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HOMOMORPHISMS OF NEAR-RINGS OF
CONTINUOUS REAL-VALUED FUNCTIONS

K.D. MAGILL J R .

For any topological near-ring (which is not a ring) whose additive group is the addi-
tive group of real numbers, we investigate the near-ring of all continuous functions,
under the pointwise operations, from a compact Hausdorff space into that near-
ring. Specifically, we determine all the homomorphisms from one such near-ring of
functions to another and we show that within a rather extensive class of spaces,
the endomorphism semigroup of the near-ring of functions completely determines
the topological structure of the space.

1. INTRODUCTION

For information about near-rings and in particular, for any algebraic terms not
defined here, one may consult [1, 6, 7]. Let (R, +) denote the additive topological
group of real numbers. In [4], we determined all the binary operations • on R such
that (R, +,*) is a topological near-ring. Specifically, we showed that if a 4 0, b > 0
and a2 + b2 ^ 0 and we define

{ axy for y ^ 0

bxy for y > 0

then (R, +, *) is a topological near-ring which is not a ring and every binary operation
for which (-R, + , *) is a topological near-ring which is not a ring is of this form. We shall
subsequently denote the near-ring with multiplication defined as in (1.1) by #„,&• Now
let X be a compact Hausdorff space and denote by Na>b{X) the near-ring of all continu-
ous maps from X to R where f+g and fg are defined by ( / + g)(x) = f(x)+g(x) and
(fg)(x) = (f(x)) * (g{x)) where the operation * is defined as in (1.1). In Section 2, we
investigate homomorphisms of Na,b{X) into Na<b(Y) and we determine the automor-
phism group of the near-ring Na,b{X). We also determine the endomorphism semigroup
°f Na,b(X) when A" is a continuum. Here, a continuum is a compact connected Haus-
dorff space. Furthermore, we show that there is an extensive class of continua such that
within this class, the endomorphism semigroup of the near-ring Na,b{X) completely
determines the topological structure of the space X. Specifically, we show that if X
and Y are continua which contain arcs, then the endomorphism semigroups of the
near-rings Naib(X) and Na,b{Y) are isomorphic if and only if the spaces X and Y are
homeomorphic.
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402 K.D. Magill Jr. [2]

2. HOMOMORPHISMS FROM Na,b(X) INTO Na>b(Y)

A few of the results in this section are somewhat analogous to some of the results
in [2, Chapter 10]. As is customary, a homomorphism from one topological near-ring
to another will be assumed to be continuous as well.

THEOREM 2 . 1 . Let tp be a nonzero endomorphism of Ra%b. Then (p(r) — r for

all r G Ra,b if a ^ —b. If a = —b, then either <p(r) = r for all r £ .RO)4 or ip(r) = —r

for all r £ Ra,b-

PROOF: Let ^ ) b e a nonzero endomorphism of Ra,b- According to Theorem (3.14)

of [4], <p is a linear map from Ra,b onto Ra<b with the property that / = / o <p where

• (

rl S I aX f ° r X ^ 0

f(X)
bx for x > 0.

Since ip is a nonzero endomorphism, there exists a real number c^O such that <p(x) =
ex. Suppose c > 0. Then

-a - / ( - I ) = / o p ( - l ) = / ( - c ) = -ac

and

Since not both a and b can be zero, it readily follows that c — 1 so that, in this case,
ip must be the identity map. Now suppose c < 0. In this case, we have

-a = / ( - I ) = / o p ( - l ) = / ( - c ) = -6c

and

Thus, we have a = 6c and b — ac which imply a = ac2 and 6 = 6c2. Since not both
a and 6 can be zero, we conclude that c2 = 1 and since c < 0, we must have c = — 1.
Finally, if c = — 1, it follows that a — -b. Consequently, if a £ —6, then the only
nonzero endomorphism of Ra>b is the identity map. U

Throughout the remainder of this paper, it will be assumed that the spaces under
consideration will all be compact Hausdorff spaces and the terms space and topological
space will mean compact Hausdorff space. The symbol (x) will be used to denote the
constant function which maps everything into the point x. The domain of the function
will be dear from the context.
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[3] Homomorphisms of near-rings 403

LEMMA 2 . 2 . Suppose a ^ —b and let tp be be a, nonzero homomorphism from

Na,b{X) into Ra,b- Then there exists a unique point x £ X such that <p(f) = f(x) lor

all f£Na<b{X).

