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A data-driven turbulence model for coarse-grained numerical simulations of
two-dimensional Rayleigh–Bénard convection is proposed. The model starts from
high-fidelity data and is based on adjusting the Fourier coefficients of the numerical
solution, with the aim of accurately reproducing the kinetic energy spectra as seen in the
high-fidelity reference findings. No assumptions about the underlying partial differential
equation or numerical discretization are used in the formulation of the model. We also
develop a constraint on the heat flux to guarantee accurate Nusselt number estimates on
coarse computational grids and high Rayleigh numbers. Model performance is assessed in
coarse numerical simulations at Ra = 1010. We focus on key features including kinetic
energy spectra, wall-normal flow statistics and global flow statistics. The method of
data-driven modelling of flow dynamics is found to reproduce the reference kinetic energy
spectra well across all scales and yields good results for flow statistics and average heat
transfer, leading to computationally cheap surrogate models. Large-scale forcing extracted
from the high-fidelity simulation leads to accurate Nusselt number predictions across two
decades of Rayleigh numbers, centred around the targeted reference at Ra = 1010.
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1. Introduction

Turbulent flows are characterized by the distribution of kinetic energy over a vast range
of scales. The nonlinearity in the Navier–Stokes equations ensures that large and small
eddies interact with each other, resulting in a wide range of dynamic flow features (Pope &
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Pope 2000). This process transfers kinetic energy from the large energy-containing scales
towards smaller scales, until the kinetic energy is finally dissipated by viscosity at the
smallest scales. The energy cascade towards the smallest scales yields a significant
challenge in computational fluid dynamics in the turbulent regime (Geurts 2003; Sagaut
2006). To accurately simulate the flow, the fluid dynamical model should resolve the scales
of turbulence down to the Kolmogorov length scale. A direct approach would then require
very fine computational grids which is often intractable even with modern-day computing
resources. A common way to alleviate the large computational requirements is by reducing
the numerical resolution at which an approximate solution to the flow is obtained. To
compensate for the lack of refinement of the computational approach, a model term is
subsequently added to the governing equations to represent the influence of unresolved
dynamics on the resolved components of the flow (Geurts & Holm 2002; Piomelli, Rouhi
& Geurts 2015; Rouhi, Piomelli & Geurts 2016; Geurts 2022).

In this paper, we describe how prior knowledge of flow statistics obtained from an
offline fully resolved simulation may be incorporated to construct an online high-fidelity
model for coarse numerical simulations. The proposed reduced-order model acts on the
numerical solution in spectral space, employing techniques from time series modelling and
data assimilation. This model is designed to yield accurate kinetic energy spectra, despite
the rather coarse flow representation. We demonstrate the capabilities of this data-driven
approach for two-dimensional Rayleigh–Bénard convection at high Rayleigh number.

Rayleigh–Bénard convection is a fundamental problem in fluid dynamics, describing
buoyancy-driven flows heated from below and cooled from above (Kadanoff 2001;
Ahlers, Grossmann & Lohse 2009; Kunnen, Geurts & Clercx 2009; Kooij et al. 2018).
In particular, thermal convection is meaningful in geophysical processes, such as in
describing convective processes in the atmosphere (Hartmann, Moy & Fu 2001) or the
ocean (Marshall & Schott 1999). The large range of scales present in turbulence is also
further affected by buoyancy effects. For example, a common phenomenon observed in
Rayleigh–Bénard convection is the formation of spatially coherent structures in large-scale
circulation (Ahlers et al. 2009) and, in larger spatial domains, the formation of thermal
superstructures (Stevens et al. 2018). However, a thin boundary layer exists near either
of the walls which becomes turbulent and increasingly thinner with growing temperature
differences between the walls, i.e. growing Rayleigh number (Kraichnan 1962; Zhu et al.
2018). Properly resolving the boundary layers requires large computational grids and
poses a challenge even in two-dimensional Rayleigh–Bénard convection (Zhu et al. 2018).
This stresses the conundrum of computational fluid dynamics, where one strives to find
a balance between simulating flows at modest computational costs without adversely
affecting the prediction of flow statistics.

Simulating flows at modest computational costs while retaining a high level of accuracy
is the aim of large-eddy simulation (LES) (Geurts 2003; Sagaut 2006). Instead of fully
resolving all length scales of the flow, a computationally less intensive approximation is
found by coarsening the flow description and simultaneously including a subgrid model
to accommodate the loss of explicit finer details in the dynamics. The coarsening is
accomplished by spatial filtering, which, through the specification of the filter width,
establishes the required level of refinement that should be included in the numerical
simulations. The subgrid model then approximates the effect the unresolved dynamics has
on the resolved scales, and serves as a closure for the filtered equations. This approximation
depends on both the adopted filter (Geurts & Holm 2003) and selected closure model, as
well as the choice of discretization and level of coarsening (Langford & Moser 1999; van
der Bos, van der Vegt & Geurts 2007; Beck, Flad & Munz 2019).
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With the increase of computational resources, direct numerical simulation (DNS) of
turbulent flows is achievable to an ever-increasing extent and may serve to generate data
from which LES models could be derived. This data-driven LES has been an active topic
of research in recent years. For example, the decomposition of unresolved dynamics into
fixed global basis functions and corresponding time series yields an efficient approach for
which only the latter needs to be modelled. Frederiksen & Kepert (2006) employed DNS
data of the barotropic vorticity equation to model the time series of spherical harmonics
as stochastic processes with memory effects, leading to accurate kinetic energy spectra
in coarse-grid simulations. Using proper orthogonal decomposition (POD), Ephrati et al.
(2022b) showed that applying corrections to coarse-grid numerical simulations may lead
to significant error reduction. Machine-learning methods have also been successfully
employed to find subgrid models (Beck et al. 2019), reporting improved results compared
to traditional eddy-viscosity models. Examples include using artificial neural networks
in two-dimensional decaying turbulence (Maulik et al. 2019) and convolutional neural
networks in three-dimensional homogeneous isotropic turbulence (Kurz, Offenhäuser &
Beck 2023), yielding improved energy spectra and turbulent fluctuation distributions.
Similar methods have also been applied to two-dimensional Rayleigh–Bénard convection.
A reduced-order model is developed by Pandey et al. (2022) employing machine learning,
where a combined convolutional autoencoder–recurrent neural network (Vlachas et al.
2020) is used to predict the local turbulent heat flux. Accurate probability density functions
are obtained for the local heat flux, while a dimensionality reduction to 0.2 % of the
original size is achieved for the turbulence data. In a similar vein, Heyder & Schumacher
(2021) study moist Rayleigh–Bénard convection. The dimensionality of the system is
reduced by applying POD to the high-fidelity data, after which the POD coefficients are
predicted using echo state networks. Here a good agreement of low-order flow statistics is
observed in the reduced-order model.

