
A GENERAL PERRON INTEGRAL, II 

P. S. BULLEN 

1. Introduction. This paper continues work begun in a previous paper 
of the same title (7), which will be called I; results from I will be referred 
to as Theorem 1.4, Axiom 1.1 etc. The notation used in the present paper will, 
except where noted, be that of I, to which reference should be made for further 
details. 

In § 2, certain ideas presented in I are modified to give a neater and more 
general theory and then some new results of this theory are added. The re
maining two sections develop some of the examples mentioned in I, § 5. 

2. The axioms. In I, X was eventually a finite-dimensional vector space 
with a Bauer harmonic structure (2), satisfying Axioms 1.1-1.6; further, for 
all x ^ I , 3l(x) was a fundamental system of convex, regular neighbourhoods 
of x. Replacing Axiom 1.1 by Axiom 1 below and using this new axiom to 
modify the definition of the generalized derivative (I, (2)) most of these 
restrictions can be removed. 

2.1. X is then a locally compact space with a Bauer harmonic structure 
and for all x £ X, 31 (x) is a fundamental system of regular neighbourhoods. 

AXIOM 1. There exists a real function p, locally strictly hypoharmonic in X 
and IJ,(V] x)-summable for all V and all x G V. 

Throughout this paper, p (pf etc.) will denote such a function. Since p 
is n(V; x)-summable, Ap(x; V) is defined and p being real implies Ap(x; V) <<» 
(I, (1)). Further, the statement that p is locally strictly hypoharmonic just 
says that Ap(x; V) > 0, for all V small enough; see I and (3). 

Axiom 1 is often a consequence of properties of the harmonic structure. Thus 
if Axiom KD is satisfied, every real hypoharmonic function is ju(F;x)-sum-
mable for all V and all x £ V (3, Theorem 1). If, in addition, X has a count
able base and Axiom T + holds, there exists a real continuous function strictly 
hypoharmonic on X (3, Theorem 9). It should be remarked that Axiom T + 

always hold if the theory is restricted to a relatively compact U (2, remark 
after Theorem 40). 

2.2. If / is a numerical function on X, the generalized upper derivative of 
f with respect to p, relative to 31, at x, is 

(1) ÎD/(x; 31; p) = lim sup*(x) |A/(x; V)/Ap(x; V). 
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The discussion in I can be applied here with only obvious modifications. When 
no ambiguity can result the symbol 31 or the symbol p will be omitted from 
the left-hand side of (1), Clearly, when defined, 

Df(x]p)Dp(x;pf) = Df{x-pf). 

If the derivatives are defined in the /-harmonic structure, then the notation 
t-^Dfix; 31', p) etc., will be used; this is a slight change from I. If p' — p/t, 
then p' satisfies Axiom 1 in the /-harmonic structure and using results in I 
we easily see that 

(2) t-]Df(x;p') = \D(tf){x;p), etc. 

Clearly Theorem 1.4 remains valid and since Dp(x; 31; p) — 1 for all x £ X 
and all choices of 31, Theorem 1.5 also holds, the role of v in its proof being 
taken by — p. 

LEMMA 1. If Axiom 1 is assumed and f attains a non-positive minimum at x, 
then t-[Df{x)3l\pf) > 0. 

Proof. This is just the last part of the proof of Theorem 1.5. Thus this 
derivative satisfies what Dynkin (11) calls the minimum principle. 

2.3. We now discuss Theorem 1.7. If (S = (£(£/) is a collection of subsets 
of U, then we say that a numerical function / on U is jfë-even if 

for all E G S, supz€X [Df(x) = sup*€X~tf [Df{x). 

If —/ is jS-even, then / is said to be f (S-even and Theorem 1.5 can be ex
tended immediately to the following theorem. 

THEOREM 2. If Axiom 1 is assumed and f is a l^-even numerical l.s.c. func
tion on x and if for some 31, E Ç @(X), [Df(x\ 31) < 0 for all x G X~ E, 
then f 6 $*(X). 

This theorem corresponds to Theorem 1.7; the latter result can be con
sidered as characterizing a class of j(S-even functions when @ consists of 
enumerable subsets of X. 

To see this, let us suppose that X is a metric space with metric r. Then, 
changing slightly the notation in I, we say that a numerical function / is 
131-smooth at x if 

(3) lim inf*(,) [lAf(x; V)/P(x; V)] < 0, 

where 

(4) P(x; V) = {jV* [/i(7, x)/r(x, z)]dz}~\ 

If in (3) the limit exists and is equal to zero, then we say that / is 3l-smooth 
at x; if / has such a property at all points of a set A, we shall say that it 
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possesses the property on A. T h e function p in (4) is to replace s in Axiom 
1.4. Axiom 1.4 will always be considered as modified in this way. 

LEMMA 3. / / p is 31-smooth at x and [Df{x\ 5ft; p) < 0, then f is \M-smooth 
at x. 

