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LOCAL HOMEO- AND DIFFEOMORPHISMS:
INVERTIBILITY AND CONVEX IMAGE

GAETANO ZAMPIERI AND GIANLUCA GORNI

We prove a necessary and sufficient condition for a local homeomorphism defined
on an open, connected subset of a Euclidean space to be globally one-to-one and, at
the same time, for the image to be convex. Among the applications we give a prac-
tical sufficiency test for invertibility for twice differentiable local diffeomorphisms
defined on a ball.

1. INTRODUCTION

A function between two topological spaces is said to be a local homeomorphism if it
is continuous, open, and its restriction to a sufficiently small open neighbourhood of any
point of its domain is one-to-one. The inverses of such restrictions will be called "local
inverses" of the given function. For spaces with a differentiable structure, we speak
of a local diffeomorphism if both the function and its local inverses are continuously
differentiable. For reasonably well-behaved spaces, the local inverse theorem states
that a continuously differentiable function is a local diffeomorphism if and only if the
differential mapping is invertible at every point.

As is well known from the complex exponential, a local diffeomorphism needs by
no means to be globally one-to-one. Characterisations of the class of the local home-
omorphisms that are invertible in the large, or at least of large subclasses, have been
given by many authors in different settings. Perhaps the neatest result along this line
of research is that a necessary and sufficient condition for a local homeomorphism from
a Banach space into another to be one-to-one and onto is that it be a proper map
(that is, the inverse image of any compact set is compact), or, even less, a closed map
(Hadamard [7], Levy [8], Caccioppoli [3], Banach and Mazur [1], Browder [2]). A few
more recent papers and books on the subject are listed in the References, with no claim
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378 G. Zampieri and G. Gorni [2]

to completeness. The authors themselves were drawn to this area through their earlier
interest in a problem in global asymptotic stability for ordinary differential equations
in two dimensions, known as the Jacobian conjecture, which can be reformulated as
a global invertibility problem for a local diffeomorphism (see [16]). For results and
references on this conjecture and on a related one, bearing the same name, in algebraic
geometry, see Meisters and Olech [9].

In the present work we add structure to the problem by concentrating on what
happens if we ask a local homeomorphism or diffeomorphism defined on an open subset
of a finite dimensional Euclidean space to be at once invertible and with convex image.

Our basic, abstract result is Theorem 1.1 below. In the statement, for a function
to be "locally convex" simply means that its restriction to a small enough convex
neighbourhood of any point of the domain is a convex function.

THEOREM 1 . 1 . Let £2 be a nonempty, open and connected subset of K" and
/ : Q —> R™ be a local homeomorphism. Then the following two conditions are equiva-
lent:

(a) / is one-to-one and /(fi) is convex;

(b) t iere exists a function k: fi —> R which is proper and bounded from

below and whose composition with any local inverse of f is a locally

convex function.

The function k will be hereby called an "auxiliary function". We shall see that,

whenever the theorem applies, k is necessarily continuous and that the function / maps

every set of the form {a; £ Q : k(x) < c}, c £ R, onto a convex set.

A first simple consequence of Theorem 1.1 follows by taking / to be the identity

mapping on f2: a nonempty, open, connected subset of Rn is convex if and only if it

is the domain of a proper, bounded from below and locally convex real function. It is

easy to see that without properness the result does not hold.

If both / and k are smooth, the local convexity part of (b) translates into a

pointwise condition involving the first- and second-order derivatives of / and k:

PROPOSITION 1 . 2 . Let fi be a nonempty, open subset ofRn, / : fi —> R n be
a C2 local diffeomorphism and k: Q —» R be a C2 function. Then the composition of k

with any local inverse of f is locally convex if and only if for all x £ Q the following

quadratic form Qx is positive semideRnite:

(1.1) Q , :R"-R, Qx(v):=k"(x){v,v}-k'(x)f'(x)-1f"(x)[v,v}.

In the last formula the derivatives are to be viewed as multilinear mappings. In
canonical co-ordinates of R n and with the indexing and summation conventions of
tensor calculus, the ij entry {Qx\j of the n x n matrix representing the quadratic
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[3] Local homeo- and diffeomorphisms 379

form Qx is

The existence of a smooth (C2) auxiliary function for a given smooth local diffeo-
morphismis then equivalent to the system (1.2) of linear second-order partial differential
equations in the unknowns k and (Qi),-,- with the added conditions that the matrix
Qx be symmetric and positive semidefinite all over Q and the scalar function k be
bounded from below and proper. As a PDE problem it seems rather formidable, except
in the one-dimensional case, where we shall show (Remark 5.3) that, given a C2 / with
nonzero first derivative on an interval, we can find an explicit solution of the (this time
ODE) problem and even get Qx strictly positive. Of course, injectivity and convexity
of the image are no issue in one dimension.

A more modest but feasible way of using Theorem 1.1 and Proposition 1.2 is to start
from a given function k and to look for practical conditions on a local diffeomorphism /
that ensure that k, or some variant of k, is an auxiliary function for / . The remaining
results of this paper are all obtained by considering local diffeomorphisms defined on
the open ball Bro(xo) := {a; 6 Mn : \x — a50| < ro}, and choosing x t-» \x — xo\ and
x I—• l/(7-Q — |a; — xo | J a s k.

PROPOSITION 1.3. Let f: Bro(x0) -> Rn be a local C2 diffeomorphism.

Then the following two conditions are equivalent:

1. / is one-to-one, the image f(Bro(xo)) is a convex set, and the function

y H-> | /~1(y) — so | is convex on it;

2. the symmetric matrix

(1.3) T-(x-xo)f'(x)-1f"(x)

is positive semidefinite for all x 6 Sro(a;o)-

Condition 2 is ensured in particular when the matrix is merely nonsingular everywhere

on the ball.