PROOF: Either o ^ 0 or i / 0 and there is no loss in generality in assuming the
former. Suppose further that <p(l/a) = 0. Then for any / £ Na,b(X), we have <p(f) =

ip(f{l/a)) = f(f) * (f(l/a) — 0 which is a contradiction. Consequently <p(l/a) ^ 0.
Next, define a homomorphism TJJ from Ra<b into Na>b{X) by V"(r) = (**) • Then tpoij)

is an endomorphism of i?O)6 which, in view of our previous observation, is nonzero.
Theorem 2.1 tells us that <p o i/i(r) = r for all x £ Ra,b, which implies that

(2.2.1) <p(r) = r for all r £ Raib.

It follows from (2.2.1) that tp maps Na<b{X) onto Ra<b and since Ra>b is simple, Ker tp
is a maximal ideal of Naib(X). According to [5, Theorem 3.10], there exists an x € X

such that Ker <p = Mx = {/ € Na>b{X) : f(x) = 0}. For each / e Naib{X), we see that
f-(f(x)) e Mx . This and (2.2.1) together imply that 0 = <p(f - (f(x))) = <p{f)-f[x)

and the lemma has been verified since uniqueness is immediate. D

THEOREM 2 . 3 . Suppose a =£ —b and let <p be a homomorphism from Natb{X)

into Na>b(Y) with the property that tp{l) = (1). Then there exists a unique continuous

function h from Y into X such that <p{f) = f o h for all f £ Naib(X).

PROOF: For each y £ Y, define a homomorphism rf>y from Naib{X) into Ra>b by
xjjy(f) = ip(f)(y). The homomorphism ipy is nonzero since <p{l) = (1) and according
to Lemma 2.2, there exists a unique i £ l s o that il>y(f) = f(x). We define h(y) = x

and we note that <p(f)(y) = i>y{f) = /(^(j/)) for all y £ Y. In other words, we have
<p(f) — f oh and it follows from [2, Theorem 3.8, p.40] that h is continuous. D

THEOREM 2 . 4 . Suppose a ^ —b and let ip be an isomorphism from Natb{X)

onto Naib(Y). Then there exists a unique homeomorphism h from Y onto X such

that <p(f) = f oh for each f £ Natb(X).

PROOF: There exists a g € Naib(X) such that <p(g) = (1). Again define, for
each y £ Y, ^ , ( / ) = <p(f){y). Since +,{g) = <p(g)(y) = (l)(y) = 1, we see that
ipy is a nonzero homomorphism from Na<b(X) to Ra,b and it follows from (2.2.1) that
ip(l)(y) — ij)y{l) — 1 for all y £ Y. In other words, <p(l) — (1). We now conclude from
Theorem 2.3 that there exists a unique continuous map h from Y into X such that
<p(f) — / o h for all / £ Naib(X). Similarly, there exists a unique continuous map k

from X into Y such that tp~1(g) = gok for all g £ Na,b(Y). It readily follows that both
hok and koh are identity maps which means h= k~x and h is a homeomorphism. U

In the next result, Aut Naib(X) will denote the automorphism group of Na>b(X)

and H(X) will denote the homeomorphism group of X.
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THEOREM 2 . 5 . Suppose a^ -b. Then Aut Natb(X) is isomorphic to H(X).

PROOF: Let <p G Aut Na>b(X). Then according to Theorem 2.4, there exists
a unique homeomorphism h from X onto X so that <p(f) — f o h for each / G
Naib(X). One easily verifies that the mapping $ which is defined by $(y?) = h~1, is
an isomorphism from Aut Naib(X) onto H(X). D

The proof of the next lemma is routine and, for that reason, is omitted.