Proof. If in fact lDf(x;3l; p) < 0, then the proof is immediate. If not, 
then write / = ( / — p) + p and note tha t the sum of a function J,5ft-smooth 
a t x and one 5ft-smooth a t x is j5ft-smooth a t x. 

T H E O R E M 4. If Axioms 1, 1.2, 1.3, and 1.4, modified as above, are assumed 
in X, a finite-dimensional vector space with 5ft convex, and if © is the class of 
enumerable subsets of X and f a numerical l.s.c. [31-smooth function on X, 
then f is [Q-even. 

Proof. If E e 6 , let X [Df(x\ 5ft). If X = +oo there is nothing 
to prove. Suppose then tha t X is finite; without loss of generality we may 

assume tha t X = 0, by considering / — \p, for instance. Then the proof is 

just t ha t of Theorem 1.7 with obvious modifications, using, a t the point 

where Axiom 1.4 is introduced, Holder 's inequality with p = a — 2 instead 

of p = 1, q = o° as in I. In fact this proves t ha t if supx(zX~E lDf(x; 5ft) < OL, 

then supzçx lDf(x\ 5ft) < a. Hence, finally, if X = — œ, 

sups€X~JE lDf(x; 5ft) < a for all a, 

and so s u p ^ x lDf(x\ 5ft) = — <». 

2.4. T h e modifications now needed in the major and minor functions and 
in the ^- integral are mostly fairly obvious and only a few points will be 
mentioned. If X is as in § 2.1 and satisfies Axiom 1, let U be a fixed relatively 
compact set with eventually nearly all of the points of U* regular (see I ) . 
T h e classes 5ft(x), x C U, @ = ®(£/), S = 8(U) (see I) of subsets of U 
are given. Let j © = J,@([/) be a collection of j®-even functions closed to 
finite sums and write / G t@ if —/ G J,©. In I no use is made of J,©, which 
makes it more general than a direct particularization of the present theory. 
In fact it is not difficult to show tha t this slight generalization is always 
possible in cases in which the evenness concept derives from (3). The present 
si tuation is akin to tha t in (15). 

A X I O M 2. (i) ® is closed to finite unions, (ii) 3 is closed to enumerable unions, 

(i") @ C S>. 
This replaces Axiom 1.5. The definition of the class of minor functions 

of / on U (I, § 3) now reads m Ç |$ft(/) if and only if 

(0 m e sao, 
(ii) ÎDm(x) < œ if x G U~E, E G @, 

(iii) \Dm(x) <f(x) iî x £ U ~ E ~ Z, E £ (£, Z e 3, 
(iv) m | U e Î ® , 
(v) m(z) > 0 for nearly all z G U*. 
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2.5. With X as in § 2.4 certain results not given in I but belonging to the 
general theory will now be proved. 

THEOREM 5. / / / is a \&-even numerical 1.s.c. function on X and if [Df{x ]3l]p) 
is locally bounded below on X ~ E, E £ @, then f is 8-hyperharmonic on X. 

Proof. This generalizes a result of Arsove (1, Theorem 19), whose proof 
applies here. 

THEOREM 6. If p € (S(Z), then for all / G g ( I ) , V, and x £ V 

(6) min,€ F ÎDf(y; 31] p) < Af(x; V)/Ap(x] V) < max,€ F lDf(y; 31] p). 

Proof. This generalizes a result of Denjoy (9, § 6). As usual, there is no 
loss in generality in assuming 1 Ç Sfr(X)\ see Theorem 1.5. Let 

g(y) = \Ap(y] V) - A/(y; V) 

for all y G V. Then for all z G F*, g (s) = 0; choose X so that g{x) = 0, that 
is, X = A/(x; F)/A^(x; V). Hence g assumes a non-positive minimum in V, 
at y say. So by Lemma 1, lDg(y;3l;p) > 0; since 1 £ § ( X ) , this use of 
Lemma 1 is justified. Simple calculations show that [Dg(y) < X — i-D/(y), 
and hence [Df{y) > X, which implies the right-hand side of (5). A similar 
argument completes the proof. 

COROLLARY 7. With the same hypotheses as Theorem 6, 

max^y ÎDf(y\ 31] p) = m a x ^ F [Df(y\ 31] £) 

miny€F ÎDf(y; 31] p) = m i n ^ F J,£>/(y; 5ft; P). 

COROLLARY 8. With the same hypotheses as Theorem 6, if for some 31 

[Df(x] 31] P) < 0 < ]Df(x] 5R; £) for a// x f l , 

thenf e $(X). 

Proof. The proofs of these corollaries follow those of Denjoy (9, 1.6 and 
1.8). Corollary 8 is just Corollary 1.6 but the proof here is more direct. 

COROLLARY 9. With the same hypotheses as Theorem 6, and in a space X in 
which a Riemann integral is defined, [Df{x] 91; p) and J\Df{x\ 31] p) are Rie-
mann integrable together, with the same values for their integrals. 