In formula (1.3), as opposed to (1.1), we refer to the canonical co-ordinates and
scalar product of R n ; I — [x — zo) • f'{x) f"{x) ' s the n X n symmetric matrix
associated with the quadratic form v i—» |u| — (z — xo) • f'{x) f"(x)[v,v], whose
ij entry is

where 6 is the Kronecker symbol.
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If convexity of the square norm of the inverse is of no interest in a given application,
Proposition 1.3 can still be seen as a sufficient test of invertibility of a smooth mapping,
based on the nonvanishing of two scalar functions: the determinant of the Jacobian ma-
trix f'(x) and, if this is nonzero, determinant of the matrix I—(x — XQ) • f [X)-1 f" (X) ;
the mapping / will be one-to-one on the largest ball centred in XQ where the two deter-
minants are nonzero. It may be worthwhile to investigate whether an efficient numerical
scheme can be developed from this idea.

A chapter in the theory of univalent holomorphic functions of one complex variable
(see, for example, Duren [4]) is devoted to the holomorphic diffeomorphisms between
an open disk of C and a convex set (in that context such transformations are called
"convex functions"). With the usual identification of C with M.2 we can translate our
Proposition 1.3 into the following (apparently new) result in the theory of complex
convex functions:

PROPOSITION 1.4 . Let f be a holomorphic function with everywhere non-
vanishing first derivative defined on the disk Dr = {z £ C : \z\ < r}, r > 0. Then the
following two conditions are equivalent:

1. f is one-to-one on DT, the image f(Dr) is a convex subset of C and the
real function w i-» |/~1(u;)| is convex on it;

2. the inequality l/'(*)l > \zf"iz)\ nolds for all z £ Dr.

This result isolates a subclass of the functions described by Theorem 2.11 of [4],
which states that, with the same preamble as above, the next two conditions are equiv-
alent:

1'. / i s one-to-one on DT and the image f(Dr) is a convex subset of C;
2'. the inequality 3?(1 + zf"{z)/f'(z)) > 0 holds for all z £ Dr.

(The operator 9J is the real part.) The maximal radius for condition 2 is obviously
not larger than the maximal radius for condition 2', and both are clearly positive.
They coincide in the case of the complex exponential f(z) := ez and are distinct for
f(z) := 1/(1 + z) (see Remark 5.5 for details).

Turning our attention back to Proposition 1.3, notice that its condition 2 is surely
satisfied for a given C2 local diffeomorphism / whenever the radius r is small enough,
because the matrix I — (x — xo) • /'(a:)"1/"(a) reduces to / when x —> XQ • All C2

local diffeomorphisms then enjoy the property that for each xo there exists a convex
neighbourhood of /(s;o) where / - 1 is defined and on which the scalar function y t—»
\f~1(y) — xg\ is convex. Actually, without appealing to Proposition 1.3, this fact
comes directly from the local inverse function theorem and the observation that the

Hessian matrix of j / H \f~1{y) — xo\ at f(xo) is 2(f'(xQ)~1j / ' (xo)"1, which is

positive definite. Less easy is to prove that the property holds with only C1'1 regularity.
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[5] Local homeo- and diffeomorphisms 381

This can be drawn from the more precise Proposition 1.5 below.

PROPOSITION 1 . 5 . Let x0 G K", r > 0, and f: Br(x0) -» Kn be a Jocai C1

diffeomorphism. Suppose that there exist constants 0 < Mi ^ M2, L ^ 0 such that

Mi \u\ < If'ixy'ul < M2 \u\ ,

l/'fci)"1* - f'(x2)-
1u\ ^L\Xl-x2\ \u\

for all x,xx,x2 G Br(x0) and u G Kn. Suppose finally that r ^ Mf/LM2. Then
the mapping f is one-to-one, the image f(Br(xo)) is a convex set, and the function
y (--> \f~1(y) — xo\ is convex.

The one-variable C1 diffeomorphism f(x) := x + x \x\ is not covered by the
assumptions of Proposition 1.5, because it has infinite second derivative at x = 0 .
Still, the function y \-> |/~1(j/)| is convex in a neighbourhood of y = 0. We could
account for this by admitting the mapping x 1—> f'(x)~ in the proposition to be just
locally Lipschitz continuous with constant L{x) on the punctured ball Br(xo) \ {so},
provided that the product \x — xo| L[x) is small when x —> xo, as it is the case in the
example. Any attempt to further weaken the regularity cannot anyway lead to more
than marginal improvements. The property breaks down for local diffeomorphisms
that are merely C1, as Remark 5.6 will indicate. This is not surprising, because a
C1 transformation cannot be hoped to preserve curvature.

The remainder of the paper is laid out as follows. In Section 2 we shall provide
some preliminary facts on line-lifting as needed in our particular framework. For a much
more general and abstract formulation see Rheinboldt [11]. In Section 3 we prove the
part '(b) =>• (a)' of Theorem 1.1. The main point will be to show that given £0,31 6 f2
there exists a continuous path 7: [0,1] —» f2 such that 7(0) = zo,7(l) = ^i and that
f(j(t)) — </(xi) + (1 - i)f{xo) for all t G [0,1]. In Section 4 the reverse implication
'(a) => (b)' will be obtained by constructing a function K: /(f2) —» K which is convex,
proper and bounded from below and by defining the auxiliary function as k :— K o f.

In Section 5 we shall collect miscellaneous remarks and the proofs of the proposi-
tions that we have listed above. Finally, Section 6 is devoted to the ideas from differ-
ential geometry that originally inspired this work: a theorem of Gordon's on geodesic
connectivity, as applied to a suitable Riemannian metric on f2 that can be associated
with a given local diffeomorphism. In that setting the otherwise obscure quadratic
form Qx of Proposition 1.2 will be given a simple differential-geometric interpretation.

