of ice, typically occurs due to

decreased stress (Qi and others, 2017) or increased temperature
(Montagnat and others, 2015).

The development of a c-axis cluster parallel to the shortening
axis at low strains was observed in partial pole figure data in
Piazolo and others (2013) and Wilson and others (2020). Recent
uniaxial deformation studies have also found that a c-axis cluster
may form at low temperatures. For example, Craw and others
(2018) observed clusters in several ice samples deformed under
uniaxial compression at −30°C, strain rates between 10−5 and
10−6 s−1 and at 20% strain. Fan and others (2020) also observed
c-axis clusters in ice deformed at the same temperature and strain
rate, but across a wider range of strains (8–20%). Data from our
study suggest that this cluster development is also possible at
warmer temperatures (>−10°C). However, it should be noted
that the strength of these patterns is very weak (Fig. 4c).

The question then arises as to why a cluster pattern typically
observed in low-temperature deformations was found in several
of our high-temperature uniaxial compression experiments,
which has been seldom recognised elsewhere (Kamb, 1972;
Budd and Jacka, 1989; Wilson and others, 2014). It is possible
that lattice rotation played a complementary role in some samples,
resulting in the formation of a cluster component. Due to its high-
statistical power, neutron diffraction is capable of detecting pole
figure components that may not be identified using other

Fig. 3. Characteristic c-axis CPO patterns for various strains and strain rates. The shortening axis is parallel to the pole figure centre. At zero and low strains, a
random distribution characterises the sample. With increased strain, the pattern changes from a weak cluster to a well-defined small circle parallel with the short-
ening axis, or ‘cone’. Point plots were constructed using random orientations (n = 10 000) from the ODF.
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methods, such as EBSD (Hunter and others, 2017a). Given the
very low CPO strength of cluster-bearing samples (J-indices: 1–
1.3) it is possible that these components have not been previously
recognised by other methods. Moreover, the low CPO strength of
these cluster-bearing samples implies that they are not as well-
developed as they are at lower temperatures (Craw and others,
2018; Fan and others, 2020). A more detailed investigation into
our subset of cluster-bearing c-axis CPOs will form the basis of
a future study.

From experiments to nature

We will now place these results in the context of terrestrial ice
bodies. A well-developed understanding of changes in ice CPO
patterns is important for: (1) interpreting the palaeoconditions
from CPO patterns in terrestrial ice; and (2) understanding the
rheology of natural ice masses. Furthermore, it is essential to
understand the sensitivity of CPO patterns to changes in physical

conditions, which provide a window into the critical strains and
temperatures involved in terrestrial ice flow.

In this section, we intend to provide an overview of the impli-
cations our results have for interpreting CPO patterns, and the
deformation implications, in terrestrial ice. Before embarking on
this discussion, it is helpful to separate two elements of the CPO:
(1) the pattern itself (cluster or cone in the c-axis); and (2) the
strength and definition of the pattern. If we are to group these phe-
nomena with respect to their determinants, the pattern observed in
the CPO is a function of the deformation regime (e.g. pure or sim-
ple shear) and the physical conditions; whereas its strength and
definition is only controlled by the physical conditions.

We first discuss the two patterns observed and their implica-
tions for interpreting ice flow in nature. We then focus on the def-
inition of the patterns, and the sensitivity of CPOs to changes in
physical conditions, with the aim of critically appraising their use
as indicators of the natural deformation conditions.

Resolving the ‘cone problem’
The transition from cluster to cone can occur due to both strain
and temperature (Figs 4a, b, respectively). This represents a shift
in the dominant deformation mechanism from the rotation of
basal slip planes to an orientation perpendicular to shortening
(dislocation glide), to pervasive consumption of grains with low
Schmid factors (migration recrystallisation; grain boundary
migration) (Hudleston, 2015; Qi and others, 2017).

The development of cones under uniaxial compression is con-
sistent with decades of deformation experiments (Jacka and Li,
2000; Wilson and Sim, 2002; Piazolo and others, 2013). Despite
this, relatively few cones are observed in terrestrial ice cores
(Faria and others, 2014). Moreover, the poor data quality for the
low number of cone observations raises the question of whether
these c-axis CPOs are in fact groups of clusters (‘multi-maxima’)
depicting several flow events (Monz and others, 2021). These
issues raise questions about the existence of cones in nature.