Proof. This is immediate from Corollary 7; see also (9). 

I t may be remarked that with the concept of |(S-evenness, Theorem 6 
and Corollaries 7 and 8 may be improved slightly. Whether for u £ &*(x) 
Du(x; 31; p) exists, except on some small set, is an interesting open question; 
it is known to be true in the classical cases; see (22). 
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3. A one-dimensional example. Let X be an open subset of the real 
line and &(X) be the collection of real functions h for which 

(6) Rh(x) = h"(x) + r(x)h'(x) + s(x)h(x) = 0, for all x £ X. 

X, r, s are so restricted that the axioms of the Bauer harmonic structure 
hold ; for this it is sufficient to suppose that X is a sufficiently small bounded 
open interval and r, s locally Lipschitz; see (2, 13, 21). Then in fact Axioms 
KDl T + are satisfied (2, 3, 13), and so Axiom 1 holds. The remaining axioms 
will be discussed later. A base of regular sets consists of all open intervals 
and the only negligible set is the empty set. Further (13), if u £ S2(x), then 
u Ç &*(x) if and only if Ru < 0; and if Ru < 0, then u is locally strictly 
hyperharmonic. 

3.1. Let a, 13 be independent functions in &(X), V = (c, d) and x £ V; 
then simple calculations show that 

(7) H (x) -H v(x) - tt&JW£a(x\ + fr60»/(<*)] B(x) 
(7) H,{x) - Hf {x) - [a(c)^ m ] a{x) + ^ ^ ^ 0(x), 

to\ fir. ^ Mx),0(d)] , [<*(c),P(x)] 
(8) ^V,x)- [a(c)jm]^ + H c i m ] e d l 

(9) A/(*; V) = 

where 

lf(c),a(x),P(d)] 
He), p(d)] 

[fix), giy)] = 

\f(x),g(y),h(z)] = 

fix) fiy) 
g(x) giy) 

fix) fiy) fiz) 
gix) giy) giz) 
hix) hiy) h(z) 

ey = unit mass at y. 

If a, /3 are chosen so that aie) = @id) = 0, as is always possible, call them 
y, 5; then the above formulae simplify to 

H/ix) = [f(d)Md)]y(x) + lfic)/Hc)]8ix), etc. 

Also write 

(10) Gvix, t) = 

[«(/), Pid)][*jc), p(x)] 
\[a(c),p(d)][a'(x),P(x)]' 

[«(c), Pit)][ajx), 0(d)] 
{[a(c),P(d)]la\x),P(x)]' 

C < X < /, 

t < x < d, 
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or in particular 

Gv(x, t) = 
W(x),ô(x)}' 

C ^ X ^N I) 

t < x < d. 
I [7 (*) ,«(*)] ' 

Then Gv(x, t) is the Green's function and is positive. If / 6 E(F) , then 
the equation RF = / , with boundary conditions F(c) = F id) — 0, is satisfied 
by 

(11) Fit) = -jvG
v(x1 t)f(x)dx. 

Hence if / Ç Ê(X) and / > 0, (11) defines a non-positive locally strictly 
hypoharmonic function in &2(X). In particular, we take the function p of 
Axiom 1 to be 

(12) pit) = -jxG
x(x}t)dx. 

If then 91 is given, (1) defines a generalized derivative with respect to p. Two 
choices of 91 are of interest: 

ytv(x) = {(x — h, x + k); hy k positive and small enough}, 

9L(x) = \ (x — h, x + h); h positive and small enough). 

If the choice is unimportant, we shall write 91. By (9) with 

V = (x — h, x + k), 

Afjx;V) _ \f(x-h),a(x),0(x + k)] 
{i6) Ap(x; V) [pipe - h), a(x), p(x + k)] ' 

Before considering Axioms 2 and 1.6 it will be convenient to obtain some 
further elementary identities that will be useful later. I t is always possible to 
choose a, 0 so that a! (x) = @(x) = 0, a(x) = ($'(x) = 1 (21); if this is done, 
call the functions £, rj respectively. Then it is easily seen that 

(14) [fix - h), a(x), Pix + k)] = [aix), p(x)]\f(x - ft), £(*), V(x + k)], 

(15) [fix - ft), £(*), rjix + k)] = {kfix - ft) + hf(x + k) - ih + k)fix)} 

+ ir(x)\h*ifix + k) -fix)) + k*(f(x) -fix- ft))} 
+ \six)hkih + k)fix) + Oih)oik2) + oih*)0(k)y 

(16) M ( F ; x) =j \ j ~ e*_*(l - ikr(x) + o(k)) 

ft \ 

where 
V = (x — ft, x + k), 

A = 1 + I (ft - k)r(x) -\hksix) + ~-~ ioih2) + oik2)). 
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Using (15) and (16), the ratio on the left-hand side of (3) becomes 

(17) ^ = J M ^ > ( 2 + M I ) ) 

+ /(*) - / ( * - & ) ( _ 2 + kff(pc)) + {h + k)s(x)f(x) + (ft + fe)0(i)|o(i). 