2. LINE-LIFTING

Line-lifting is the implicit function problem of finding continuous paths 7 in fi
that emanate from a given point XQ G fl and are mapped into straight lines by the

https://doi.org/10.1017/S000497270001649X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001649X


382 G. Zampieri and G. Gorni [6]

function / : ft-• R":

(2.1) 7(0) = x0, f(-Y(t)) = f(x)+tv

for a given » e l " .
A first reading of this section may be expedited by assuming / to be a local diffeo-

morphism, so that 7 is differentiable and we can take the derivative of equation (2.1)
with respect to t and look for 7 as a solution of a Cauchy problem for a differential
equation

(2.2) 7'(<) = / '(7W)-1t, , 7(0) = z0

(Wazewski's equation; see [13]) instead of a solution to an implicit function problem.
It will be easily seen that, with C2 regularity on / , Propositions 2.2 and 2.3 become
very standard results in the theory of ordinary differential equations. The differential
equation point of view results in a loss of regularity, however, because if / is a Cm local
diffeomorphism, m ^ 1, ~y(t) actually depends in a Cm way on the triple (x,v,t), and
not just Cm~1, as one would be led to believe by the general theory of ODE applied
to (2.2).

In Section 6 we shall see that, with suitable regularity of / , the paths 7 can also
be seen as geodesic curves for a Riemannian structure on f2 induced by / .

In the rest of this section, 0 will be a nonempty, open and connected subset of R™
and / : Cl —> Rn a local homeomorphism.

DEFINITION 2.1: Given x G fi, v e Rn, we shall call a "line-lifting path" a
continuous function 7: I —* Q, denned on an interval i C l containing 0, such that

(2.3) /(7(0) = /(*) + tv for all t£ I.

Even without using the continuity of / , we can say that the set of line-lifted
paths is nonempty, because it contains the trivial f(t) = x defined on the degenerate
interval I = {0}. The set is also naturally endowed with the partial ordering denned
by the restriction of functions. Zorn's lemma allows us to say that every line-lifting
path is then the restriction of a maximal path, that is, of a path that is not itself the
restriction of a line-lifting path defined on a strictly larger interval. Of course, in our
setting we can say much more. We omit the proofs of the next two propositions, which
only involve basic topology. The first one concentrates on the dependence of 7 from t,
while the second one is about the joint dependence on (t,x,v).

PROPOSITION 2 . 2 . For any given x £ f2, v G R", there exists one and only
one maximal line-lifting path fx<v defined on the interval Ix<v. Moreover, ~fXtV(t) only
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depends on the product tv: if t e / „ , „ , i ' 6 R , » ' e R " and t'v' = tv then t' G IXtVi

P R O P O S I T I O N 2 . 3 . Theset D := {(x,v,t) •. x e fi, v G R", t e lx,v} is open
in f2 x Rn x R, tie /unction (x,v,t) i—> "yx,v(i) is continuous on D, and for any fixed
x 6 fi, t ^ 0, tie mapping v H-» 7Zll,(t) is an open mapping on {v 6 R™ : (z,t;,t) G Z)}.

When / is a Cm local diffeomorphism, m ̂  1, 7Sl1)(<) is also Cm regular in the
triple (x,v,t), and the openness of the mapping v >—> 7ZlO(t) for t ^ 0 can be easily
obtained by differentiating formula (2.1) with respect to v:

(2-4) /'(7...(t))A,7.,.(*) = tf,

(where / is the identity mapping in Rn) and noticing that DvjXlV(t) is invertible.
The following propositions uses the fact that we are lifting straight lines and not

just continuous paths.

PROPOSITION 2 . 4 . Let C be a compact subset of Cl, x e n and v £ R n ,

v ^ 0 . T i e n t i e r e exists t G fx<v such that 7 x ,» (0 G fi \ C for all t e Ix,v,t ~2 i .

PROOF: Suppose first that sup/I ] r = +oo. Since f(C) is compact and v ^ 0,
there exists t ^ 0 such that

(2.5) f(x) + tv G Rn \ f(C) f o r a l l t ^ t .

But f(x) + tv = f(~yx,v(t)) for all t ^ 0, whence the conclusion. Suppose instead that
sup/ I i r < +oo and that the property were not true. Then there would exist a sequence
of times tm such that

(2.6) tm / sup/*,„ < +oo , Jx,v(tm) £ C .

Of course we can suppose that the sequence jXtV(tm) converges to a point y G C. Let
U'y C Uy be two neighbourhoods of y in fi where / is one-to-one, with Uy open and
U'y compact. We can safely assume that fx,v(tm) G Uy for all m G N. In particular

(2-7) f(7XAtm))=f{*) + trnvef(Uy).

Since the compact set f(Uy) is disjoint from the set Rn\/(Z7j,) , which is closed in 1 " ,
their distance is positive:

(2.8) 5 : = d i s t ( / ( £ / ; ) , R n \ / ( E A y ) ) > 0 .

The point f(x) + tv cannot move from f{Uy) to Rn \ f{Uy) in less than 8/ \v\ units
of time:

(2.9) | t_< m|<i- ^ f(x)+tvef(Uy),
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and, until it leaves f{Uv), the line-lifting is defined as

(2-10) 7*,v(0:=/l^(/(*) + Me£V

Hence for all m £ N the whole interval Um,2m + 8 \v\~ j is contained in Ix<v, which

contradicts our assumption that tm /" supJI|t) < +oo. u

3. PROOF OF THEOREM 1.1, PART I

Let f2 be a nonempty, open and connected subset of Kn, / : $7 —> M.n be a local
homeomorphism and A;: f2 —» R be a function. It is easy to see how the local convex-
ity mentioned in condition (b) of Theorem 1.1 relates to the line-lifting paths 7Zl1)(i)
introduced in Section 2. Namely, the following two conditions are equivalent:

(i) the composition of k with any local inverse of / is a locally convex func-
tion;

(ii) for any x £ fi, v £ M.n the function 11-» k(jXtV(t)) is convex on IXiV.