If we assume that the cones previously observed in ice cores
are, in fact, groups of clusters then this introduces further uncer-
tainties when trying to understand flow behaviour. Clusters are
the commonly observed pattern in ice samples deformed experi-
mentally under simple shear (Qi and others, 2019), so a tempting
interpretation is that cluster-bearing ice cores may reflect wide-
spread simple shear conditions. However, our data show that a
cluster-based c-axis CPO may also form under pure shear settings,
as observed in other uniaxial compression experiments (Craw and
others, 2018; Fan and others, 2020). Moreover, the data here adds
further ambiguity by demonstrating that cluster-bearing c-axis
patterns in ice deformed under pure shear are not restricted to
cold temperatures (<−20°C) as previously shown (Fan and others,
2020); this pattern may also form, albeit weakly, in under warmer
temperatures (>−10°C). There is, thus, an even wider range of
deformation conditions under which this pattern may emerge,
and it is possible that we are still far from understanding the
full spectrum.

In many cases, the CPO of ice cores is determined through
seismic reflection methods (Vélez and others, 2016; Vaughan
and others, 2017; Lutz and others, 2020) and only the c-axis
can be quantified. If we are to properly understand the flow
behaviour of natural ice masses, namely the deformation regime,
an additional pole figure should be inspected.

Our experimental data suggest that, when viewed in two dimen-
sions parallel to the pole figure margin, there is a common great
circle topology in the prismatic a- and m-axes (Fig. 5). Prismatic
axes in simple sheared ice, by contrast, exhibit strongly anisotropic
patterns, developing strong maxima that bear a relationship with
the shear direction (Fig. 1b) (Journaux and others, 2019; Qi and
others, 2019; Monz and others, 2021). These differences in the

a

b

c

Fig. 4. (a) Mean intensity spectra of samples along the or E–W (X) plane of the pole
figure (refer blue arrow in the inset), categorised as a function of strain. With increas-
ing strain, the samples transition from a weak but dominant single peak at 90° (clus-
ter), towards two well-defined peaks at 60° and 120° (cone). (b) Mean intensity
spectra of samples, following the same rationale as in (a) but categorised as a func-
tion of temperature. (c) CtC ratio compared with the CPO intensity (J-index).
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prismatic pole figures highlight a potential for better distinguishing
the deformation regime when a cluster-based pattern is observed in
the c-axis pole figure of natural ice specimens.

Another possibility for differentiating between pure and sim-
ple shear conditions is to apply the ‘crystal vorticity axis’ (CVA)
method of (Michels and others, 2015). Under this method, vorti-
city is determined by isolating the crystallographic orientations
inside individual grains and measuring their rotational distribu-
tion to calculate a dispersion axis. When measured across mul-
tiple grains in the sample the average dispersion axis, or
vorticity axis, can then be used to determine pure and simple
shear components. The CVA method has recently been applied
to grains in an ice core from Priestley Glacier and, combined
with CPO data, were used to resolve the deformation geometry
(Thomas and others, 2021).

It is also notable that, under simple shear conditions, the clus-
ter pattern developed in the c-axis pole figure takes a more ellip-
tical form compared to the more circular patterns developed
under pure shear (Fig. 1). Where shear strains are lower a second
maximum at a low angle to the shear plane may also be present
(Journaux and others, 2019; Qi and others, 2019). While these
subtle differences may not be distinguishable in the c-axis CPO
of ice cores, it is nonetheless an observation that may aid the
interpretation of data.

Effectiveness of CPO strength as a strain indicator
As with other plastically deforming minerals, such as olivine and
quartz, our ability to diagnose deformation events from their nat-
urally developed CPOs is still limited. CPO development is con-
trolled by a combination of physical or ‘extrinsic’ factors (strain,
strain rate, temperature) and ‘intrinsic’ factors (e.g. pinning
from second phases) (Hunter and others, 2019). A common
belief, though not confirmed unequivocally, is that there is a rela-
tionship between strain and CPO strength. Indeed, this relation-
ship has been observed in previous ice experiments (Kamb,
1972; Wilson, 1982; Journaux and others, 2019). In the high-
temperature and stress ice experiments presented by Fan and
others (2021a), CPO evolution is able to account for all the
observed weakening and not grain size evolution.