Incorporating data into numerical models to improve flow predictions is well established
in geophysical fluid dynamics, where data assimilation has been successfully employed
for several decades. The aim is to improve forecasting by minimizing the differences
between observed and modelled values while accounting for uncertainties (Ghil &
Malanotte-Rizzoli 1991; Daley 1992). In particular, continuous data assimilation (CDA)
aims to nudge the model solution towards an observed reference by means of a
feedback control term acting as external forcing (Azouani & Titi 2013; Azouani, Olson
& Titi 2014). This concept is also extended to linear stochastic differential equations,
arising as the continuous-time limit of the three-dimensional variational (3DVAR) data
assimilation algorithm (Blömker et al. 2013), which has been shown to successfully
steer coarse-grained numerical solutions of the two-dimensional Navier–Stokes equations
towards an observed reference solution. Additionally, the convergence of coarse numerical
solutions augmented by CDA to an observed reference solution has been proven
(Farhat, Jolly & Titi 2015) and shown numerically for two-dimensional Rayleigh–Bénard
convection (Altaf et al. 2017).

The purpose of this paper is to combine ideas from data assimilation with large-eddy
simulation. In particular, we derive a model term based on statistical quantities from
a reference high-resolution simulation and use this as a stand-alone model for coarse
numerical simulations. Our proposed method incorporates Ornstein–Uhlenbeck processes
in the evolution of the Fourier coefficients of the numerical solution, steering the solution
towards an a priori measured statistically steady state. Only three parameters need to be
defined for each Fourier mode, outlining the simplicity of the model. The parameters are
inferred from data, do not depend on the adopted spatial or temporal discretization and are
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defined such that the reference energy spectrum is closely reproduced in the coarse-grid
simulations. The resulting prediction-correction scheme is of the form of the diagonal
Fourier domain Kalman filter (Harlim & Majda 2008; Majda & Harlim 2012) with a
fixed prescribed gain. This identification enables future research that combines LES and
data assimilation. The same approach has been applied in a recent study of coarse-grid
modelling of the two-dimensional Euler equations on the sphere (Ephrati et al. 2023a),
where a decomposition of the vorticity field into spherical harmonic basis modes was
employed in the coarse-grid model.

The two main results reported in this paper are the following. First, the high-resolution
data at Ra = 1010 can be used successfully to define a forcing acting on large scales of
coarse numerical simulations. By improving the energy content in these forced scales
in coarsened simulations, an accurate estimate of the Nusselt number is obtained. The
forcing calibrated at Ra = 1010 is found to yield accurate Nusselt number estimates
across two decades of Rayleigh numbers, from Ra = 109 to Ra = 1011, without the need
to re-compute a high-fidelity simulation for each Rayleigh number of interest. Second,
combining forcing across all resolvable scales with prior knowledge of the heat flux in
the domain leads to an ‘offline/online’ approach through which an accurate and effective
coarsened model for online real-time predictions can be formulated. The model that yields
such accurate coarsening is derived from the high-fidelity offline simulation. The result
is a computationally cheap surrogate model for Rayleigh–Bénard convection, accurately
representing the complex behaviour up to the smallest resolvable scales on the coarse
grid. This is demonstrated here at Ra = 1010.

The paper is structured as follows. The governing equations and adopted discretization
are described in § 2. The data-driven model is introduced in § 3, detailing the forcing in
§ 3.1 and complementary heat flux correction in § 3.2. The model performance for a variety
of model configurations is assessed in § 4. Conclusions are presented in § 5.

2. Governing equations and numerical methods

In this section, we introduce the governing equations and the simulated case in § 2.1, the
employed numerical discretization in § 2.2 and illustrate the effects of severe coarsening,
without any modelling correction, on the quality of the solution in § 2.3.

2.1. Governing equations
Rayleigh–Bénard (RB) convection is described by the incompressible Navier–Stokes
equations coupled to buoyancy effects under the Boussinesq approximation. In
non-dimensional form, the equations read

∂u
∂t

+ u · ∇u =
√

Pr
Ra

∇2u − ∇p + Tey, (2.1)

∇ · u = 0, (2.2)

∂T
∂t

+ u · ∇T = 1√
PrRa

∇2T. (2.3)

We restrict to two spatial dimensions in this work. Here, u denotes velocity, p the
pressure and T the temperature. We denote by u and v the horizontal and vertical velocity
components, respectively. Buoyancy effects are included in the momentum equation by
means of the term Tey, where ey denotes the vertical unit vector. The dimensionless
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parameters that determine the flow are the Rayleigh number Ra = gβ�L3
y/(νκ) and the

Prandtl number Pr = ν/κ . The Rayleigh number describes the ratio between buoyancy
effects and viscous effects and is set to 1010 to set the focus on the challenging high-Ra
convection regime. The Prandtl number determines the ratio of characteristic length scales
of the velocity and the temperature, and is set to 1. The gravitational acceleration is denoted
by g, the thermal expansion coefficient by β, the temperature difference between the
boundaries of the domain by Δ, the kinematic viscosity by ν and the thermal diffusivity by
κ . The computational domain is rectangular with horizontal length Lx and vertical length
Ly, which are chosen as 2 and 1, respectively. The domain is periodic for all variables
in the horizontal direction and wall-bounded in the vertical direction. No-slip boundary
conditions are imposed for the velocity at the walls. The non-dimensional temperature is
prescribed at 1 at the bottom wall and 0 at the top wall.

Two-dimensional RB convection is fundamentally different from three-dimensional
RB convection. The main advantage of restricting the flow to two spatial dimensions is
that this enables DNS at a very large Rayleigh number (Zhu et al. 2018). Additionally,
the large-scale circulation that appears in three-dimensional RB convection displays
quasi-two-dimensional behaviour and shows strong similarities with the large-scale
circulation in two-dimensional RB convection (van der Poel, Stevens & Lohse 2013).

2.2. Numerical methods
The adopted spatial discretization is an energy-conserving finite difference method
(Vreman 2014) and is parallelized as by Cifani, Kuerten & Geurts (2018). A staggered
grid arrangement is used for the velocity, the pressure is defined at the cell centres and the
temperature is defined on the same grid as the vertical velocity. The latter choice ensures
that no interpolation errors occur when computing the buoyancy term in (2.1) (van der
Poel et al. 2015). A uniform grid spacing is used along the horizontal direction whereas
a hyperbolic tangent grid profile is adopted along the vertical direction. The non-uniform
grid realizes refinement near the walls to resolve the boundary layer.