We are now ready to tackle the implication '(b) => (a)' of Theorem 1.1.

PROOF OF THEOREM 1.1, (b) => (a): The problem can be reduced to proving
that, for any pair of points x,y £ Cl, the straight line segment joining f{x) with f(y)

is the image through / of a continuous path in fi joining x with y. It will then be
obvious that f(£l) is convex. As for the invertibility of / , if /(x) = f(y) then a; and y

will be connected in fi by a continuous path along which / is constant. This is only
possible if x = y because / is a local homeomorphism.

Within the framework introduced in Section 2, we must show that for any x,y £ fi

there exist v £ Rn, t £ Ix>v such that Jx^it) — V- Let x be fixed and consider the set

(3.1) R := {7»,,(*) : v€Rn,te J,,,} C fl.

We shall conclude that R = Cl if we are able to prove that R is nonempty, open and

closed in the connected set f2. Obviously x 6 R because t £ Ix>v and ~fXtV{t) — x

whenever tv = 0 (take for example v = 0 and t £ IXto = R arbitrary).

To see that R is open, let us note that we can restrict t to be nonzero in the

definition of R, because x is recovered anyway, and then R can be written as the

union of a family of sets

(3.2) R = ( J {1XiV(t) : v £ K" , * £ / * , „ } ,

each of which is open because the mapping v i—> jXlV(t) is open on the open set {v £

Kn : t £ I*,,,} if t^ 0 (Proposition 2.3).
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We are left to verify whether R is closed in fi. Let ym = ~fx>Vm(tm) be a sequence
of points in R converging to y £ 0 . The question is whether the respective paths
converge, too. Cannot they conceivably drift to the boundary of fi or to infinity,
instead, a s m - t +oo? The auxiliary function k is what will rule out this possibility.
But first some normalisation of parameters. Since

(3-3) /(7«,»™(<m)) = / (*) + tmvm - f(y),

the sequence tmvm converges to f(y) — f{%) • Upon a linear reparameterisation of the

paths, we can safely assume that tm = 1 and vm —> v := f{y) — f(x) (by Proposition 2.2

it suffices to take v'm = tmvm instead of vm, because 7I)Ojji(l) = ym too).

The problem further reduces to proving that 1 £ Ix^ , because if this is the case

then Proposition 2.3 will give that

(3-4) y = lim 7x,Vm(l) = 7«,ir(l) 6 R.
m — • T O O

At last we come to exploit the auxihary function k. From the local convexity property
it follows that the set of the times t for which a generic hne-lifting path fXlV(t) belongs
to a set of the form Lc := {z £ Kn : k(z) ^ c}, for c 6 R, is an interval. In fact, since
the function h(t) := k(jXtV{t)) is locally convex on Ix>v, it is globally convex, so that
from h(t') ^ c, h(t") ^ c we deduce that h(t) ^ c for all the t in between t1 and t".

Let us specialise c to be the (finite) supremum of the continuous function k over
the compact set {ym : m £ N}U{K,J/} C fi. We can say that the relation 7i,-om(<) £ Lc

holds for all t £ [0,1], because it does for both t = 0 and t = 1.
From the hypothesis (b) we have that Lc is compact. From Proposition 2.4 we are

assured that the path fx^ will eventually escape from Lc: there exists t £ Ix^, 1^0
such that 7x,»(<) £ Cl\Lc. But then t £ Ix,Vm and fx,vm(t) is in the open set fi \ Lc

for all large m (Proposition 2.3). Thus t > 1 and we are done. D

4. PROOF OF THEOREM 1.1, PART II

Given two nonempty open sets d,C in Kn, of which C is convex, and a homeo-
morphism / : fi —* C, we wish to prove that there exists an auxiliary function for / ,
that is to say, a proper, bounded from below function k: fi —» IR for which the compo-
sition k o f~x is a convex function. Notice that the function K := k o f~l will itself
be proper, bounded from below, beside being convex: it will be an auxihary function
associated with the identity mapping C —» C. The other way round, if we come up
with a proper, bounded from below and convex K : C —» R, then an auxiliary function
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for a general / : f2 —> C will simply be k=Kof:

n -U /(n)

We can then forget about all the data of the problem except for the set C. The purpose
will be to define a convex function K: C —> R which is proper and bounded from below.

The special case when C = Rn is very easy: we can simply define K(y) :— \y\.

This K is obviously convex, bounded from below, and the inverse image of a compact
subset of R is itself compact because it is bounded and closed in Rn.

To tackle the general case, we start with recalling some well-known properties
of the gauge function jc '• K" —> R associated to an open, convex subset C of Rn

containing 0:

(4.2) jc{x) := inf{A > 0 : x/X E C} for i £ R " .

Since 0 is in the interior of C, there exists e > 0 such that ex/ \x\ £ C for any x ^ 0.
It follows readily that 0 ^ jc(x) ^ \x\ /£ f°r all * £ Kn- It is also clear that jc is
positively homogeneous of degree 1. Next, if a;,y € Rn and A , / J > 0 , we can write

(4.3)

so that jc is subadditive: jc{% + y) ^ ic(^) + jc{y) for any z,j/ £ Rn. Since it is
homogeneous and subadditive, it must be convex too. Lipschitz continuity also follows
easily from the relation

(4.4) jc(y) - jc(x) = jc(y -x + x)- jc{x) < jc(y -x

= jc(y-x) < ^ ~ Z | for any x,y 6 Rn

and the one obtained by exchanging x and y.