LEMMA 2 . 6 . Let f G Na>b(X) and suppose a^O^b. Then f2=fif and only

if for each x E X, we have either f(x) = I/a, f(x) = 1/6, or f(x) = 0. If a = 0, tAen
f2=f if and only if for each x G X, we iave either f(x) — 1/6 or f(x) — 0. Similarly,

if b = 0, then f2 = / if and only if for each x € X, we have either / (z ) = I/a or

f(x) = 0.

LEMMA 2 . 7 . Let ip be a homomorphism from Natt,(X) into JVO)j(y). Suppose

a^0 and <p{l/a)(y) = 0. Tien <p(f){y) = 0 for aii / 6 Naib{X). Similarly, if b ^ 0
and <f(l/b){y) = 0, then <fi{f)(y) = 0 for all f £ Na,b(X).

PROOF: Suppose first that a ^ 0 and <p{l/a)(y) — 0. One readily checks that if
^(a;) < 0 for all x G X, then {l/a)g = g. Now, for any / G Na%b(X), define

f /(«) if /(«) < 0 ( 0
= I and /2(a;)=<

\0 if/(x)>0 72V ; \ -

if / (x) ^ 0

/(as) if / (x) > 0.

Then / i (z ) < 0 and /2(a;) < 0 for all x G X and f = fi- f2- For any / G
and any y &Y,we get

= v(fi - AKy) = (v(/0 - v(/2))(y) = v(/i)(») - v{h){y)

= 0.

Now suppose 6 ^ 0 and <p{l/b)(y) = 0 . It is immediate that if g(x) ^ 0 for all

x G X , then (1/6)5 = 9 • This time define

j f(x) if f(x) ^0 J 0 if /(x) ^ 0

Then / i (x) ^ 0 and f2{x) ^ 0 for all x £ X and again we have / = f\ — f2. For any

/ € Na<b(X) and any y G ^ , we get

= o.
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THEOREM 2 . 8 . Suppose a ^ —b and let <p be a nonzero homomorphism from
Na,b{X) into Na>i,(Y). Then there exists a continuous function h from a nonempty
clopen (simultaneously closed and open) subspace Z of Y into X such that

[0 fory e Y\Z.

PROOF: We have either a ^ 0 or i ^ 0. Suppose first that a ^ 0. We want to
show that even if 6 ̂  0, we cannot have tp(l/a)(y) = 1/6 for any y £ Y. Suppose, to the
contrary, that there is a y £ Y for which tp(l/a)(y) — 1/6 and define a homomorphism
ipy from Natb{X) into Ratt, by V"»(/) = <fi{f){y)- Then ij)y is nonzero since i/)y({l/a)) =
1/6 and according to Lemma 2.2, there exists an x £ X such that rpy(f) — f(x) for all
/ G Na>b(X). From this, we get

I / a = <l/a)(y) = tf,«l/«» = *><l/a)(y) = 1/6

which results in the contradiction that a — b. Consequently, yj(l/a)(y) ^ 1/6 for all
y G Y and it follows from Lemma 2.6 that either ip(l/a)(y) — I/a or tp(l/a)(y) = 0
for all y € Y. Next, define

Z ={y G Y : <p{l/a)(y) = I / a }

A ={y G r : V(l/o)(w) = 0}.

It follows from what we have just observed and Lemma 2.6 that Z and A are disjoint
clopen sets whose union is X. Moreover, since <p is nonzero, it follows from Lemma 2.7
that Z ^ 0. For each y G Z define a homomorphism if>y from Nait,{X) into fia)i by
V»9(/) = y(/)(y)- The homomorphism ipy is nonzero since ij>y(l/a) = (p(l/a)(y) = I/a
and it follows from Lemma 2.2 that there exists a unique point x G X such that i>y{f) =
f(x) for all / G Na,b(X). Define % ) = x and note that p(/)(j/) = Vy(/) = / ( % ) )
for all / G Na,b(X) and y G Z. Moreover, it follows from [2, Theorem 3.8, p.40], that
h is continuous. Finally, it follows from Lemma 2.7 that <p(f)(y) = 0 for y £ V\Z.
The case where 6 ^ 0 (and perhaps a = 0 ) is handled in much the same manner as the
case we have just completed so we omit the details. U