If Â = &, these results will be numbered (14-cr), etc. 

3.2. We are now in a position to consider Axioms 2 and 1.6, taking for 
(S the family of enumerable sets, for S the sets of (Lebesgue) measure zero, 
and for J,© the collection of ft-smooth functions. Instead of using Theorem 4, 
we discuss @ and J,© directly, avoiding discussion of Axioms 1.2-1.4. 

From (17) it follows that ft„-smoothness implies the de la Vallée-Poussin 
condition (K) (9, p. 17). Then from Denjoy (9, p. 37), it is seen that we can 
take for j © the ft„-smooth functions. Similarly (17-cr) shows that ^-smooth
ness implies smoothness, (23), and again it is known that we can take for 
| © the ^-smooth functions; see (15, 23, p. 328). 

Now let Z be any subset in X of measure zero, written \Z\ = 0 ; and let z 
be a non-positive u.s.c. summable function such that for all x £ Z, z(x) — — °°. 
Such a function can be constructed as follows. Let Gn Z) Gn+i, Gn open, 
\Gn\ < 1/n, n = 1,2, . . . , and 

H Gn D Z; 

then write 
oo 

where 1A denotes the indicator of A. Then if 

vz(t) = —JxG
x(x,t)z(x)dt, 

Rudin's result (21, (4.5)) shows that Dvz(f;3l; p) = -oo for all / Ç Z. 
Rudin's work is applicable to the symmetric case but easily extends to the 
general case. Hence Axiom 2 holds in both cases with this choice of @, J,©, 
and £. 

LEMMA 10. If u G §*(F) and is bounded below, then 

Au(t; V) > -Jv Gv(x; t) [Du{x; ft; p) dx. 

Proof. This is just the main part of Rudin's Lemma 5.5 (21) in the present 
notation. 

COROLLARY 11. With u as in Lemma 10, if for any V and k > 0 we write 
E(V\k) = {x;x e V and lDu(x;yi\p) < - k} and if f i C V, then 
k \E(Vi; k)\ < B < 00, where B is a constant depending on V, Vi, u only. 

https://doi.org/10.4153/CJM-1967-039-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-039-8


464 P. S. BULLEN 

Proof. Let C = supxevHu
v(x) — inixevu(x). Then from Lemma 10 

» > C > - I Gv(x, t) i Du(x; $l;p) dx 
J v 

> & I Gv(x, t)dx > k \E(Vi;k)\ min Gv(x, t), 
tev 

which proves the result. 

This corollary generalizes a result of James and Gage (16, (7.2)) and implies 
Axiom 1.6, since the set Z of that axiom has \Z\ < BJa, where Bn —> 0 as 
n —> oo. Thus the theory of the derivatives and integrals derived in § 1 applies 
in both of the present cases. The integral is a generalization of the James 
P2-integral (15, 16). 

3.3. Further properties of the generalized derivative can be obtained in 
this special case. We say that a numerical function / has a second-order Peano 
derivative at x, / 2 W , if we can write 

f(x + h) = fix) + hf(x) + $h*f2(x) + o(h% 

This definition is easily modified to define one-sided, upper and lower deriva
tives (23). If fiix) exists, write 

Rf(x) =f2(x) + r(x)f(x) + s(x)f(x). 

We say t h a t / has a first-order de la Vallée-Poussin derivative at x, / ^ ( x ) , if 
we can write 

J{/(* + h) -f(x - h)} = */',(*) + o(h), 

and to have one of second order, f"a(x), if 

*{/(* + *) +f(x - h)} = f(x) + Wf'.ix) + oih*). 

If both ff
a(x) and f"a(x) exist, write 

Rrfix) =f'faix) + rix)f\ix) + s(x)f(x). 

It should be remarked that if Rfix) or Rfff(x) exists, then it is finite. If Rfix) 
exists and is finite, then both of Rfix) and Raf{x) exist and all three numbers 
are equal; the converse is false in general, although valid under certain mild 
restrictions (8). 

If now Rfix) exists, then (15) gives 

(18) [fix - A), {(*), rjix + k)] = \hkih + k)Rfix) 

+ 0(h)oik*) + oih*)Oik), 

and if Raix) exists (15-cr) gives 

(18-er) [fix - h), f(x), vix + h)] = h*Rfffix) + oih*). 
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In particular from (12), (18), and (I8-0-), 

(19) [p(x - h), f (x), r){x + *)] = \hk{h + k) + 0(h)o(k2) + o(h2)0(k), 

(19-0-) [p(x - h), £(*), 7]{x + h)] = ¥ + o(/*3). 