The gauge function jc completely describes the set C:

(4.5) C = {* £ Rn : j c ( « ) < 1} , 5C = {x E Rn : io(«) = 1} •

In fact, if x E C then (1 + 8)x £ C for 8 > 0 small enough, so that jcfc) < (1 + *)~X <
1. Conversely, if jc(x) < 1 then x/X E C for some some A < 1 and x also belongs to C
because it lies on the segment joining 0 £ C with x/X. To prove the "C" inclusion in
the formula for dC it is now enough to notice that jc{x) ^ 1 for all x in the closure
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of C because jc is continuous and that jc{x) < 1 only for the x in C, which does
not intersect dC. Conversely, if jc(x) = 1 then fix £ C for all fi £ [0,1) because
jc(px) — fijc{x) < 1, and x = lim fix must be in the closure of C, but not in C

itself.

The following lemma on convex functions is straightforward.

LEMMA 4 . 1 . Let D C Rn be a nonempty, convex set, h: D -» R be a convex
function and (p: R —» R U {+00} be a weakly increasing, convex function. Then the
composition tp oh: D - t R U {+00} is a convex function.

We are now ready to complete the proof of Theorem 1.1.

PROOF OF THEOREM 1.1, (a) =>• (b): As we have remarked, we only need prove
that for any open, convex set C in R n there is a convex function K: C —> R which is
proper and bounded from below, two conditions that together mean, roughly speaking,
that K must diverge to +00 on the boundary of C (if C ^ R n ) and as \y\ —» +00 (if C
is unbounded). Since C is open in R" and it is not restrictive to assume that 0 E C, we
can consider the gauge function jc '• R™ —> R associated with C. We know that jc is
convex, continuous and 0 ^ jc{y) < 1 <=> ! / 6 C , jc{y) — 1 <=> V £ dC. It is not
difficult to coerce jc to diverge on the boundary of C: it is enough to compose it with
a function of one variable which is finite on [0,1) and that diverges at 1. Of course, we
must also make sure not to lose convexity and continuity. The function t ^ 1/(1 — t)

works out, because it is continuous, increasing and convex on the interval [0,1) and it
diverges to +00 as t / 1 . Hence the function K defined as

(4.6) * ( y ) : = _ j _ for yeC

is continuous and convex on C from Lemma 4.1. It is also ^ 1.

To ensure that K diverges also as \y\ —> +00, we define it as:

(4.7) K(y) := |y| + K(y) for y e C .

This K is convex and continuous on C because it is the sum of two functions with those
same properties. It is also ^ 1. For c > 0 the set {y £ C : K(y) ^ c} = K~1((—00, c])
is closed in C and contained in a closed subset of R n :

{y £ C : K(y) ^ c} C {y £ C : K{y) ^ c}
(4.8) i 1

= {V € R n : jc(y) *k 1 - -e} = J c 1 ( ( -00 ,1 - ^ ] ) •

Then it is itself closed in R n . But it is also bounded because

(4.9) {yeC : K(y) < c} C {y £ R n : |y| ̂  c } .

https://doi.org/10.1017/S000497270001649X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001649X


388 G. Zampieri and G. Gorni [12]

Hence {y £ C : K(y) ^ c} is compact for c > 0. This property readily takes care of
both properness and boundedness from below. D

Observe that if C is bounded, that is, there exists M > 0 such that \y\ ̂  M for
all y £ C, then jc(y) ^ |y| /M for all y £ M" and the set {y £ C : K(y) ^ c} is
bounded. In this case we could more simply define K ~ K.

5. OTHER PROOFS AND REMARKS

REMARK 1. The auxiliary function A; in condition (b) of Theorem 1 is necessarily
continuous. Suppose in fact that A:: ft —> K is a function whose composition with any
local inverse of / is a locally convex function. We want to show that k is continuous.
Let then y = f(x) £ /(ft), U be an open neighbourhood of x in ft where / is invertible
and such that V := f{U) is convex and K := kof\^j is a convex function. We shall be
done if K turns out to be continuous, because then k\u = K o f\y will be continuous.
But K is convex and finite on the open, convex set V, and the continuity follows
from a well-known property of convex functions. Actually, k must be locally Lipschitz
whenever / is.

REMARK 5.2. Suppose that Theorem 1 holds for a function / : fi —> Kn and an aux-
iliary function k: f2 —• M.. Then the set f({x £ fl : k(x) < c}) is convex for any
c £ R. Suppose in fact x1,x2 £ ft, fc(a:i) < c, k(x2) < c, 0 £ [0,1]. Define
x(6) := f-1{0f{x1) + {\-6)f(x2)). We must prove that k(x(6)) < c. But this is
easy because kof~1: /(ft) —> K is a convex function (being locally convex on a convex
set), so that we can write

(5.1) < 9{k o /-^(/(xi)) + (1 - B)(k o r1)(f(x2))

(l-e)k(x3)<c.

The set {x £ Q : k(x) < c} is connected, in particular. Theorem 1 applies on it with
x i—» l/(c — &(x)) as auxiliary function.

PROOF OF PROPOSITION 1.2: We are only dealing with local properties, and we
can simplify the notation by assuming / to be invertible on fl. Since k o f-1 is a C2

function, saying that it is locally convex is the same as saying that for any x £ ft and
« £ l " the second derivative at t — 0 of the real function it-» (fco/~1)(/(a;)-t-<u)is ^
0. Define ~y(t) := f~1(f(x) + tu). Let us compute the first derivative for arbitrary t:
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and the second derivative, using the formula for the derivative of the inverse matrix:

"T"2"(fc ° f~1)(f(x) "*" *u) ~ ^"(

(5.3)