THEOREM 2 . 9 . Suppose a ^ —6 and let Y be any topological space. Then for
each space X and each nonzero homomorphism <p from Na,b[X) into Na<i(Y), there
exists a continuous function h from Y to X such that <p{f) = /oft for all f £ Na>b(X)
if and only if Y is connected.

PROOF: Suppose first that Y is connected and that y is a nonzero homomorphism
from Na,b(X) into Na,b{Y) for some space X. According to Lemma 2.8, there exists

https://doi.org/10.1017/S0004972700017159 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017159


406 K.D. Magill Jr. [6]

a nonempty clopen subspace Z of Y such that <p(f)(y) = f o h(y) for all / 6 Naib(X)
and all y E Z. But we must have Z = Y since Y is connected.

Now suppose that Y is not connected. We must exhibit a space X and a nonzero
homomorphism from Na,b(X) into Na,b{Y) which is not of the form described in the
theorem. Take X = {p, q} to be the two point discrete space. Since Y is not connected,
we have Y = A U B for two disjoint nonempty clopen subsets A and B. Define a map
<p from Na,b(X) into Na,b{Y) by

{ /(p) for y E A

0 for y e B.

One verifies in a routine manner that <p is, indeed, a nonzero homomorphism. However,
there exists no continuous function h from Y to X such that <p(f) — f oh for in such
a situation, we would have ^(1) = (1) and this is certainly not the case. D

In the next result End Naib(X) will denote the semigroup of all endomorphisms of
the near-ring Na>b(X). The symbol S(X) denotes the semigroup, under composition,
of all continuous selfmaps of X. The dual of S(X) will be denoted by 5 D ( X ) . The
product /«<7 of f,g (E SD(X) is therefore denned by / » g = go f. Finally, the symbol
5 D ( X ) will denote the semigroup SD{X) with a zero element adjoined and the zero
endomorphism of a near-ring will be denoted by ipo.

THEOREM 2 . 1 0 . Suppose X is a continuum and a ^ -b. Then End Natb(X)

is isomorphic to SD(X) •

PROOF: Suppose <p € End Naib(X) and (p ^ ipo- According to Theorem 2.9, there
exists a necessarily unique continuous selfmap h of X such that <p(f) = f o h for all
/ 6 Naib(X). Define a map $ from End Naib(X) into SD{X)° by ${<p0) = 0 and
*(V?) = h. Suppose $(pi) = hx and $(p2) = h2. Then (y>: o ip2)(f) = <pi(<P2(f)) -

<Pi(f ° h2) = / o (h2 o hi) — f o (hi • h2). But this means $(<pi o ip2) = ft: • h2 =
$(<Pi) • $(<p2)- It follows easily that $ is bijective and the proof is complete. D

THEOREM 2 . 1 1 . Suppose X and Y are continua which contain arcs and sup-

pose also that a ^ —b. Then the following statements are equivalent:

(2.11.1) End Naib(X) and End Naib(Y) are isomorphic,

(2.11.2) The near-rings Naib(X) and Na,b{Y) are isomorphic,

(2.11.3) The semigroups S(X) and S(Y) are isomorphic,

(2.11.4) Tie spaces X and Y are homeomorphic.

PROOF: Theorem 2.10 assures us that (2.11.1) implies (2.11.3). Because X and
Y are both continua which contain arcs, it follows that both X and Y are generated
spaces as defined in [3, Definition 2.2, p.198]. It then follows from [3, Theorem 2.3,
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p.198], that the spaces X and Y are homeomorphic. That is, (2.11.3) implies (2.11.4).
Since it is immediate that (2.11.4) implies (2.11.2) and (2.11.2) implies (2.11.1), the
proof is complete. U

Now we turn our attention to the case where a = — 6 ^ 0 .