Time integration is performed using the fractional-step third-order Runge–Kutta (RK3)
scheme for explicit terms combined with the Crank–Nicholson (CN) scheme for implicit
terms, as presented by van der Poel et al. (2015). Every time step, from tn to tn+1, consists
of three sub-stages, of which the steps are outlined below. The superscript j, j = 0, 1, 2,

denotes the sub-stage, where j = 0 coincides with the situation at tn. In each stage, a
provisional velocity u∗ is computed according to

u∗ − u j

�t
=

[
γjH j + ρjHj−1 − αjGp j + αjA j

y

(
u∗ + u j)

2

]
. (2.4)

The parameters γ, ρ and α are the Runge–Kutta coefficients, given by γ =
[8/15, 5/12, 3/4], ρ = [0, −17/60, −5/12] and α = γ + ρ (Rai & Moin 1991; van der
Poel et al. 2015; Cifani et al. 2018). Moreover, H j comprises the discrete convective terms,
the discrete horizontal diffusion terms and the source terms. Here, the only source term is
the buoyancy term appearing in the evolution of the vertical velocity. The discrete gradient
operator is denoted by G. The discrete vertical diffusion, given by Ay, is treated implicitly.
The implicit treatment eliminates the severe viscous stability restriction caused by the use
of a non-uniform mesh near the boundary (Kim & Moin 1985). Subsequently, the Poisson
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equation (2.5) is solved for the pressure to impose the continuity constraint (2.2),

∇2φ = 1
αj�t

(∇ · u∗) . (2.5)

Discretely, this equation takes the form

Lφ = 1
αj�t

(Du∗) . (2.6)

Here, L is the discrete Laplace operator ∇ · ∇ and D is the discrete divergence operator
∇·. The velocity and pressure are subsequently updated according to

uj+1 = u∗ − αj�t (Gφ) (2.7)

and

pj+1 = p j + φ − αj�t
2Re

(Lφ) , (2.8)

after which the velocity uj+1 is divergence-free. Time integration of the energy equation
(2.3) follows similarly. The newly obtained velocity is used to generate the energy field
Tj+1 analogously to (2.4).

The convective terms are discretized using the QUICK interpolation scheme (Leonard
1979). The diffusive terms are discretized using a standard second-order finite difference
method, for both spatial directions. Similarly, the discrete gradient G, the discrete
divergence D and the discrete Laplacian L are defined using finite differences.

2.3. Altered dynamics under coarsening
The DNS is carried out on a 4096 × 2048 grid, which has been shown to be a sufficiently
high resolution for the chosen Rayleigh number (Zhu et al. 2018). The coarse-grid
numerical simulations will be performed on a 64 × 32 grid. This coarsening introduces
significant discretization errors and does not allow for an accurate resolution of the smaller
coherent structures present in the flow. The truncation error of the numerical method on
this coarse grid introduces artificial dissipation and additional high-pass smoothing native
to the discretization method (Geurts & van der Bos 2005). Figure 1 shows a snapshot of
the DNS and the coarse-grid simulation, both in statistically steady states, from which the
huge implications of such significant coarsening become apparent.

The temperature at the mentioned resolutions is shown in figure 1(a,b). The coarsened
temperature displays only qualitative large-scale agreement with the DNS temperature,
both yielding similar plumes of temperature and similar large-scale circulation. Obviously,
the persistent small-scale coherent structures visible in the DNS snapshot are lost on the
coarse grid. This loss may also be observed for the pressure, depicted in figure 1(c,d). The
high-resolution and low-resolution fields exhibit clear qualitative differences, especially
considering the absence of distinct low-pressure regions in the coarse-grid result. A better
qualitative agreement between the results at the different resolutions is observed for the
velocity components, shown in figure 1(e–h). At low resolution, qualitatively the same
flow patterns can be observed as appear in the high-resolution results, albeit with decreased
magnitude.

The discrepancies between the velocity and temperature fields at the different
resolutions clearly pose the challenge we address in this paper. In the next section, we
therefore specify our new forcing approach which largely aims to rectify the observed
differences. The extent to which this new approach is successful will be scrutinized in § 4.
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Figure 1. Snapshots of the (a,c,e,g) DNS (4096 × 2048 grid) and (b,d, f,h) coarse no-model simulation
(64 × 32 grid) in statistically steady states. From panels (a,b) to (g,h), we show temperature, pressure,
horizontal velocity and vertical velocity.

3. Spectrum-preserving forcing

In this section, we describe a data-driven forcing to augment coarsened numerical
simulations of statistically steady states. The high-resolution and low-resolution snapshots
presented in the previous section hinted at the need of introducing explicit forcing to
more accurately represent average flow patterns on coarse computational grids. Here, we
propose a model to reproduce the kinetic energy spectra in coarse numerical simulations.

The model parameters are extracted from the reference data, obtained from a sequence
of 8040 solution snapshots each separated by 0.05 time units of a DNS performed at a
4096 × 2048 computational grid. With these numerical data, we achieve sufficiently many
snapshots to reliably recover statistical properties of the flow, which is a pre-requisite
for our model development. The Fourier components of horizontal cross-sections of
the solution are computed for each snapshot, yielding time series for each streamwise
wavenumber at each y-coordinate. The magnitudes of these complex time series yield
mean values, variances and correlation times that are used as model parameters. We next
present the main steps in the construction of this model.
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3.1. Reconstructing the energy spectra
The momentum equation (2.1) and temperature equation (2.3) can be written as a system
of complex ordinary differential equations (ODEs) for the mode coefficients through
projection onto a Fourier basis. In what follows, we only describe a spectrum-preserving
forcing for the momentum. The same derivation is used to define a forcing for
the temperature. We note that a spectral decomposition of the velocity and temperature
fields is not straightforward due to the presence of boundaries along one spatial dimension.
Therefore, we restrict ourselves to one-dimensional periodic horizontal profiles to ensure
that the Fourier series is well defined. This choice enables the model to explicitly identify
wall-induced features of the flow. Alternatively, after taking into account the non-uniform
grid spacing in the wall-normal direction the velocity field can be decomposed by applying
a sine transform in the wall-normal direction or by periodically extending the domain and
applying a Fourier transform, but these approaches are not pursued in this study.

For a fixed vertical coordinate yl, the profile u(x, yl, t) is decomposed into Fourier
modes and corresponding complex coefficients ck,l, where k denotes the wavenumber.
The coefficients satisfy the system of ODEs

dck,l

dt
= L (c, k, l) , k = 0, . . . , Nx/2, (3.1)

where L involves the spectral representation of u · ∇, ∇, ∇2 and the source term in (2.1).
We have already assumed a finite truncation of the number of Fourier modes in this
formulation. The vector c comprises all Fourier coefficients up to the largest resolvable
wavenumber.