By setting t — 0 and v := j'(t) = /'(a;)"1!* we get

(5.4) ^{k o f-1) (/(*) + * « ) | t o = k"(x)[v,v) -

The vector v can be anywhere in Rn because f'(x) is invertible, and the conclusion

follows. If desired, the right-hand side of formula (5.4) also gives the second differen-

tial (fc o / - 1 ) (f(x))[u,u\ of the composition Jfc o f~x , by substituting back f'(x)~ u

iorv. D

PROOF OF PROPOSITION 1.3: Suppose that / is one-to-one on Bro(xo) and that

y H-» | / - 1 (y) — XQ | is locally convex. Then Proposition 1.3 can be applied to the scalar

function k(x) := \x — xo\ , yielding that

(5.5) Q*{v):= \v\2-(x-x0)-f'(x)-1f(x)[v,v}>0

for all x G Bro(xo), v € R™, which is equivalent to positive semidefiniteness of the

matrix (1.3). Conversely, suppose that inequality (5.5) holds. The composition of k

with any local inverse of / will then be locally convex, because of Proposition 1.3

again. Note that such composition takes values in the interval [0,T-Q), and that the

function g{<r) := l/(rl — <T) is convex and increasing on that interval. Define k :=

g o k. Then also the composition of k with any local inverse of / is locally convex,

but this k is also bounded from below and proper on Bro(xo). From Theorem 1.1

we deduce that / is one-to-one and that /(Bro(:co)) is convex. The fact that y t—>

If'1 (y) ~ xo | = (ko j ~ x J (y) is convex follows from formula (5.5) and Proposition 1.3

once more. Finally, if the symmetric matrix J — (as — a;o) • f'{x)~ f"{x) associated with
the quadratic form Qx is everywhere nonsingular, it is positive semidefinite if and only
if it is positive definite. The set of the x G 5ro(a;o) for which Qx is positive (semi-)
definite is nonempty (because it surely contains xo), closed and open and the proof is
complete. U
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REMARK 5.3. Let / be a nonempty, open interval in R, / : / —» R be a C2 function
with an everywhere positive first derivative. Then there exists a C2 function k: I —> R
and a continuous Q: I —• R such that

k"-k'*— = Q in/, Q>0 in/,
(5.6) / '

lim fc(z) = lim k(x) =+oo.
a:\inf / x /"sup/ x '

In fact, the first relation can be regarded as a nonhomogeneous first-order linear ordinary
differential equation in k, a particular solution of which is

*•>• £('<•>£?§*)*•
where XQ 6 / is arbitrary. Let k: / —» R be a C2 function such that

(5.8) k" > 0 in / , &'(z0) = 0, lim k(x) = _ Hm_

and h: I —> R be a C1 function such that

(5.9) A(z) ^ for all z £ /,
/ (*) I < U ll z < z0.

{ > 0 if z

<0 ifz

Define

(5.10) Q(z) = f'(x)^(h(x)k'(x)) = f'{x)(h'(x)k'(x) + h(x)k"(x)) .

This Q is positive and continuous. The corresponding k' becomes

{ > ~i'(v\ if v > 3-n
< P^rri if 3- < rn
\ S ft. I X I li. •// - ^ *^0l

both as x y sup / and as x \ inf / .

PROOF OF PROPOSITION 1.4: With the usual identification of z 6 C and z 6 R2,
the matrix / - z / ( z ) " 1 / " ( z ) of Proposition 1.3 has l±|io|,with w = zf"(z)/f'(z), as
eigenvalues because of the following Lemma 5.4. These two eigenvalues are nonnegative
if and only if |w| ^ 1, which is equivalent to condition 2. U

(5.11)

whence

5.12 k(x) ^ fc(a

*'(*) - f'(x)h(3

:) — k(xo) —» + OO
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LEMMA 5 . 4 . Let $7 be an open set in C and f:Q —» C be a holomorphic

function. Let f be the real version of f. Then, for all z = x\ + ix2 G $7, x =

{xi,x2)
T ER2, if f'(z) ^ 0 we have

Tin's matrix has ± |ty| as eigenvalues.

PROOF: We must of course use the symmetries that the holomorphy of / generates
in the first and second differentials of / . First, by comparing the second order terms
f"(z)w2/2 and f"(x)[v,v]/2 in the Taylor expansions respectively of / at z and of /
at x, having identified w = vi + iv2 G C, v = (vi,v2) G R2, we see that

Applying f'(x) to the left will produce the real matrix I I associated with the
\° ° /

complex product with f"(z)/f'(z) = a + ib, a , j £ l . We can write

/ axi + ox2 —oxi + ax2 \ fvi\
= {vi,v2)[ I ) .

\ — bxi + ax2 —axi — bx2 ) \v2/

A simple inspection will show that the last 2 x 2 matrix is precisely what it is claimed
to be in formula (5.13). The eigenvalues are readily computed. D

REMARK 5.5. The function f(z) := 1/(1 + z) is a holomorphic bijection of
C \ {-1} onto C \ {0} . We have that zf"{z)/f'(z) = - 2 z / ( l + z) and
(5.16)

| / ' (*) | ^ \zf"{z)\

The images of the disks centred at the origin are

^ } i f O < r < l ,
(5.17)

f{Dr) = {w G C : 3tw > 1/2} .

The largest radius r for which w *-> |/-1(x«)j is convex on f{Dr) is r = 1/3. However
that real function is convex on the image (which happens to be convex) of the larger
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disk centred in 1/3 with radius 2/3, and it is not even locally convex elsewhere. In

particular, for 1/3 < r < 1 the image }{Dr) is a convex set although the function

w H-> | /~1(io)| is not convex on it.

Before starting the proof of Proposition 1.5, we recall a few elementary facts from

the theory of real functions of one variable. Let I be a nonempty interval of R.

(1) A function with derivative at every point of / is convex on I if and only
if its derivative is weakly increasing on I.

(2) A function ip: I —> R is said to be (weakly) increasing at to € I if
0>(t) - il>(to))(t - tQ) ^ 0 for all t 6 / close enough to t0.

(3) A real function is weakly increasing on I if and only if it is weakly in-
creasing at every point of I.