LEMMA 2 . 1 2 . Suppose 6 > 0 and <p is a nonzero homomorphism from N-b,b(X)

into R-b,b- Then there exists a unique x £ X such that either <p(f) = f(x) for all

f € N-b,b(X) or ¥>(/) = - / ( * ) for all / e N-b,b(X).

PROOF: We can take Y in Lemma 2.7 to be the one point space and we can then
identify N-b,b(Y) with R-b,b and it then follows from Lemma 2.7 that tp(l/b) ^ 0.
Then define il>(x) = (x). Then ipoif) is a nonzero endomorphismof R-b,b and according
to Theorem 2.1, either tpoif>(r) = r for all r £ R-b,b or ipoij)(r) — — r for all r 6 R-b,b-

This means that either

(2.12.1) <p(r) = r for all r £ R-b,b

or
(2.12.2) <p{r) = -r for all r £ R-b,b-

In either event <p is a homomorphism from N~b,b{X) onto R-b,b and since R-b,b is
simple, Ker ip is a maximal ideal of N-btb{X) and according to [5, Theorem 2.3], there
exists a unique x £ X such that Ker <p = Mx = {f £ N-b,b(X) : f(x) = 0}. Again,
we have / - (/(*)) £ Mx and 0 = <p(f - (/(*)» = f(f) - /(as) in case (2.12.1) holds,
whereas 0 = <p(f - (f(x)}) - ip(f) + f(x) in case (2.12.2) holds. This completes the
proof. u

THEOREM 2 . 1 3 . Let 6 > 0 and let <p be a. nonzero homomorphism from

N~b,b(X) to N-b,b{Y)- Then there exist two clopen subsets A and B of Y such

thai Z = A U B ^ 0 and a continuous function h from Z into X such that

( / ( % ) ) foryEA

v(f)(y) = | -/(My)) foryeB
[ 0 for y £ Y\Z.

PROOF: Evidently, we have (l/b)(l/b) = (1/6) so that <p(l/b)<p(l/b) = <p(l/b)

and it follows from Lemma 2.6 that for each y £ Y, we have either <p(l/b)(y) = 1/6 or

<p(l/b){y) = -1 /6 or V{l/b)[y) - 0. Let

A = {y e Y : <p{l/b)(y) = 1/6}

B = {y € Y : ̂ (l/6)(y) = -(1/6)}

C = {y £ y : <p{l/b){y) = 0}.
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Now A, B and C are mutually disjoint clopen subsets whose union is Y. Since <p

is nonzero, it follows from Lemma 2.7 that Z ^ 0. Now suppose y G A. Define a
homomorphism ij)y from N-b,b(X) to R-b,b by V"»(/) = V"(/)(y)- Since y £ A, we
have ij>y(l/b) — 1/6. By Lemma 2.12 there exists a point x £ X such that either
V>B(/) = /(a;) for all / e N-b,b(X) o r V>y(/) = - / ( * ) for all / 6 N-b,b{X)- In view of
the fact that ^ ( 1 / 6 ) = 1/6, we see that V>s(/) = f{x) for all / G Ar_6)6(X). We define
A(y) = z and we note that <p(f)(y) = rj>y{f) = /(My)) for all y G A and / G N-.b,b(X)-

In a similar manner, one extends the function fc over B also but with the difference
that <p(f)(y) = - / ( % ) ) for all y G £ and / G N-b>b(X). Of course, Lemma 2.7 tells
us that <p(f)(y) = 0 for all y G C = Y \ Z . Finally, It follows from [2, Theorem 3.8,
p.40], that the restrictions of h to both A and B are continuous and since both those
sets are clopen, it follows that h is a continuous function from Z to X. D

THEOREM 2 . 1 4 . Suppose 6 > 0 and Y is any topological space. Then for each
space X and each nonzero homomorphism from N-b,b{X) into N-b,b(Y), there exists a
continuous function h from Y into X such that either tp(f) = foh for all f G N-b,b(X)
or <p(f) = —f o h for all f G N-btb(X) if and only if Y is connected.