To arrive at a spectrum-preserving forcing, it is sufficient to consider only the magnitude
of the Fourier coefficients |ck,l|. These evolve according to a system of ODEs

d|ck,l|
dt

= Lr(c, k, l), k = 0, . . . , Nx/2, (3.2)

where Lr is introduced to simplify notation. In the model implementation, the definition
and explicit computation of L and Lr is not required. Regarding |ck,l| as a stationary
stochastic process, we observe that E(|ck,l|2) describes the mean energy content of the
kth Fourier mode at height yl. By the definition of variance, we find that

E(|ck,l|2) = var(|ck,l|) + E(|ck,l|)2. (3.3)

Thus, it is sufficient to obtain an accurate mean value and variance of |ck,l| to achieve the
desired energy content in the kth Fourier mode. We aim to reproduce the mean value and
variance of |ck,l| by augmenting (3.2) with an Ornstein–Uhlenbeck (OU) process,

d|ck,l| = Lr(c, k, l) dt + 1
τk,l

(μk,l − |ck,l|) dt + σk,l dWt
k,l, (3.4)

where μk,l, τk,l and σk,l are statistical parameters inferred from a sequence of snapshots of
the reference solution. The desired mean value of |ck,l| is given by μk,l, the term σk,l dWt

k,l
serves to match the measured variance. Here, dWt

k,l is a general stochastic process which
can be tailored to the data (Ephrati et al. 2023b), although the common choice is to let
it be a Gaussian process with a variance depending on the time step size (Higham 2001).
We adopt the latter and include the variance scaling in the definition of σk,l. The forcing
strength is determined by a time scale τk,l and can be specified per k, l separately. Detailed
specifications of the adopted values of μk,l, σk,l and τk,l follow shortly. The combination
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of the original dynamics and the feedback control, including the stochastic term, arises
as the continuous-time limit of the 3DVAR data assimilation algorithm (Blömker et al.
2013). The model assumes that the unresolved dynamics can be accurately represented
by independent stochastic processes. Interactions in the vertical direction are included via
the fully resolved simulations which are base to the forcing. We will demonstrate that this
model is capable of producing accurate results.

The model will be applied as a prediction-correction scheme. In the case of the RK3
scheme adopted in this work, the following steps are performed for each RK sub-stage.
First, the provisional velocity u∗ is computed as in (2.4). The Fourier coefficients c̃k,l are
computed for this provisional velocity, after which the model is applied in the form of a
correction. In terms of the Fourier coefficients, the algorithm reads

c̃j+1
k,l = c j

k,l + �tαjL(c j, k, l) (time integration), (3.5)

|cj+1
k,l | = |c̃j+1

k,l | + αj�t
τk,l

(
μk,l − |c̃j+1

k,l |
)

+ σk,l�Wk,l (correction). (3.6)

Here, (3.5) is a simplified notation of the time-marching method presented in § 2.2 and
the superscript j, j = 0, 1, 2, denotes the RK sub-stage. The values of �Wk,l are samples
from a standard normal distribution, independently drawn for each k and l. These are
determined for each time step and kept constant throughout the sub-stages comprising the
time step. The correction only affects the magnitudes of the Fourier coefficients, the phases
of cj+1

k,l are the same as those of c̃j+1
k,l . Velocity fields are subsequently obtained by applying

the inverse Fourier transform to the corrected coefficients cj+1
k,l . After this procedure, the

Poisson equation (2.6) is solved using the newly obtained velocity fields and the remaining
steps of the sub-stage are completed. Applying the model before solving the Poisson
equation ensures that the flow is incompressible at the end of each RK sub-stage. The
entire algorithm, with the exception of solving the Poisson equation, may also be applied to
the temperature equation. This prediction-correction algorithm has the additional benefit
that the model can be easily implemented into already existing computational methods.
Applying the correction once every few time steps instead of every time step is common
in data assimilation, where real-time data become available sequentially and may not be
available at each time step of the numerical simulation. In the current study, all data are
collected before performing a coarse numerical simulation and serve to define a forcing
term aiming to counteract coarsening effects. The subsequent application of the correction
does not noticeably add to the computational effort and is hence applied at each RK
sub-stage.

The correction (3.6) will be referred to as nudging. We distinguish between stochastic
nudging, which is described by (3.6), and deterministic nudging, for which the stochastic
term in (3.6) is omitted. We define a mean μk,l,stoch and μk,l,det for these methods,
respectively, and specify these below.

The mean μk,l is specified such that the desired energy content is reproduced for small
values of τk,l. The magnitude of the coefficients is fully determined by the model in
the limit of small τk,l and, as a result, (3.3) can be used to derive the mean μk,l in this
limit. To attain the desired energy contents when using stochastic nudging, we require that
μk,l,stoch = E(|ck,l|). In the case of deterministic nudging with small τk,l, the magnitudes
of the coefficients remain constant at the value of μk,l,det. Thus, the variance of |ck,l| is
set to zero and we require that μk,l,det =

√
E(|ck,l|2). We note that the limit of small τk,l

is used to derive the model parameters, but the actual measured values of τk,l from the
high-resolution data will be (considerably) larger. As a result, the magnitudes obtained
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using the model will be a combination of the coarse discretization and the high-resolution
data.

Treating the evolution operator Lr of the magnitudes of the Fourier coefficients in (3.2)
as the identity operator allows us to specify the noise magnitude σk,l. This assumption
is used in the 3DVAR data assimilation algorithm (Lorenc & Rawlins 2005) and is valid
in statistically stationary states and on short assimilation intervals. This allows replacing
|c̃j+1

k,l | by |c j
k,l| and reduces (3.6) to a first-order autoregressive (AR(1)) process. We

observe that the drift coefficient is (1 − αj�t/τk,l) and assume that the sample variance
s2

k,l is known from the high-fidelity data for every k, l. The noise magnitude follows by
matching the variance of the AR(1) process with the sample variance, leading to the
expression

σk,l = sk,l

√
1 −

(
1 − αj�t

τk,l

)2

. (3.7)

In this paper, the time scale τk,l will be defined as the correlation time of the corresponding
Fourier coefficient, measured from the high-resolution data. We note that, with the adopted
definitions of μk,l and σk,l, the time scale τk,l can take on a range of values whilst still
yielding accurate energy spectra. Robustness of the model under variations of τk,l is
studied in § 4.5. In fact, τk,l can take on any positive value larger than or equal to αj�t.
Small length scales are expected to yield a small value of τk,l, resulting in an increased
weight towards the model term and an increased noise magnitude for the stochastic term
in the nudging. The model term will have a decreased weight at scales for which a large τk,l
is measured, which is often observed for large spatial scales. These would correspondingly
follow the deterministic resolved dynamics more closely.

The proposed prediction-correction method is of the same form as Fourier domain
Kalman filtering (Harlim & Majda 2008; Majda & Harlim 2012). By defining a prediction
and an observation, the approach can be understood as a steady-state filter with a
prescribed gain factor and can be placed in the context of data assimilation. The only
necessary parameters are the means μk,l, the variances σ 2

k,l and the correlation times τk,l,
which are interpreted as follows. At each sub-stage of the RK3 scheme, the prediction
is obtained by evolving the velocity and temperature fields according to the coarse-grid
discretization. The ‘observation’ then consists of velocity or temperature fields sampled
from the reference statistically stationary state. For stochastic nudging, these are velocity
or temperature fields where the magnitudes of the Fourier coefficients are drawn from
normal distributions with mean μk,l,stoch and variance σ 2

k,l. In the deterministic case, the
observation consists of these fields with Fourier coefficients of prescribed magnitudes
μk,l,det. The prediction is subsequently nudged towards the observation by correcting the
predicted magnitudes of the Fourier coefficients. The weight of the model, often referred
to as the ‘gain’, is determined by αj�t/τk,l for each k, l separately.