PROOF OF PROPOSITION 1.5: The simple injectivity can be proved for larger
radii with the technique of the local inverse function theorem. Define in fact /(x) :=
f'{xQ)~1f{x). If x G Br(xo) we have

(5.18) \f'(x) -l\ = Kf'ixo)-1 - /'(x)-1)/'^)! < £ |x - a.,,1 -L < i £ .

The function x *—» f(x) — x is then Lipschitz continuous on Br(xo) with constant
Lr/M-i and if x',x" £ Br(xo) we can write

\f(x') - f(x")\ > \x' -x"\-\ (f(x') - x') - (f{x") - x") I

( 5 1 9 ) > I ' "| I ' "l

Hence / , and / too, are one-to one on Br(x0) whenever 0 < r < Mi/L. It is obvious

that the injectivity extends to the limit case r = Mi/L. Notice that M\jLMi ^

M1/M2 because M\ ^ M2 • Let us proceed to prove that when r ^ Ml/LMi the

function y 1—» |/~1(2/) — XQ\ is locally convex. Let fc(x): = |x — xo| . It is enough to

show that the first derivative of the C1 function t 1—> ( k o f"1 J(s + tu), denned in a

neighbourhood of 0 6 M, is pointwise increasing at t — 0 for any choice of x G -Br(xo),

u G l " . Let fit) := / ^ ( s + tu). We have

(5 20) h{t)

2(7(0 - x0) • 7 '(0) •

The term (7(0 — xo) • 7f(0) is differentiable and for ( = 0we can write

(5.21) | ( 7 ( 0 - xo) -7'(0)|t=o = |V(0)|2 = \fix)-lu\2 > Ml \u\2 .
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In particular, for any e > 0 and \t\ small enough we have

f ^ 2(1 - e)M2 |u|21 for small t > 0,
(5.22) _V1V_, _„, , x_, ,
V ' v w ' x ' [ ^ 2(1 - e)M2 |u | ' t for small t < 0.

The rest of the assumptions (1.5) can be used this way:

(5.23) =L\u\ \j\\s)ds\ ^ L \u\ \j\l'{»)\ ds

= L\u\\ f\f\i{s)yxu\ ds ^ LM2 \u\2 \t\ .

If we choose e < 1 — \x — XQ\ /r < 1 we have that \*y(t) — XQ\ $J (1 — e)r for any |i |
small enough. For those t we can estimate the remaining term in (5.20) as follows:

(5.24) |2(7(i) - x0) • (f'(t) - 7 '(0)) I ^ 2(1 - e)rLM2 \u\2 \t\ .

Relations (5.21) and (5.24) together give, for such choices of e,

[ > 2(1 - e)(Mj2 - TLM2) \uf t for small t > 0,
(5.25) h'(t) <

[ ^ 2(1 - e)(Ma
2 - r ! M 2 ) |w|2 i for small t < 0.

This shows that h'(i) is pointwise increasing at t — 0 whenever r ^ M\jLM2.

Finally, to prove that f(BT(xo)) is convex, apply Theorem 1.1 with the auxiliary

function k(x) :— 1/fr2 — fc(x)J , as in the proof of Proposition 1.3. u

REMARK 5.6. If we are looking for a homeomorphism / defined in a neighbourhood of
the origin xg £ R n for which the function y i—> | / - 1 (y) — Xg \ is not convex near f(xg),

it will be enough if / maps every ball BT[xg) with small radius r onto a nonconvex set.
For example, in two dimensions we can impose that / maps BT(0) onto the hour-glass
shaped sets 0 ^ p < (l + sin2 9)r (in polar coordinates) by defining

Kv> [Q if (.. ,)-(M).

This / : R2 —> K2 is obviously continuous outside the origin and, being homogeneous
of degree 1, it is continuous also at the origin. The inverse / - 1 exists over all of K2
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and it is continuous everywhere too. Hence / is a homeomorphism. The first partial
derivatives of / and / - 1 exist outside the origin and they are nonconstant, continuous
and homogenous of degree 0. Hence they are bounded but they have no limit at the
origin. Then both / and / - 1 are globally Lipschitz continuous but neither is C1.

To build a possible C1 example we cannot insist that the images of the balls centred
in the origin be homothetic to each other. Let us try by making the size of the dent in
the set /(J5r(0,0)) to be of order o(r), but with an increasingly pointed shape, as r

decreases to 0. Let (p: M. —» M. be a C°° function such that

ip(-t) = <p(t) for all t E R

(5.27) f{t) = l for \t\ ^l,y>(0) =0, <p'(t)>0 for 0 < t < 1,

Let

f p + pOiptOp-P) if p > 0 ,
(5.28) h(p,e):=\ , . / n

[0 if p = 0,

where a,/3 > 0 are parameters to be adjusted. We define our / : K2 —» IR2 in polar

coordinates as

(5.29) (p,6) ,-> (h(p, 0), 6) for p ^ 0, 0 £ (-*,*] .

This / is designed to transform the circle p — r = constant into a curve which, for
small radii r, is essentially the circle centred at the origin and radius r + ra, except
for a perturbation located around 6 = 0 (more precisely, restricted to \0\ ̂  r@), where
the distance from the origin dips to reach the minimum value r at 9 = 0. We wish the
dent to be deep enough to make that curve the boundary of a nonconvex bounded set;
on the other hand, if we overdo it we risk disrupting the differentiability of / .

We shall omit the calculations that show that we can indeed strike a balance: it
happens when a > 0, /3 > 0, a — 2/3^1 and a — /? > 1. A possible particular choice
of parameters is a = 3/2, /? = 1/4.

