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We develop a model and numerical method to study the large-amplitude flutter of
rectangular membranes (of zero bending rigidity) that shed a trailing vortex-sheet wake
in a three-dimensional (3-D) inviscid fluid flow. We apply small initial perturbations and
track their decay or growth to large-amplitude steady-state motions. For 12 combinations
of boundary conditions at the membrane edges we compute the stability thresholds and the
subsequent large-amplitude dynamics across the three-parameter space of membrane mass
density, pretension and stretching rigidity. With free side edges we find good agreement
with previous 2-D results that used different discretization methods. We find that the 3-D
dynamics in the 12 cases naturally forms four groups based on the conditions at the leading
and trailing edges. The deflection amplitudes and oscillation frequencies have scalings
similar to those in the 2-D case. The conditions at the side edges, although generally less
important, may have small or large qualitative effects on the membrane dynamics – e.g.
steady vs unsteady, periodic vs chaotic or the variety of spanwise curvature distributions –
depending on the group and the physical parameter values.

Key words: flow–structure interactions, nonlinear instability

1. Introduction

Interactions between flexible structures and high-Reynolds-number flows are ubiquitous
in nature and engineering applications. The physical mechanisms that govern these
fluid–structure interactions provide us with important insights into the fluid dynamics of
biolocomotion. For example, fish can exploit energy from surrounding vortices and move
efficiently by undulating their bodies (Triantafyllou, Triantafyllou & Yue 2000; Gazzola,
Argentina & Mahadevan 2014), or synchronize their motions with the oncoming vortices
(Liao et al. 2003). These observations have inspired engineers to design and manufacture
continuously deformable robots that exhibit these behaviours (Lauder et al. 2007; Rus
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& Tolley 2015; Li et al. 2017). Birds and other flying animals also take advantage of such
mechanisms to achieve efficient locomotion. In particular, bats – one of nature’s most agile
fliers (Swartz et al. 1996; Shyy, Berg & Ljungqvist 1999; Swartz et al. 2007; Song et al.
2008; Cheney et al. 2015) – can adapt to the surrounding flow conditions by deforming
their thin, compliant membrane wings.

An extensible membrane is a soft material that undergoes significant stretching in a
fluid flow and has negligible bending rigidity. When it is aligned with a fluid flow, the
surrounding fluid forces can cause it to flutter and become unstable. Being able to predict
the onset of membrane instability across parameter space, either by flutter, divergence
or a combination of the two, is fundamental to a wide range of applications. Stable
membranes can be used in a variety of configurations in aircraft and shape-morphing
airfoils (Abdulrahim, Garcia & Lind 2005; Lian & Shyy 2005; Hu, Tamai & Murphy
2008; Stanford et al. 2008; Jaworski & Gordnier 2012; Piquee et al. 2018; Schomberg et al.
2018; Tzezana & Breuer 2019), sails (Colgate 1996; Kimball 2009) parachutes (Pepper &
Maydew 1971; Stein et al. 2000) and micro-air vehicles (Lian & Shyy 2005). When a
rigid wing moves through a flow its upper surface may experience flow separation and
significant reductions in aerodynamic efficiency in both steady and unsteady flows, thus
limiting the aircraft’s manoeuvrability and performance. However, a flexible membrane is
able to adapt quickly to unsteady airflow conditions by assuming a deformed shape that
can inhibit flow separation and enhance aircraft manoeuvrability. Recent developments in
membrane aerodynamics are reviewed in Lian et al. (2003) and Tiomkin & Raveh (2021).

The regions in parameter space where membrane flutter occurs have been predicted by
linear models that mostly assume an infinite membrane span and two-dimensional (2-D)
flow. In this work we use a three-dimensional (3-D) inviscid flow model based on the
vortex-lattice method to study membrane stability in the linear regime of small deflections
as well as large-amplitude nonlinear membrane dynamics. We find qualitative changes in
flutter behaviour in some cases due to three-dimensionality.

Only a small number of studies have considered fully coupled interactions of flexible
bodies and 3-D inviscid flows. The formulation of the mechanical force balance laws
and the numerical methods are more complicated in three dimensions than in two
dimensions and the computational expense is much higher. Inviscid flow models such
as the vortex-lattice method are widely used to model viscous high-Reynolds-number
flows for aquatic and aerodynamic propulsion (Kagemoto et al. 2000; Katz & Plotkin
2001; Shukla & Eldredge 2007; Michelin & Llewellyn Smith 2009; Willis & Persson
2014; Ayancik, Mivehchi & Moored 2022) because the computational cost is generally
much lower than for direct solvers (e.g. in the case of complex and deforming body
geometries, immersed-boundary, lattice-Boltzmann and deforming-mesh methods (Kim
& Peskin 2007; Willis et al. 2007a; Zhu et al. 2011; Hoover et al. 2021)). In the inviscid
models computational elements are distributed along surfaces rather than throughout the
flow volume. However, traditional inviscid approximations of flow separation work well
only in certain cases such as low-angle-of-attack airfoils where trailing-edge separation is
dominant. Recently leading-edge separation has been included in such models (Pan et al.
2012; Ramesh et al. 2014).