3.2. Heat transport correction
The heat transport in the turbulent flow is described by the Nusselt number and is
considered the key response of the system to the imposed Rayleigh number (Ahlers et al.
2009). The definition of the Nusselt number that we adopt here is

Nu = 1 +
√

PrRa〈vT〉Ω, (3.8)

which is well suited for use on coarse computational grids. An alternative definition of Nu
involves a gradient of temperature, which is more sensitive to coarse-graining. In (3.8), Ω
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denotes the domain with area |Ω| and 〈·〉Ω denotes the domain average. It is clear from
definition (3.8) that vT needs to be modelled accurately to recover skilful predictions of
the heat flux. To achieve this, we propose a constraint to be used in conjunction with the
model described in § 3.1.

The volume average in (3.8) comprises averages of the heat flux along horizontal
cross-sections of the domain. For a fixed vertical coordinate yl, we denote the heat
flux along this cross-section by 〈vT〉l. Along this cross-section, we indicate the Fourier
coefficients of the velocity and temperature with a hat symbol ·̂ and observe that

(v̂T)0 =
∑

k

v̂∗
k T̂k, (3.9)

where the subscript k signifies the kth Fourier coefficient. The subscript 0 indicates that
we consider the zeroth mode of the Fourier series, which by definition equals the value
of 〈vT〉l. We assume that a mean heat flux along the horizontal cross-section is known
from the reference high-resolution data and denote this value by Fl. Subsequently, the heat
flux along the horizontal cross-section in a coarse numerical simulation is corrected by
minimizing the error ‖Fl − ∑

k v̂∗
k T̂k‖2 with respect to T . Here, we minimize the error

by varying the phases of the Fourier coefficients T̂k. We alter the temperature instead
of the vertical velocity so that the velocity field remains divergence-free. Adapting the
phases only ensures that the spectrum of the temperature along the horizontal cross-section
is invariant under the heat transport correction. In total, the heat flux correction is an
extension of the nudging procedure (3.6). It enables a correction of the temperature field
solely based on a statistic of the reference solution, rather than on a dynamic equation.
In doing so, the dependence between the vertical velocity and the temperature is taken
into account in the nudging procedure. Thus, applying the heat flux correction ensures
an improved average Nusselt number estimate and is therefore expected to improve the
accuracy of the numerical solutions.

The error ‖Fl − ∑
k v̂∗

k T̂k‖2 is minimized using a gradient descent algorithm. We
note that the correction may in principle yield an arbitrarily good approximation of the
reference heat flux, but this is not guaranteed to produce physically relevant results. Instead
of aiming for an exact agreement of the mean heat flux, we apply the gradient descent
algorithm until the heat flux in the horizontal cross-section is within a 10 % margin of the
reference value. This serves to demonstrate the added value of the correction. Preliminary
tests have shown that this already improves the heat flux significantly without qualitatively
altering the temperature field. In the next section, coarse numerical simulations are
performed both with and without the heat flux correction. The optimization of this
procedure is beyond the scope of this paper.

4. Model performance

In this section, we apply the model in eight different configurations to numerical
simulations on the coarse grid. The configurations are listed in table 1 and differ in the
variable that is being forced, the wavelengths at which the forcing is applied and whether
the forcing is deterministic or stochastic. These configurations will be referred to as M0-7,
inspired by the nomenclature used in the comparison of LES models by Vreman, Geurts
& Kuerten (1997). Here, the wavenumbers at which the forcing is applied are chosen as
l ≤ 5 and l ≤ 32. The former implies that the model only explicitly acts on the large scales
of motion and the latter implies that all resolved scales are directly affected by the model.
This set of configurations is chosen to distinguish between the effects of large-scale forcing
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Model Forced variable Wavenumbers Curve

Filtered DNS — — Solid
M0 No model — — Dashed
M1 Deterministic u k ≤ 5 Dash-dotted
M2 Deterministic u k ≤ 32 Dotted
M3 Stochastic u k ≤ 5 ∗
M4 Stochastic u k ≤ 32 +
M5 Deterministic T k ≤ 32 ×
M6 Deterministic u, T k ≤ 32 �
M7 Deterministic, heat flux correction u, T k ≤ 32 ♦

Table 1. Model configurations used in the coarse numerical simulations.
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Figure 2. Correlation times τk,l of the Fourier coefficients for the (a) horizontal velocity, (b) vertical velocity
and (c) temperature measured from the high-fidelity data.

and small-scale forcing, deterministic forcing and stochastic forcing, and the choice of the
forced variable. The model simulations are run with a time step size �t = 0.02. Recall
that the filtered DNS provides the reference solution.

Figure 2 shows the correlation times of the Fourier coefficients τk,l for each pair k, l
for the horizontal velocity, the vertical velocity and the temperature, measured from the
high-fidelity data. As expected, large streamwise wavenumbers, i.e. structures with small
length scales, correspond to small correlation times. Conversely, small wavenumbers, i.e.
large length scale structures, correspond to large correlation times. This confirms that the
model contribution to the dynamics of the Fourier coefficients at small scales is stronger
than at large scales. The horizontal velocity and the temperature generally yield smaller
correlation times in the bulk of the domain compared to the region near the walls, whereas
the opposite is observed for the vertical velocity. There is a notable difference at the
zero-wavenumber correlation time for the vertical velocity, which is due to the fact that
the average vertical velocity is always zero. Finally, we note that τk,l is observed to be
nowhere below αj�t, thus implying that the magnitudes of the Fourier coefficients do not
depend solely on the model in any case, but also take contributions from the discretized
equations directly.

We first provide in § 4.1 an impression of the qualitative improvements obtained when
applying the model. In the ensuing subsections, a detailed quantitative comparison is
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carried out. Several quantities will be compared with the filtered DNS data to gain insight
into the quality of the model. In § 4.2, we first verify that the model approximates the
average energy spectra of the filtered DNS by comparing the spectra of the velocity and
the temperature near the wall and in the core of the domain. In § 4.3, the mean temperature,
the mean heat flux and the root-mean-square deviation (r.m.s.) are measured as a function
of wall-normal distance and compared with the reference. Finally, global flow statistics
such as the total kinetic energy and the Nusselt number are examined in § 4.4.

The r.m.s., mean temperature and mean heat flux rely on averages along horizontal
cross-sections of the domain. For a fixed value of y, we adopt the following definition:

r.m.s. ( f , y, t) =
[

1
|A|

∫
A

( f (x, y, t) − 〈f (x, y, t)〉A)2 dA
]1/2

, (4.1)

where 〈·〉A denotes the average over the horizontal cross-section with length |A| and f is
the field of interest. The mean temperature and heat flux are computed as the mean 〈·〉A of
the corresponding fields. The global kinetic energy will be computed as

KE =
∫

Ω

1
2(u2 + v2) dΩ (4.2)

and the Nusselt number follows from (3.8).
Our interest lies in the time average of the aforementioned quantities. The quality of

coarse-grid models is therefore measured by comparing averaged quantities rather than
instantaneous quantities (Vreman et al. 1997; Langford & Moser 1999). The energy
spectra, r.m.s. values and mean temperature, and heat flux will be measured after the
coarse-grid numerical simulations have reached a statistically steady state. The global
quantities of interest are illustrated using a rolling average over time.