REMARK 5.7. Some recent papers [14], [6], [15] by the authors proved sufficient con-
ditions for a local diffeomorphism to be one-to-one, conditions that were expressed in
terms of an "auxiliary function" k. For our present purposes those results can be stated
as follows:

Let f2 be a nonempty, open and connected subset of Rn, xo G fi, / : fl —» Rn

be a C1 iocai diffeomorphism and k: Ct —> K be a proper and bounded from

below C1 function. Then:

(a) if the quantity k'{x)f'(x)~ (f(x) — /(so)) is bounded from below

on fl, then f is one-to-one;
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(b) il f(x0) < c < +00 and

(5.30) k'{x)f'{x)~1 (f(x) - f{x0)) > 0 for all x £ 0 suci that k(x) = c,

then f is one-to-one on tie connected component C of {x € fl :

k(x) ^ c} containing a;o •

Suppose that the triple (n,/,fc) satisfies Theorem 1.1, and that moreover / is a
C1 local (hence global) diffeomorphism onto the convex set / ( f l ) , and that k is C 1 .
Pick any point XQ 6 f2. Let us see whether the results (a) or (b) just quoted apply
to the quadruple ( f i , / , k , x 0 ) . This is not to be construed as an alternative proof of
Theorem 1.1, because we assume it known from the start.

The function K := k o f~l is C1 and convex on the convex set / ( f i ) . If we
subtract from it its differential function at the point f(xo) we are left with another
convex function

(5-31) h{y) := K{y)-K'{f{x,)){y - /(*„))

which attains a minimum at y = f(xo) because the differential vanishes at that point.
If we evaluate h along the straight line T H ( 1 - T ) / ( 3 O ) + T / ( Z ) that joins /(aso) with
a generic point f(x) in the convex set / (H) , we get a convex function of T, defined
in an open interval containing [0,1], with a minimum at r = 0. Hence the derivative
at T = 1 will be ^ 0:

(5.32) O^

= K\f(x)){f{x) - /(*„)) - KV(xo))(f(x) - f(x0)) .

Since K'(f(x)) = k'{x)f{x)~l, we deduce that

*'(*)/'(*)"* (/(*) " /(*o)) = *'(/(*))(/(*) - /(*o))

(5-33) > KV{xo))(f{x) - f(x0))

>-\\K'{f(xo))\\\f(x)-f(x0)\

for all x € f2. Thus condition (a) of the quoted statements holds on the supplementary

assumption that /(f i) be bounded.

Next, choose any constant c > /(zo) and let x 6 fi be such that k(x) = c

(such an x surely exists because k(Q) is an interval and supfc(f2) = +00). Ths set

{z £ Q : k(z) ^ c} is connected because it is the image through f~x of the convex set

fc ° / - 1 ( y ) ^ c } - Along the straight line that joins f(x0) with / (x) the
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function K is C1, convex, and at f{x) it attains a higher value than at' f{xo). Hence
the derivative of

(5.34) r~K((l-T)f(xo) + Tf{x))

will be positive at r = 1, corresponding to f(x). Again by means of the formula for
K'(f(x)) we get

(5 35) ° < i (^((1 " T)f(X0) + Tf{x)) L=i = K'W
= kl(x)f(x)-1(f(x)-f(x0))

for all x 6 f2 such that k(x) = c, which is equivalent to condition (b).

6. MOTIVATION FROM DIFFERENTIAL GEOMETRY

Let f2 be a nonempty, open and connected subset of Kn, regarded as a C°° man-
ifold with the atlas given by the canonical co-ordinates of Kn and the trivial tangent
bundle ft x Rn. Let f: ft —> E" be a C°° local diffeomorphism, and let us also regard
the image f(ft) as a C°° manifold in the same way, but here we endow it with the
Riemannian structure induced by the canonical scalar product of Kn.

There is one and only one Riemannian structure on ft for which the length of a
smooth curve 7: I —» ft. in 17 coincides with the length of the transformed curve / o 7
in f(ft): the inner product (ux,vx)x of two vectors ux,vx in the tangent fibre at x 6 ft
must be

(6.1) (ux,vx)x:=(f'(x)ux)-(f(x)vx),

where on the right-hand side we have the canonical scalar product of Rn. This is
indeed a Riemannian metric because f'(x) is an isomorphism. After all, / can also
be regarded as a change of co-ordinates in a neighbourhood of any point. In canonical
co-ordinates the metric tensor will be represented by the matrix f'(x) f'(x), where
/'(a:) is seen as an n X n matrix and denotes transposition. This tensor is called the
Cauchy-Green strain tensor in continuum mechanics.

When ft and f(ft) are given these structures, the map / will transform geodesic
curves in ft into geodesic curves in f(ft)- The latter are trivially straight lines with
affine parameterisation: t t—> f{x) + tv. The geodesic curves in ft are simply the line-
lifting curves of Section 2 (plus smoothness of / ) , or, equivalently, the solutions of
Wazewski's equation (2.2).

Suppose that any two points Xg,xi 6 ft can be connected by a geodesic line 7

in ft. Then f(ft) is convex, because the images /(EQ) and / (z i ) are connected by the
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straight line / 0 7 m / ( f i ) . Moreover, if f(x0) = / ( ^ l ) , then / is constant along 7 ,

which can only happen when 7 itself is constant, because / is locally invertible. Hence

/ must also be globally one-to-one.

Now, whatever hypothesis on a Riemannian manifold that ensures that any pair

of points are connected by a geodesic arc can be translated into a condition on (the

metric induced by) the map / that will imply global invertibility and convex image.

The starting point of the research that produced this paper was the following theorem

of Gordon's (see [5]):

THEOREM . Let M be a connected Rjemanniaji manifold. If there exists a

C°° function k: M —» R which is proper, bounded from below and geodesically

convex (that is, t i e second covariant differential of k is positive semidefinite,

or, equivalently, ( £07 ) ^ 0 for every geodesic arc 7 in M), then any two

points of M can be connected by a geodesic arc.

Within the Riemannian structure introduced on f2, it is straightforward to verify
that the condition of geodesic convexity on k is simply our Proposition 1.2, and the
second covariant differential of k is precisely the quadratic form Qz of formula (1.1).
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