THEOREM 12. (a) If JR/(#) exists, then Df(x; 3lv] p) exists and has the same 
value, (b) If Raf(x) exists, then Df(x;yi<r',p) exists and has the same value. 

Proof. This is immediate, using (1), (13), (18) or (18-cr), and (19) or (19-cr). 

It is easily seen from (15-cr) that if fv(x) exists and Df{x\^ic\p) exists 
and is finite, then Raf(x) exists; a converse of part (a) is proved later (Theorem 
15 below). These results show that the generalized derivative (1) is, in these 
cases, a generalization of (6). The main theorem of (21) gives conditions 
under which the generalized derivative reduces to R; it can, therefore, be 
taken as a generalization of certain results of Burkill (8). 

Now letf+(x),f+(x),f-(x),f~(x) denote the four Dini derivatives o f / a t x. 

THEOREM 13. If f e S P O and 

(a) if f+(x) >/_(*)» then ]Df{x)^lv;p) = 00, 
(b) if U(x) >/"(*) , then ÎP/(*;SR,;£) = «>, 
(c) if t(x) > /+ (* ) , then lDf(x;Ww;p) = - » , 
(d) if f-(x) >f+(x), then lDf(x;W,]p) = - » . 

(It is known that hypotheses (b) and (d) caw 0?zZ;y occur on an enumerable set, 
(9)). 

COROLLARY 14. (a) If ^Df(x\ 9?,; p) is finite, then — œ < /+(*;) = /_(#) <œ . 
(b) 7/ >U)/(x; $ft,;£) is finite, then —00 <f~(x) = f+(x) < 00. 
(c) 7/ 60* W ( x ; 91,; £) and i-D/fr; 91,; £) are finite, then -00 <f'(x)<<*>. 
(d) If either lDf(x;^lv;p) or iDf{x\SSiv\p) is finite, then exactly one first-

order two-sided derivative exists and it is finite. 
(e) If the hypothesis (d) holds at all points of X, then f is ACG* on X. 

Proofs. These results generalize theorems of Den joy (9, § 3) and the proofs 
follow his. In particular the proof of Theorem 13 follows from a consideration of 

+ f(x)+f(x-h) {_2 + kr(x)] + (h + k)s(x)f(x) +(h + £)<,(!) j [ l + 0(1)1 

a formula resulting from (15) and (19). 

THEOREM 15. If f 6 (S(X) and Df(x\ S$lv\p) exists and is finite, then Rf(x) 
exists. 
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Proof. It follows from Corollary 14(c) tha t / ' ( # ) exists and is finite; hence 
if h —» 0 in (20), we have 

f ( +k)
k~

f(x) - / ' (*)} + '(*)/'(*) + *(*)/(*) = #/(*;5R>;s) + o(i). 

Thus the right-hand second-order Peano derivative exists at x with value 
Df(x\ 3lv;p). By letting k —> 0 in (20) we can show similarly that the left-hand 
second-order Peano derivative exists with the same value. This completes 
the proof. 

Modifying the above method would enable us to prove 

THEOREM 16. If f e &(X) and 

-co < lDf(x; ft,; p) < ÎDf(x; ft,; £)<<*>, 

to |i?/(x) = p / (* ;3 t , ; /> ) and ji?/(x) = j£>/(x; ft„; £). 

If / ' (*) exists, write î/2(*) = sup{(f')+(*0, (/*')"(*)} and 

1\R/(*) = t/2(x) + r(x)f'(x) + *(*)/(*). 

Then we have 

THEOREM 17. / / / w differentiable on X, then ^Rf(x) > ]Df(x\ ft,; p) /or 
all x £ X. 

Proof. This is a generalization of results due to de la Vallée-Poussin and 
Denjoy (9, § 46). Following Denjoy, if h > 0, k > 0 are chosen small enough, 
it can be shown that 

[f(x + k) -f(x)]/k <f(x) + hk T/2(x) + o(k), 2 + kr(x) > 0. 

[f(x) -f(x - h)]/h > / ' ( * ) - §ft T/2(x) + o(A), - 2 + Ar(*) < 0. 

So, by (20), 

A/(x; F)/A/>(x; F) < î* / (*) + o(l), 

which gives the result. 

3.4. Finally we show that under reasonable conditions the general @-
integral associated with the present theory (see I) , reduces to a Riemann, 
Lebesgue, or Perron integral. If (11) exists as a finite Riemann integral, we 
say that / is Gv-Riemann integrable, with similar definitions for other types 
of integrals. 

If a derivative relative to ft, is GF-Riemann integrable, then the ^-integral 
is a Riemann integral and can be calculated by elementary means using a 
method based on that of Denjoy (9, § 7). 
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LEMMA 18. If 1 < m < n and fuaufiu i = 1, . . . , n, are real numbers, 
then 

(21) 

where 

At = 

[fh am, fin] =^ At \ft_i, au fii+i], 

[amj fin][ai, fij] 

[at-i, $i][0Li, fii+l] ' 
[ai, Pm][au fin] 

[Oli-i, fii][0Li, fii+l] ' 

i = 1, . . . , m, 

i = m, . . . , n, 

provided all the At, i = 1, . . . , w, are defined. 