4.1. Qualitative model performance
A qualitative comparison of the model configurations M0-7 is given in figures 3–6 by
means of instantaneous snapshots of the obtained statistically stationary states. In these
figures, the snapshots of the DNS and of M0 are the same as depicted in figure 1. A
comparison of the temperature fields in statistically steady states is provided in figure 3.
Here, we observe that the configurations M1–4 do not lead to significant qualitative
changes in the temperature field when compared with the no-model configuration M0.
In these configurations, the temperature is not explicitly forced and suffers from artificial
dissipation inherent to the coarsening. The model configurations M5–7, in which the
temperature is forced directly, display more pronounced small-scale features. At the same
time, the large-scale circulation pattern is still visible in these results. In addition, from the
results of M6 and M7, we conclude that applying the heat flux correction does not lead to
qualitatively different temperature fields.

The pressure fields of the corresponding solutions are shown in figure 4. Here, we recall
that any detail observed in the DNS pressure field is lost in the coarse no-model result
M0. No improvements are observed in the pressure field when only the temperature is
explicitly forced, as is done in M5. The remaining model configurations all yield a distinct
qualitative improvement in the pressure fields. In particular, only applying a large-scale
velocity correction already qualitatively changes the pressure field. This is observed for
the deterministic and the stochastic forcing, given by M1 and M3, respectively. The
addition of forcing the velocity at small scales or simultaneously forcing the temperature
does not yield additional significant changes. A noticeable difference exists between the
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Figure 3. Temperature fields in statistically steady states. Shown are the reference solution and the results
obtained with coarse numerical simulations M0–7. The colour scheme is the same as used for the temperature
fields shown in figure 1. (a) DNS, (b) M0, (c) M1, (d) M2, (e) M3, ( f ) M4, (g) M5, (h) M6, (i) M7.
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Figure 4. Pressure fields in statistically steady states. Shown are the reference solution and the results obtained
with coarse numerical simulations M0–7. The colour scheme is the same as used for the pressure fields shown
in figure 1. (a) DNS, (b) M0, (c) M1, (d) M2, (e) M3, ( f ) M4, (g) M5, (h) M6, (i) M7.

deterministic and stochastic methods. As becomes clear from M3–4, the random forcing
leads to a fragmentation of the coherent structures in the pressure field.

The horizontal velocity fields and vertical velocity fields are provided in figures 5 and 6,
respectively. We observe that all coarse numerical solutions display agreement with the
DNS in terms of large-scale coherent structures. Nonetheless, artificial dissipation leads
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Figure 5. Horizontal velocity fields in statistically steady states. Shown are the reference solution and the
results obtained with coarse numerical simulations M0–7. The colour scheme is the same as used for the
horizontal velocity fields shown in figure 1. (a) DNS, (b) M0, (c) M1, (d) M2, (e) M3, ( f ) M4, (g) M5, (h) M6,
(i) M7.

to an underestimate of the velocity magnitude in cases M0 and M5. This suggests that
only forcing the temperature is not sufficient for accurately reproducing the velocity fields.
The other cases indicate that explicitly forcing the velocity leads to accurate velocity
magnitudes.

4.2. Energy spectra
We now establish that the model proposed in § 3.1 improves the average energy spectra
of the forced variables. The average energy spectra of the velocity components and the
temperature are shown in figure 7, displaying the spectra along a horizontal cross-section
near the wall and in the centre of the domain. Both near the wall and in the centre of the
domain, respectively shown in figure 7(a–c) and figure 7(d–f ), the no-model M0 results
exhibit significant differences compared with the filtered DNS. The measured energy
levels of the velocity are too low with M0 at all resolved scales. In contrast, a significant
discrepancy in the temperature spectra is observed only for wavenumbers larger than 10.

The discrepancies in the spectra of M0 and the reference are attributed to artificial
dissipation caused by the coarsening. In particular, the numerical dissipation affects
both the velocity and the temperature spectra at higher wavenumbers. Through the
nonlinear interactions in the momentum equation, the velocity is adversely affected at
all wavenumbers. This is further corroborated by the results of M2 and M4, where all
available length scales are forced only for the velocity. In the core of the domain, where
the coarsening is strongest, these results display accurate velocity spectra but yield no
improvement in the temperature spectra, suggesting that the temperature still suffers from
artificial viscosity in these cases. Apparently, the improvements in the velocity spectra
influence the prediction of the temperature only to a small degree.

The large-scale velocity forcing applied in M1 and M3 yields improved velocity
energy levels at low wavenumbers. However, the improvement gradually vanishes at
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Figure 6. Vertical velocity fields in statistically steady states. Shown are the reference solution and the
results obtained with coarse numerical simulations M0–7. The colour scheme is the same as used for the
vertical velocity fields fields shown in figure 1. (a) DNS, (b) M0, (c) M1, (d) M2, (e) M3, ( f ) M4, (g) M5,
(h) M6, (i) M7.
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Figure 7. Time-averaged energy spectra measured along horizontal cross-sections of the domain for (a,d) the
horizontal velocity, (b,e) vertical velocity and (c, f ) temperature. The cross-sections are taken near (a–c) the
bottom wall and (d–f ) the core of the domain. The cross-sections are taken at y = 8.5 × 10−4, y = 5.5 × 10−1

for the horizontal velocity, and at y = 5.0 × 10−4, y = 5.0 × 10−1 for the vertical velocity and the temperature.
The solid lines show the average spectra of the filtered DNS, the model results are displayed using the symbols
in table 1.
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Figure 8. Comparison of the (a) time-averaged temperature and (b) time-averaged heat flux measured along
horizontal cross-sections of the domain and displayed as a function of the wall-normal distance. The solid line
shows the mean values of the filtered DNS, the model results are displayed using the symbols in table 1.

higher wavenumbers. These configurations exhibit no improvement in the temperature
spectra. The cases M2 and M4 lead to an improved agreement on the velocity spectra
at all wavenumbers in the centre of the domain, establishing the spectrum-reconstructing
property of the model described in § 3.1. Nonetheless, all models underestimate the
large-scale energy in the centre of the domain. At these scales, the measured correlation
time τ is large and therefore the model contribution is limited.

Near the wall, the horizontal velocity is accurately represented at all wavenumbers
despite the fact that the energy of the vertical velocity deviates from the reference for
wavenumbers larger than 15. The temperature spectra for M2 and M4 near the wall
show good agreement with the reference. Comparing this with the results of M1 and
M3 indicates that the prediction of near-wall temperature is improved by the forcing
of small-scale velocity despite no explicit forcing being applied to the temperature. No
improvement is observed for these cases in the centre of the domain, which we attribute to
artificial dissipation.

The velocity spectra show no significant change when only the temperature is explicitly
forced, as observed from the results of M5. This case produces an accurate temperature
spectrum in the core of the domain and yields an improved spectrum near the wall.
Additionally forcing the velocity significantly improves the velocity spectra, as is observed
for cases M6 and M7. Here, we observe good agreement for the velocity and the
temperature across all length scales in the centre of the domain. In particular, a definite
improvement is observed when comparing the temperature spectrum to those of M1–4.
Near the wall, the horizontal velocity and the temperature are both captured accurately,
while the vertical velocity still deviates for wavenumbers larger than 15. The similarity
between the spectra obtained for M6 and M7 indicates that the heat flux correction
described in § 3.2 does indeed not lead to significant changes in the spectra.