Several recent works have studied the effect of various dimensionless control parameters
such as Reynolds number, density ratio, shear modulus and aspect ratio on the flutter of one
or more thin plates or flags with bending rigidity in 3-D viscous, high-Reynolds-number
flows (Huang & Sung 2010; Tian, Lu & Luo 2012; Yu, Wang & Shao 2012; Banerjee,
Connell & Yue 2015; Dong, Chen & Shi 2016; Chen et al. 2020). Immersed-boundary
methods were used by Tian et al. (2012) and Huang & Sung (2010). Yu et al. (2012) used
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a fictitious domain method, and Banerjee et al. (2015) used a coordinate transformation
method.

Immersed-boundary methods have also been used to study a number of 3-D swimming
problems, such as the self-propulsion of flapping flexible plates (Masoud & Alexeev 2010;
Tang et al. 2016), the role of active muscle contraction, passive body elasticity and fluid
forces in forward swimming (Mittal et al. 2008; Borazjani et al. 2013; Hoover, Griffith &
Miller 2017; Dawoodian & Sau 2021; Hoover et al. 2021) and the propulsive forces acting
on flexible fish bodies (Hoover & Tytell 2020).

Boundary element methods have helped identify the effects of body kinematics on thrust
production and efficiency of 3-D swimmers with non-deforming (Liu 1996; Liu & Bose
1997) and deforming wakes (Zhu et al. 2002). Moored (2018) used a boundary element
method to examine the self-propelled swimming of undulatory fins and manta rays (Fish
et al. 2016), and to derive 3-D heaving and pitching scaling laws (Ayancik, Fish & Moored
2020; Ayancik et al. 2022).

In the case of membranes with negligible bending stiffness, arbitrary Lagrangian–Eulerian
methods have been used to study the role of leading-edge vortices in the flutter instability
(Li, Jaiman & Khoo 2021) and large-amplitude dynamics, particularly at large angles of
attack (Li, Law & Jaiman 2019; Li, Jaiman & Khoo 2022). Here, for simplicity, we focus
on the zero-angle-of-attack case and neglect leading-edge separation.

There are relatively few studies of 3-D coupled interactions of inviscid flows and flexible
bodies. Recently, Hiroaki, Hayashi & Watanabe (2021) and Hiroaki & Watanabe (2021b)
used nonlinear beam theory and the vortex-lattice method to analyse the limit cycle
oscillations of a rectangular plate and plate vibration under harmonic forced excitation
(Hiroaki & Watanabe 2021a). Previously Gibbs, Wang & Dowell (2012, 2015) studied the
3-D linear stability problem for a flexible plate in an inviscid flow with various boundary
conditions. Tang, Dowell & Hall (1999) and Tang & Dowell (2001) used the method to
study the stability of delta wings and rectangular plates, and Murua, Palacios & Graham
(2012) reviewed the vortex-lattice method in similar applications.

To our knowledge the present paper is the first 3-D study of the large-amplitude
dynamics of membranes (of zero bending rigidity) in inviscid flows. Here, we use
a flat-wake approximation (Kagemoto et al. 2000) and find good agreement between
membranes with large aspect ratio in 3-D flow and membranes in 2-D flow with wake
roll-up. Computing wake roll-up with high precision in three dimensions is challenging
as the vortex sheet may undergo complex twisting and shearing deformations that make
meshing difficult (Feng 2007). Fast algorithms (e.g. tree codes) for the evolution of
vortex sheets in three dimensions have been developed by Kaganovskiy (2006), Feng,
Kaganovskiy & Krasny (2009), Lindsay & Krasny (2001), Willis, Peraire & White (2007b)
and Sakajo (2001).

In Mavroyiakoumou & Alben (2020) we studied the membrane dynamics in a 2-D
flow, where the membrane is a 1-D curvilinear segment that undergoes large deflections.
We first studied the most common endpoint conditions, ‘fixed–fixed’, in which the
membrane ends were held fixed, as in most previous studies of membrane flutter (Le
Maître, Huberson & De Cursi 1999; Sygulski 2007; Tiomkin & Raveh 2017; Nardini,
Illingworth & Sandberg 2018). We found, surprisingly, that all unstable membranes tended
to a steady shape in the large-amplitude regime, except for some cases with unrealistically
large deflections. This motivated us to study a second case, ‘fixed–free’, in which the
trailing edge of the membrane is free to move, but only in the direction perpendicular
to the oncoming flow. This corresponds to the free-end boundary condition for a string
or membrane in classical mechanics (Graff 1975; Farlow 1993), where the membrane end