a b

Fig. 5. Characteristic prismatic (110) and (100), or ‘a’ and ‘m’, patterns in ice samples, plotted using mean intensity spectra. The blue arrows in pole figure insets
represent the directions from which intensity data were taken. (a) Mean intensity spectra for (110) and (100) collected E–W of the pole figure. In both pole figures,
the mean intensity spectra for cone samples (blue lines) exhibit two peaks close 0° and 180°, characteristic of a great circle at the pole figure margin. Mean intensity
spectra for cluster sample are flat, due to their weakness of the overall CPO. (b) Mean intensity spectra for (110) and (100) collected around the maximum in each
pole figure (about the sample’s Z-axis, as defined in Fig. 2b). In most cases, the mean intensity spectrum is flat, indicating no distinct anisotropies.

a

b

c

Fig. 6. Relationships between CPO intensity (measured by J-index) and changes in (a)
strain (temperature: −7°C), and (b) temperature (strain: 20%). (c) Sensitivity of J-index
to strain, based on slopes in (a). Two strain rates (fast: blue line; medium: red line)
are presented for comparison.
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It is therefore tempting to perceive CPOs as a reliable indica-
tion of strain, which could potentially be applied to ice and other
geological materials. Recent studies on crustal rocks (Larson and
others, 2017; Larson, 2018; Starnes and others, 2020) have sug-
gested that the strength of CPO patterns could be used as a strain
proxy for resolving shear zone discontinuities in mountain belts.
Experimental studies, where physical parameters can be con-
trolled, are useful for corroborating these claims.

In the analysis of the experiments presented here, it is demon-
strated that the increasing CPO strength, smaller cone diameters
and narrower girdles are mostly due to the strain conditions
across the experiments, which conforms with previous studies
(Hudleston, 1977; Montagnat and others, 2012). However, our
data suggest that temperature and strain rate also influence the
strength of the CPO pattern. In Figure 6c, for example, it is
shown that J-index values, a measurement of CPO strength, are
higher for samples deformed at faster strain rates. The influence
of strain rate on CPO strength in deuterated ice was also observed
in previous studies (Piazolo and others, 2013; Wilson and others,
2019). Across our analyses, we are unable to find a topological
change in the CPO that is exclusively sensitive to strain variations.
Another parameter not considered in this study is the role of
stress on the CPO strength. There is evidence that stress governs
the activity of strain-induced grain boundary migration, which in

turn strongly affects CPO development (Fan and others, 2021a).
The role of stress in CPO development is relevant to all geological
materials and should be the basis of future studies.

While strain clearly has the strongest influence on the CPO
strength, we cannot rule out the influences of temperature, strain
rate and possibly stress. This underlines the ambiguities when
attempting to use CPOs for deciphering deformation conditions.
As a result, certain caution must be taken when using the strength
of CPOs as a strain approximation in naturally deformed ice and
other geological materials.

Conclusions

We analysed data from coupled in situ D2O ice deformation and
texture diffraction experiments collected between 2010 and 2019
to investigate the physical conditions that lead to changes in
CPO patterns. Cluster patterns in the c-axis are typically observed
at warmer temperatures (⩾−10°C) and lower strains (⩽20%).
These CPOs, albeit low in strength, suggest that a small compo-
nent of lattice rotation may be active, but this should be con-
firmed with further microstructural analyses (e.g. EBSD).

Our data complement previous ice studies, which together
implies that cluster patterns can be observed in the c-axes of ice
deformed under both pure and simple shear settings. That the

Fig. 7. Influence of increased strain, strain rate and temperature on (a) girdle width and (b) cone width. Strain data are from experiments at −7°C. Temperature data
are from experiments at 20% strain. Refer insets for visual definitions of girdle and cone widths.
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same pattern can be developed in either deformation setting sug-
gests that there may be ambiguities when interpreting flow behav-
iour from c-axis CPO patterns in ice cores. However, we observed
that prismatic axis (a and m) pole figures share a common pattern
under pure shear, characterised by a girdle parallel to the pole fig-
ure margin with no clear anisotropies. This contrasts with the
highly anisotropic a- and m-axis patterns in ice deformed under
simple shear conditions, and thus the prismatic axes may be
more useful for deciphering between the two deformation regimes.

With increasing strain (⩾20%) and temperature (>−10°C) the
c-axis patterns change from a cluster to cone pattern. At higher
strains (40%) and faster strain rates (1 × 10−5) the c-axis cone dia-
meters are smaller and the cone girdles are narrower. While strain
clearly has the strongest influence on a given sample’s degree of pre-
ferred orientation, or ‘strength’, we cannot rule out the influences of
temperature, strain rate and possibly stress. This suggests that the
CPO strength is governed by a complex array of determinants,
and limits the extent to which CPO strength can be used to estimate
the deformation conditions in ice and possibly other geological
materials.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2022.95.
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