PROOF: Suppose first, that Y is connected and let the sets A, B and C be defined
as in the previous proof. As we noted there, these sets are all clopen and since Y is
connected, this means that either Y = A or Y = B or Y = C. But Y ^ C since
ip is a nonzero homomorphism. If Y — A, it is immediate that tp(f) = f o h for all
/ G N-b,b{X) and if Y = B, it is immediate that <p{f) = -f o h for all / G N-b,b(X).
If Y is not connected, one defines a homomorphism from N-b,b(X) to N-btb{Y) where
X is the two point discrete space, just as in (2.9.1). In this case also, there exists
no continuous function h such that either <p(f) = f o h for all / G N-b,b{X) or
<p(f) — —f o h for all / G N-b,b(X) since this would imply that either <p(l) — (1) or
ip{l) = (—1) and neither of these is the case. D

THEOREM 2 . 1 5 . Suppose 6 > 0, Y is a continuum and <p is an isomorphism
from N-b,b(X) onto N-b,b{Y). Then there exists a homeomorphism h from Y onto
X such that either y>(f) = f o h for all f G N-btb(X) or tp(f) = -f oh for all
f€N-b,b(X).

PROOF: According to Theorem 2.14, there exists a continuous function h from Y
into X such that either <p(f) = f o h for all / G N-b>b(X) or <p(f) = -f o h for all
/ G N-b,b{X). Similarly, there exists a continuous function k from X into Y such that
either f'1^) = 9 o k for all g G N-b,b{Y) or V - 1 ( P ) = -g ° k for all g £ N-b,b(Y).
Suppose <p(f) = -foh for all / G N-b,b(X) while f^ig) = gok for all g G N-bib(Y).
Then / = (tp'1 o <p)(f) = -f o (h o Jfc) for all / G N-b,b(X). But this would imply, for
example, that (1) = —(1) o (ho k) = —(1) which is a contradiction. It readily follows
that if <p(f) = foh for all / G 7V_6,6(X), then ^(g) = gok for all g G N-b,b(Y)

https://doi.org/10.1017/S0004972700017159 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017159


[9] Homomorphisms of near-rings 409

similarly if <p{f) — —foh, then (f~1(g) = —gok. In either event, we have / = fo(h o Jfe)
for all / G N-btb(X) and g - g o (fc o h) for all g G N-b,b(Y). This implies that hole
is the identity map on Y and k o h is the identity map on X. Consequently, h is a
homeomorphism from Y onto X. U

In the next result, Z2 will denote the cyclic group of order two.

THEOREM 2 . 1 6 . Suppose 6 > 0 and X is a continuum. Then End N~b,b{X) is

isomorphic to (Z2 x SD(X)) and Aut N-btb(X) is isomorphic to Z2 x H(X).

PROOF: Let Z2 — {—1,1} where the operation is ordinary multiplication. Let
tp G End N-b,b{X) and suppose tp ^ tpo • According to Theorem 2.9, there exists
a continuous selfmap h of X such that either <p{f) = f o h for all / G N-b,b(X)
or <p{f) = —/ o h for all / G N-b,b(X). Define a map $ from End N-btb{X) into
Zi XSD(X) by $(y) = (l|fc) in the former case and $(<p) = (—l,/i) in the latter. As
for tpo, we define $(yo) = 0. One verifies in a routine manner that $ is in fact an
isomorphism. For example, suppose $(^1) = (—l|fti) and $(^2) = (—lj/12)- Then

But
Vl ° <fi2{f) = Vl(V2(/)) = <Pl{~f O h2) = / O (/l2 O

which means that

One verifies the remaining cases in a similar manner and it is also easily verified that
$ is a bijection. As for Aut N-b,b(X), let <p be any automorphism of N-b,b{X).
According to Theorem 2.11, there exists a homeomorphism from X onto X such that
either <p(f) = foh for all / G N-b,b{x) o r fif) = ~/o/ i for aU / G N-b,b{x)- I n t h e

former case, define $(<p) = (l,ft-1) and in the latter case, define $(<p) — (—1,/t""1).
One readily verifies that $ is an isomorphism from Aut N-btb{X) onto Z2xH(X). D

Before we present and verify our concluding result, it will be convenient to have at
our disposal the following

LEMMA 2 . 1 7 . An element (n, / ) G Z2 x SD(X) is of the form (1, (x)) for some
x G X if and only if it is idempotent and it is a right zero for all squares of elements in
Z2xSD{X).