Proof. Elementary calculations give (21). Note that Ai = An = 0 and 
that the two forms of Am are identical. 

LEMMA 19. Let xi < x2 < . . . < xn be points of X, at = a{xt)y fit = fi(xt), 
i = 1, . . . , n} where a, fi are independent solutions of (6), V\ = (x2_i, xi+i), 
i = 2, . . . , n — 1, V = (xi, xn) ; /^w if 2 < w < w - 1, 

(22) 

where 

(23) 

2=2 
A/(xm;F) = £3<A/(* , ; ^ ) , 

5« = 

[ami fin][ai, Pi\[<Xi-u fii+i] 
[ah fin][ai-i, fii][au fii+i] ' 

[ai, fim][0Lu fin][^i-h fii+l] 
{ [ah fin][ai-h fii][au fii+i] ' 

, w, 

m, 

Proof. This is immediate from (21) and (9). Equation (22) generalizes the 
formulae (9, (2.7)). 

THEOREM 20. If f is a derivative relative to 5ft„, of F and if f is Gv-Riemann 
integrable, then for t Ç V 

F{t) = HF
v(t) -SvGv(x, t)f(x) dx = Jv,F)tf. 

Proof. The equality on the right is just Theorem 1.16. From Corollary 9 
it is unnecessary to specify which derivative relative to ytv is taken (upper, 
lower, or other). The full details of the proof will not be given as it follows 
that of Denjoy. 

Let V = (c, d) be subdivided using a subdivision in which t is a point, 
i.e. c = xi < . . . < xm = / < . . . < xn = d. Then by (22) and the definition 
of AF(x; V) we have 

FW = HSM - I C t ^ ^ = H/{t) - Z Ctft, 
n-1 

Z 
i=2 
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where for i = 2, . . . , n — 1, Vt is as in Lemma 19, d = B^pixu Vt), Bt 

given by (23), and ft is some number between sup z € F i / (x) and mix^Vi f(x); 
the last equality is obtained using Theorem 6. By Lemma 19 and by (14), 

][ah pillar PiWpiXi-x), £(Xi), i?(*i+i)] , 0 
O i — r /-> i r n ir n i i — ' * * * ' * 

L«l» Pm\[<Xi-l, Pi\[OLu Pi+l\ 

By (19) and noting that 

h - i , Pt] = [ait ft'i](xt - xt-i) + 0(\xt - xz_i|2) 

we get, for i = 2, . . . , m, 

Ct = - : mi _n
ir / ' n\ (Xi+i — xt) + terms of smaller order. 

2 Loci, pn\[at , Pd 

Similarly, if i = m, . . . , n — 1, 

C, = I ^ L A J ^ I L A I (X _ x.) + terms 0f smaller order. 
2 |ai, j8nJla< , pt\ 

Hence, using (10), 

F{t) = HF
v(t) — ^^2Gv(xu t)fi(Xi+i — Xi) + terms of smaller order. 

Noting that, except for intervals eventually of small order, the summation 
covers V twice, the result follows by taking the limit in the usual way. 

THEOREM 21. Iff £ 3 ( F ) (see I) and there exists a Gv-Lebesgue integrable g 
such that f> g almost everywhere, then f is Gv-Lebesgue integrable and 

(24) JV,,.,/ = HS(t) - JV Gv(x, t)f(x) dx. 

(This theorem and an obvious generalization of Theorem 1.16 imply the main 
result of (21).) 

Proof. I t is sufficient to consider the case g = 0. Since 0 is then a minor 
function of/ on V, if M is any major function of/ on V, it is a real continuous 
hypoharmonic function on V by Lemma 1.8 (i). Hence, by (21, Lemma 5.5), 
ID M is GF-Lebesgue integrable. Further, by the definition of M, ID AI > / 
almost everywhere and s o / is GF-Lebesgue integrable. The rest of the theorem 
follows from the following more general theorem. 

THEOREM 22. If f is Gv-Perron integrable, then f G 3 ( F ) and (24) holds. 

Proof. The proof is a generalization of a method due to Denjoy (9, §11, 
12); essentially, the generalization consists of constructing a second-order 
majorant without first constructing a first-order one, to use Denjoy's ter
minology. 

It follows from Denjoy's work (9, § 11 and appendix 2.3) that we need 
only consider the case of/ GF-Lebesgue integrable. Further, as in I, it suffices 
to take $ = 0 in (24). 
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The proof consists of constructing a sequence of major functions of / on 
V converging uniformly to the right-hand side of (24) ; since a similar con
struction will give a sequence of minor functions with the same limit, the 
definition of 3 ( F ) implies (24). 