4.3. Flow statistics
The mean temperature and mean heat flux are displayed in figure 8 as a function of
the wall-normal distance. All models except M5 efficiently mitigate the small mean
temperature discrepancy between M0 and the reference.

The mean heat flux of the no-model M0 case is consistently too low, which is a direct
result of underestimating the vertical velocity. Applying the large-scale velocity forcing
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Figure 9. Root mean square (r.m.s.) of the (a) horizontal velocity, (b) vertical velocity and (c) temperature,
measured along horizontal cross-sections of the domain and displayed as a function of the wall-normal distance.
The solid line shows the r.m.s. values of the filtered DNS, the model results are displayed using the symbols in
table 1.

as done in cases M1 and M3 yields an improved heat flux. In particular, the measured
heat flux near the wall shows good agreement with the reference. The mean heat flux is
consistently overestimated when the velocity is forced at all wavenumbers, which is the
case for M2, M4 and M6. Comparison of the results of M6 with M7 establishes that the
heat flux correction described in § 3.2 ensures a better prediction of the mean heat flux.
Finally, only imposing the temperature spectrum deteriorates the measured heat flux, as
shown by the results of M5.

These observations in combination with the energy spectra of the previous subsection
expose the simplifying model assumptions discussed in § 3.1. Despite accurate energy
spectra of all variables, the M6 model does not yield an accurate heat flux. This
indeed suggests that the energy spectra alone do not provide sufficiently strict modelling
criteria for obtaining accurate coarse-grid numerical simulations, and instead benefit from
additional cross-variable constraints such as the imposed heat flux.

The r.m.s. of the velocity components are shown in figure 9(a,b) as a function of
the wall-normal distance. A strong reduction of the turbulent intensity of the velocity
is observed for the no-model M0 results. Similar to previous observations for case
M5, only forcing the temperature does not lead to improvements in the r.m.s. of the
velocity. All other model configurations lead to a comparable improvement in the r.m.s.
of the horizontal velocity. A slight difference between the stochastically forced and
deterministically forced solutions may be distinguished in the r.m.s. profiles of the
horizontal velocity, visible in the results of M3–4. Comparable results are observed for the
r.m.s. of the vertical velocity, where all models except M0 and M5 display good agreement
with the reference.

The average temperature fluctuations are shown in figure 9(c). We observe that all model
configurations except M0 and M5 predict the wall-normal distance of the peak of the
fluctuations accurately. However, the model overestimates the maximal predicted r.m.s. by
7.5 % to 18 %.

4.4. Total kinetic energy and heat flux
A comparison of the rolling mean of the total kinetic energy (KE) is shown in figure 10.
The improvement obtained by M1–4, M6 and M7 is evident. The coarse simulations are
initialized from a snapshot of the filtered DNS in the reference statistically stationary state.
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Figure 10. Comparison of the rolling mean of the kinetic energy (KE) over time. The solid line shows the KE
of the filtered DNS, and the model results are displayed using the symbols in table 1.

Due to coarsening effects, this statistically stationary state cannot be sustained in
coarse simulations without including a model term. Numerical dissipation and other
discretization effects lead to deviations from the filtered DNS on coarse grids, despite
adopting the same physical parameters as in the high-resolution simulation. The forcing
model aims to steer the coarse numerical simulation towards the reference statistically
stationary state by applying a correction at each time step. Nonetheless, this procedure
is approximate and does not necessarily yield the same total kinetic energy and Nusselt
number as observed in the reference. Therefore, transient behaviour is observed initially
until the coarse simulations settle at a different statistically steady state. At t = 400, the
mean of the KE for M0 is approximately 31 % of the reference KE. Only forcing the
temperature, shown by M5, deteriorates the total energy and yields roughly 27 % of the
reference value. The other models contain between 72 % and 77 % of the reference value.
It is reasonable to assume that this discrepancy is predominantly caused by the model
underestimating the energy in large scales in the centre of the domain, as was discussed in
§ 4.2.

A quantification of the total heat flux in the domain is provided by comparing the
time-averaged Nusselt number, shown in figure 11. Note that the reference value Nu = 95
is shown with 5 % error margins. The no-model coarse-grid simulation leads to an
underestimated heat flux resulting from the reduced velocity magnitude induced by
artificial dissipation. The temperature forcing in case M5 was previously shown to not
yield any improvements in the mean temperature or the velocity and does therefore not
improve the Nusselt number estimate. A correction of the large-scale velocity features in
configurations M1 and M3 leads to a very accurate Nusselt number estimate. Nonetheless,
an accurate description of the velocity does not guarantee an accurate heat flux. This is
underpinned by the results of M2, M4 and M6, which all exhibit an accurate representation
of large and small velocity features, but consistently overestimate the Nusselt number.
Finally, we observe that this adverse effect is efficiently mitigated by the heat flux
correction, as becomes evident from the resulting Nusselt number estimate of M7.

4.5. Robustness under variations in forcing strength
The robustness of flow predictions with respect to the forcing strength is addressed next.
A comparison of various forcing strengths is carried out by multiplying all measured τk,l
by 0.5, increasing the forcing strength, or by 2, 4 and 8, decreasing the forcing strength.
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Figure 11. Comparison of the rolling mean of the Nusselt number over time. The solid line at Nu = 95 shows
the theoretically predicted value, with 5 % error margins given by the dashed lines. The model results are
displayed using the symbols in table 1.
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Figure 12. Time-averaged energy spectra measured along horizontal cross-sections of the domain for the
(a) horizontal velocity, (b) vertical velocity and (c) temperature. The cross-sections are taken near the core
of the domain, at y = 5.5 × 10−1 for the horizontal velocity, and at y = 5.0 × 10−1 for the vertical velocity
and the temperature. The model results are obtained by multiplying the measured correlation times by 8. The
solid lines show the average spectra of the filtered DNS, the model results are displayed using the symbols in
table 1.

These scalings are applied to the model configurations M0–7 described in table 1.
Figures 12 and 13 show the energy spectra in the bulk of the domain and the r.m.s.
of the function of the wall-normal distance, respectively, obtained when multiplying the
measured τk,l by 8. The results are only shown for this scaling since these differ the most
from the results obtained with the unscaled forcing strength.

Increasing the forcing strength leads to numerical solutions that closely follow the
reference kinetic energy spectra. As a result, the r.m.s. values as a function of the
wall-normal distance also improve considerably with respect to the no-model coarse
numerical simulation. However, no significant differences have been observed when
compared with the results obtained with the original (unscaled) values of τk,l. Decreasing
the forcing strength leads to coarse numerical simulations that follow the reference energy
spectra less closely, but nonetheless improve upon the no-model coarse simulation. This is
displayed in figure 12. This result is also reflected in the r.m.s. as illustrated in figure 13.