PROOF: (l,(a;)) is certainly idempotent and for every (771,5) G Z2XSD[X), we
have

(m,g)2(l,(x)) = (m2
) 5o5)( l , (z)) = (1,(5 o g) . (z» = (l,(x)ogog) = ( l , (x»
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and we see that (l,(x)) is a right zero for every square of Z2 x SD{X). Suppose,
conversely, that (n, / ) is idempotent and is a right zero for all squares of Z2 x SD{X) •

Then ( n , / ) = ( n , / ) = ( n 2 , / o / ) . Thus n = n2 which means n = 1 and we have
( n , / ) = ( 1 , / ) . We must yet show that / is a constant function. To this end, choose
any x £ X . Since (1, (x))2 = (1 , (x)), we have

(1 , / ) = (1, <z»(l , / ) = (1, <«}• / ) = ( 1 , / o <*)) = (1, (/(*))).

This means that / = (/(a:)) and the proof is complete. U

THEOREM 2 . 1 8 . Suppose 6 > 0 and let X and Y be continua which contain

arcs. Then the following statements are equivalent:

(2.18.1) End N-b,b{X) and End N-blb(Y) are isomorphic,
(2.18.2) The near-rings N-bib(X) and N~btb(Y) are isomorphic,

(2.18.3) The semigroups S(X) and S(Y) are isomorphic,

(2.18.4) The spaces X and Y are homeomorphic.

PROOF: If (2.18.1) holds, Theorem 2.16 tells us that (Z2 XSD(X))0 is isomorphic
to (Z2x5D(y))° which implies that Z2XSD(X) is isomorphic to Z2XSD(Y). Let V>
be any isomorphism from Z2x SD(X) onto Z2 x SD(Y). Suppose r/>(l,f) = ( — l,g)

for some / £ SD{X) and g £ SD(Y). Choose any x £ X. The elements of the
form (l,(a;)) have been characterised algebraically in Lemma 2.17 so it follows that
•0(1, (x)) = (1, (y)) for some y 6 Y. From this we get

, (y)) = ( - 1 , 0 • (y)) = ( - 1 , (»> o g) = ( - 1 , (y)).

This, of course, is a contradiction and we conclude that rj>(l,f) — (l,g) for each
/ £ SD(X) and an appropriate g £ SD{Y). Let P(X) = {(1, /) : / £ SD{X)}

and P{Y) = {{l,g) : g £ SD(Y)}. Evidently, P(X) and P(Y) are subsemigroups of
Z2XSD(X) and Z 2 x 5 c ( y ) respectively and it follows from what we have just verified
that if) maps P{X) isomorphically onto P(Y). Now define a monomorphism a from
SD{X) into Z2 x SD(X) by a(f) — (1, /) and an epimorphism /3 from Z2x SD{Y)

onto 5£)(y) by (3(m,g) — g. It readily follows that f) o ip o a is an isomorphism
from SD(X) onto Sr>(y) and since the latter two semigroups are isomorphic, it is
immediate that S(X) and S(Y) are isomorphic. The remainder of the proof is just
as in the case of Theorem 2.11. Recall that X and Y are generated spaces and are
therefore homeomorphic by [3, Theorem 2.3, p.198]. Thus, (2.18.3) implies (2.18.4).
As in the case for Theorem 2.11, it is immediate that (2.18.4) implies (2.18.2) which,
in turn, implies (2.18.1) and this completes the verification. U
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