Let 7 = ma.xtevjv Gvix, t) dx, en = {x; x £ V and n K fix) < n + 1}, 
EP = an open neighbourhood of en in V such that 

\En ~ en\ < [\/{n + l)3], <j>n = in + l ) l* n , fn = flen, 71 = 0,1,2,.... 

Define 
•ww(0 = ~~ jv Gv(x, t)(j>n(x) dx. 

Then since <j>n > 0 and u.s.c. it follows that mn is a non-positive hypoharmonic 
function on V; cf. Theorem 1.4 and (21, (4.5)). If t G en and F ' is a neigh
bourhood of / in En, then by (21, (4.4)) 

Am«(*; F') = - J V AGv(x, •)(*; V')<t>n(x) dx 

= -(n + 1)JV AGy(x, •)(/; V) dx = (» + 1)A£(/; F') . 

So Amn(t; V')/Ap(t; V) = n + 1 > fit). Since in any case this latter ratio 
is non-negative, it exceeds/ at any point of en or at any point where/ is non-
positive, provided that at least V is small enough. 

Let Moit) = y^w>o rrinit), a convergent series for all t G V; then it is easily 
seen that for all t 6 V, ID Moit) ^f(t). The rest of the conditions being 
easily seen to hold, M0 is a major function of / on V. Further, if 

/ (x ;0) = sup(/(x),0), 

Moit) = - f Gvix, t)fix, 0) dx + £ - f Gvix, *){ *»(*) - /(*)} d* . 

Hence simple calculations show that 

0 > Mo + fv Gvix, t)f(x; 0) dx > - 3 ? . 

Repeat the above construction for/* = (/ + n)/en, where en —> 0 as n —> oo , 
w = 1, 2, . . . . Then define Mn(t) = ew ikf0*(0 — npix); again since 

j Z W O = en lDM0*(t) -n> enfit) - n > / ( / ) , 

we have that Mn is a major function of f on V. Further if 

f(x;n) = sup (fix), — n), 

then [/(/; n) + n]/en =f*ix; 0) so 

0 > M0*(t) + jv Gvix, t)fix; 0) dx > - 3 7 

implies that 

0 > Mnit) + j v G
vix, t)fix\ n) dx > -Sen y for n = 0, 1, 2, . . . . 

Letting w->c»we have that Mnit) converges uniformly to — j v Gvix, t)f(x) dx, 
as was to be proved. 
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4. The solutions of an elliptic partial differential equation. 

4 . 1 . Since many of the methods used in this section are very similar to 
those used in the relevant par t s of § 3, full details will not be given. Let X 
be a domain in Rn, n > 1, and &{X) be the collection of functions h satisfying 

n n 

(25) Lh(x) = X CLij{pc)hnij{x) + ^ bi(x)h\(x) + c(x)h(x) = 0 

for all x G X , where x = (xi, . . . , xn)\ atj = ajt (i,j = 1, . . . , n)\ the quad
ratic form 

n 

X) OiÀxhiyj 
2 , J = 1 

is positive definite for all x G X ; 

h"ij = d2h/dXi dXj, h'i = dh/dXi (i, j = 1, . . . , n). 

If all the functions &ijj o ij c are locally Lipschitz and X is small enough, then 
it is known tha t the axioms of the Bauer harmonic s t ructure are satisfied 
(2, 3, 13). Fur the r they are satisfied with Axioms T + , and K^, so Axiom 1 
holds. T h e regular sets certainly include all open balls in X and in fact all 
domains with smooth enough frontier. As in the previous section, if u G Ë 2 ( X ) , 
then u G fè*(X) if and only if Lu < 0; if Lu < 0, u is strictly locally hyper-
harmonic. T h e negligible sets are the classical polar sets (13) and subsets of 
a F* are negligible if and only if they are of \x{V\ x)-measure zero for all 
x G V. Fur ther , for all V (Z X, there exists a non-negative Green's function 
Gv(x\ t) such t h a t if / G S P O the equation LF = / , with boundary condition 
F(z) = 0 for all z G F*, is satisfied by (11). So p can again be chosen as in 
(12) and if ÏÏI is given, (1) defines a generalized derivat ive. 

If F G 6 2 ( ^ ) and LF = / , then by (11) 

F(t) = HF
v(t) - JV Gv(x} t)f(x) dx, t G V; 

so 

AF(t; V) 

Ap(t;V) 

I Gv(x, t)f(x) dx 

y = /(o + «. 
I GF(x, 2) dx 

where lim^ ( /) e = 0. Hence the generalized derivative DF(t;3l;p) is an 
extension of the operator LF and has the same class of harmonic functions. 

We now restrict a t tent ion to the symmetr ic case when for all x G X, 9f(x) 
consists of the open balls in X with x as centre. T o consider Axioms 2 and 
1.6 we take (S to be the family of enumerable subsets, £> to be the sets of 
measure zero, and j © the collection of functions S^-smooth on x. 
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First suppose that L is the Laplacian. Then arguments similar to those in 
§ 3 justify the choice of S a n d show that Axiom 1.6 is justified; in particular 
analogues of Lemma 10 and Corollary 11 can be proved using (19, 3.7 and 
4.2.11) rather than (21). 