Changing the forcing strength has a noticeable effect on the total kinetic energy and
the measured Nusselt number. The time-averages of the total kinetic energy and Nusselt
number are depicted in figure 14 as a function of the scaling of the forcing strength.
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Figure 13. Root mean square (r.m.s.) of the (a) horizontal velocity, (b) vertical velocity and (c) temperature,
measured along horizontal cross-sections of the domain and displayed as a function of the wall-normal distance.
The model results are obtained by multiplying the measured correlation times by 8. The solid line shows the
r.m.s. values of the filtered DNS, the model results are displayed using the symbols in table 1.
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Figure 14. Comparison of the final rolling mean values of the (a) total kinetic energy (KE) and (b) Nusselt
number for for different scalings of the correlation times τk,l used in the model. The model results are displayed
using the symbols in table 1.

All model configurations except M5, where only the temperature is explicitly forced, show
a decrease of the kinetic energy and of the Nusselt number as the forcing strength is
decreased.

4.6. Generalization to other Rayleigh numbers
We now turn our attention to the model performance at different Rayleigh numbers.
Increasing the Rayleigh number in three-dimensional Rayleigh–Bénard convection affects
the velocity spectra and the temperature spectra along horizontal cross-sections. De,
Eswaran & Mishra (2017) considered a range of Rayleigh numbers between 7 × 104

and 2 × 106 at Pr = 0.71 in a large aspect ratio box. An increase of high-wavenumber
excitation is reported for kinetic energy, temperature fluctuations, heat flux and kinetic
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Figure 15. Measured Nusselt numbers as a function of the Rayleigh number. The solid red line shows reference
Nusselt number predictions from the literature, with 5 % error margins given by the dashed lines. The no-model
and large-scale forcing results are obtained with configurations M0 and M1, respectively. The reference scaling
exponents are 0.285 for 109 ≤ Ra ≤ 1013 and 0.35 for Ra ≥ 1013.

energy dissipation, and is observed near the top and bottom plates and in the bulk of the
domain. The maximum energy dissipation is found to shift towards higher wavenumbers
as the Rayleigh number is increased. This might suggest that a coarse simulation at larger
Rayleigh numbers benefits from increased forcing at larger wavenumbers.

When increasing the Rayleigh number, the mean velocity and temperature profiles in
two-dimensional Rayleigh–Bénard convection behave similarly when normalized by the
friction velocity and corresponding characteristic temperature, respectively (Zhu et al.
2018). In the range between Ra = 1011 and Ra = 1014, the mean profiles displayed the
same behaviour in the viscous sublayer near the wall at each simulated Rayleigh number.
This is followed by a log layer for the velocity and a flat region for the temperature. These
results indicate that the mean profiles do undergo quantitative changes but no qualitative
changes in this range of Rayleigh numbers. Therefore, a model calibrated at a particular
Rayleigh number might still have merit when different Rayleigh numbers are considered
in coarse numerical simulations.

Here, we assess the Nusselt number estimates at different Rayleigh numbers using
the forcing calibrated at Ra = 1010. The Nusselt number estimates in coarse simulations
without a model (M0) and with deterministic large-scale momentum forcing (M1) are
compared with reference values reported by Johnston & Doering (2009) and Zhu et al.
(2018). The reference scaling exponents for the Nusselt number as a function of the
Rayleigh number are 0.285 for 109 ≤ Ra ≤ 1013 and 0.35 for Ra ≥ 1013. We consider only
the model configuration M1 in this comparison, since this configuration was already found
to produce an accurate Nusselt number at Ra = 1010 without using explicit knowledge of
the heat flux. The results are summarized in figure 15, showing the measured Nusselt
number as a function of the Rayleigh number. These results show that the large-scale
momentum forcing yields accurate Nusselt number estimates across several decades of
Rayleigh numbers without using high-resolution data for these parameter regimes. At
the transition to the so-called ultimate regime, observed at Ra = 1013 (Zhu et al. 2018),
the Nusselt number estimates of the coarse numerical simulations deteriorate somewhat.
The estimates lose accuracy for much larger Rayleigh numbers compared with the
reference Ra = 1010. This is likely a result of the gradually accumulating quantitative flow
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differences as the Rayleigh number increases. Extending the range of accurate predictions
provides a challenge for future work.

5. Conclusions and outlook

In this paper, we have proposed a data-driven model for coarse numerical fluid simulations
and assessed its performance when applied to two-dimensional Rayleigh–Bénard
convection. Statistical information of Fourier coefficients of a reference direct numerical
simulation was used to infer model parameters, which constituted a forcing term for
reproducing the reference energy spectra. The model parameters are defined such that
small scales of motion are corrected strongly. Various model configurations were applied
to gain insight into the model performance, generally leading to improved results compared
with using no model.

Applying the model at all wavelengths resulted in significant improvement of the
spectra both near the walls and near the centre of the domain, which established that
the model had its desired effect on the numerical solution. Additionally, the application
of the model was found to yield improved estimates of flow statistics. In particular, the
average turbulent fluctuations and average temperature improved significantly compared
with the no-model case. The total kinetic energy was found to improve upon using the
model but highlighted that modelling the effects of unresolved dynamics on the large-scale
flow features as independent processes might be too restrictive. The measured total
heat flux was accurately captured for several model configurations, although accurately
reconstructing energy spectra was shown not to be a sufficient criterion for this purpose.
The latter problem was efficiently alleviated by including a constraint on the average heat
flux in the model, leading to a computationally cheap data-driven surrogate model for
the highly complex flow dynamics. Applying large-scale momentum forcing in the coarse
numerical simulations yielded an accurate Nusselt number estimate without requiring
explicit knowledge of the heat flux. Furthermore, accurate Nusselt number estimates were
obtained across two decades of Rayleigh numbers using only the forcing calibrated at
Ra = 1010.

Future work will be dedicated to expanding the proposed model by consulting Kalman
filtering theory. Specifically, the interactions between the Fourier modes can be explicitly
represented by including covariance estimates in the model. This would additionally
serve to verify at which frequencies the Fourier modes evolve independently, which
is expected to result in a better understanding of the modelling of small-scale flow
features. Alternatively, spatially coherent structures can be included in the model by
applying proper orthogonal decomposition to the reference data, as demonstrated by
Ephrati, Cifani & Geurts (2022a). Although no assumptions are made about the numerical
method or adopted coarse resolution in the formulation of the model, further numerical
experiments adopting a different resolution or discretization may be carried out to assess
the robustness of the model. Finally, we note that the presented method might be extended
to three-dimensional flows. This could be achieved by extending the method presented in
this paper to also cover the reconstruction of two-dimensional energy spectra. For simple
domains, covered with a structured tensor grid, this could be achieved by treating each
horizontal (or constant-index) cross-section of the three-dimensional domain separately.
Alternatively, one can employ proper orthogonal decomposition and recover the POD
spectrum as done by Ephrati et al. (2022a) and readily extend this from two dimensions to
three dimensions.
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