To extend this to general L it is necessary to generalize the results of Rudin 
(19); this will be taken up elsewhere. As to the choice of S and J,©, this can 
be justified in certain cases by use of Theorem 3. First note that since X has 
an enumerable base, it is sufficient to show that the result holds locally. In 
particular it can then be assumed that c < 0 (13). To see that Theorem 3 
applies we must check Axioms 1.2, 1.3, and 1.4. Axiom 1.2 is immediate 
since h G &(X) implies that h G Ê2(X), and Axiom 1.3 is certainly valid 
locally. If now L is uniformly elliptic with aitj £ Ê2,X(X), bt £ Ë1,X(X), then 
a generalization of the Poisson integral representation of harmonic functions 
exists (18, Theorem 10.1; 12, Theorem 6; 13, Theorem 35.1; and 5, (6.5)). 
Thus in the case n = 2 if V is a ball of radius p and centre x, it follows from 
(12) and (5) that 

Hf
v(x) =-~ rk(p}d)f(x + Peid)dd, 

where k(p, 6) = 1 + pki(6) + o(p)k2(p} 6). This implies Axiom 1.4, provided 
that ki > 0, or ki = 0 and k2 > 0. The cases of n > 2 follow in a similar 
manner. 

Thus, except for a determination of 3> the present theory applies to solu
tions of certain equations of type (25), at least if the coefficients are smooth 
enough. The unsymmetric derivatives seem harder to discuss since a Poisson 
integral representation is lacking. In particular it would be of interest to con
nect certain of them with the generalized derivatives discussed in (18). 

4.2. In a certain sense the above case is typical. Let us consider a Bauer 
harmonic structure satisfying Axioms K^ and T + on a locally compact space 
with a denumerable base in which situation Axiom 1 holds. Bauer (4) has 
pointed out that a result of Meyer (17) implies that for every regular V there 
can be constructed a sub-Markovian Feller semi-group on the bounded Borel 
functions on V, with the excessive functions of the semi-group being just the 
non-negative superharmonic functions on V. With this semi-group can be 
associated a right-continuous left-quasi-continuous strong Markov process 
with values in the Alexandroff compactification of F (11, Chapter III) . The 
characteristic operator of this process is an extension of the weak infinitesimal 
generator of the semi-group (11, Chapter V). If the process is continuous, the 
characteristic operator is a local differential operator (11, Chapter V) obeying 
the minimum principle (11, 5.12), and coinciding with a generalized derivative 
of the present theory introduced into the original harmonic structure (11, 
(5.27) and Theorem 13.7). If, further, the process is a diffusion process, its 
characteristic operator is an extension of an elliptic operator L with c < 0. 
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This will occur if F is a differentiable manifold such that at all of its points 
there exists a coordinate system for which polynomials of degrees 0, 1, 2 in 
these coordinates are in the domain of the characteristic operator (11). 

Thus a very large class of the generalized derivatives in the theory are 
extensions of elliptic operators. The present approach is more direct than 
through the associated Markov processes and slightly more general, not being 
tied to the measurability conditions usual in that subject. The exact relation
ship between the generalized derivatives and the corresponding characteristic 
operators (or the infinitesimal generators) when the Markov process is not 
continuous has still to be determined. 

5. Other examples. 

5.1. It follows from (2, 6.1 and 6.3) that if X is a small enough domain 
of Rn+1, n > 1, and &(X) is the collection of functions h satisfying 

(26) Ph(x) = Lh(x) - h'n+i(x) = 0, for all x 6 X, 

where L is defined by (25) and subject to the restrictions introduced there, 
then the axioms of a Bauer harmonic structure are satisfied in a form that 
implies Axiom 1. The base of regular sets can be taken to be the (n + 1)-
dimensional open equal-sided simplexes with one side in the hyperplane 
xn+i = to and the opposite vertex having the (n + l ) th coordinate h > t0. 
If V is then a regular domain, it is known that there exists a Green's function 
in V with the usual properties (10). Thus p can again be chosen as in (12) 
and the resulting generalized derivative is an extension of P. The further 
refinements of the theory (sets @, 3> I©» a n d Axiom 1.6) require results 
concerning parabolic equations corresponding to (19). 

5.2. The existence of a Green's function is, under fairly general hypotheses, 
equivalent to the existence of a strictly positive non-constant superharmonic 
function (14). This situation has been studied quite generally under the name 
of Green spaces (6). A Green space is an example of a Bauer harmonic struc
ture (2, 6.4) satisfying Axiom 1. Hence there is a generalized derivative on a 
Green space that can be used to characterize its harmonic and hyperharmonic 
functions. 
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