953 A32-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

95
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.957


C. Mavroyiakoumou and S. Alben

has horizontal slope. Physically, this boundary condition means that the end slides without
friction perpendicularly to the membrane’s flat equilibrium state (for example, in Farlow
(1993) the end is attached to a frictionless, massless ring). If the membrane end is also
free to move in the in-plane direction, compression develops and the problem is ill posed
without a stabilizing effect such as bending rigidity, and difficult to solve computationally
(Triantafyllou & Howell 1994). Recent work has studied unsteady motions by membranes
with partially free edges. In Hu et al. (2008), the authors study membrane wings with
partially free trailing edges and find that trailing-edge flutter can occur when the angle
of attack is relatively low. Arbós-Torrent, Ganapathisubramani & Palacios (2013) found
experimentally that membrane wing flutter can be enhanced by the vibrations of flexible
leading- and trailing-edge supports. Partially free edges exist also in sails with tensioned
cables running along the edges (Kimball 2009). At sufficiently low tension these edges
may flutter (Colgate 1996). A related application is to energy harvesting by membranes
mounted on tensegrity structures (networks of rigid rods and elastic fibres) and placed
in fluid flows (Sunny, Sultan & Kapania 2014; Yang & Sultan 2016). In such cases the
membrane ends have some degrees of freedom akin to the free-end boundary conditions
we have defined above. Recent studies have also considered interactions of flags (Mougel
& Michelin 2020) and membranes (Labarbe & Kirillov 2020, 2022) with a free surface,
including flutter behaviour.

The structure of the paper is as follows. Section 2 describes our large-amplitude
membrane-vortex-sheet model. Unlike our previous work (Mavroyiakoumou & Alben
2020, 2021b,a), here, we consider a membrane surface held in a 3-D inviscid flow with
12 different sets of boundary conditions. We solve this nonlinear model using Broyden’s
method and an unsteady vortex-lattice algorithm. Section 3 describes the numerical
method. We apply a small initial perturbation to the membrane in the direction transverse
to the flow and compute the subsequent dynamics, which has large-amplitude deflections
if the membrane is unstable. In § 4 we perform convergence studies and validate our model
by comparing the current results with our previous 2-D studies of fixed–fixed, fixed–free
and free–free membranes. Section 5 describes the computed membrane dynamics and how
this varies with key parameters such as the membrane mass, pretension and stretching
rigidity. We find that the membrane dynamics naturally forms four groups based on the
boundary conditions at the leading and trailing edges. The 3-D dynamics differs from the
2-D dynamics in several ways: in the fixed–fixed case there are unsteady 3-D motions
with varying degrees of up–down asymmetry; there are complex spanwise deformations
in the 3-D free–free case and some other cases with free side edges; steady, periodic
and chaotic motions appear at different parameter values, and very different midspan
membrane profiles appear in three dimensions. Section 6 gives the conclusions.

2. Large-amplitude membrane-vortex-sheet model

We consider the motion of an extensible membrane held in a 3-D fluid flow with velocity
Uêx in the far field (see figure 1). In the undeformed state the membrane is flat and
parallel to the flow in the plane z = 0. As in Alben et al. (2019), the membrane obeys
linear elasticity but undergoes large deflections, so geometrically nonlinear terms enter
the force expression. The membrane has a small thickness h and to leading order the
deformations do not vary through the thickness, so they can be described by the middle
surface, midway through the thickness. The middle surface is a geometric surface, a
three-component vector parametrized by two spatial coordinates and time, r(α1, α2, t) =
(x(α1, α2, t), y(α1, α2, t), z(α1, α2, t)) ∈ R

3, where the spatial coordinates α1 ∈ [−L, L]
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Figure 1. Schematic diagram (in perspective view) showing a 3-D membrane (dark green surface) with fixed
leading and trailing edges and free side edges. Along a free edge, points are fixed to massless rings that slide
without friction along vertical poles. Here, Uêx is the oncoming flow velocity, W is the membrane’s spanwise
width and 2L is the membrane’s chord. There is also a flat vortex wake (light blue surface) that emanates from
the membrane’s trailing edge. In the lower portion of the figure, we also show schematically (in top view) the
12 distinct boundary conditions explored in the current work. The diagonal marks indicate a fixed (F) boundary
and other boundaries are free (R). The arrows indicate the far-field flow direction which is the same for each
configuration.

and α2 ∈ [−W/2, W/2] are the material coordinates, the x and y coordinates of each point
in the initially flat state (with a uniform in-plane tension – a ‘pretension’ – applied by the
boundaries).

Each of the four membrane edges is either fixed at zero deflection or free to move
in the z direction, perpendicular to the oncoming flow. Then there are 24 = 16 possible
boundary conditions, but since the problem is symmetrical with respect to reflection in
the x–z plane, we only need to consider 12 distinct boundary conditions, which can be
denoted: FFFF, FRFF/FFFR, FRFR, FFRF, FRRF/FFRR, FRRR, RFFF, RRFF/RFFR,
RRFR, RFRF, RRRF/RFRR and RRRR (with symmetrical pairs identified). Here, F stands
for a fixed edge and R stands for a free edge. The first letter in each label is the leading-edge
boundary condition type and the following letters are the boundary conditions moving
clockwise around the rectangular membrane looking down from larger z values (bottom
of figure 1), as in Gibbs et al. (2015). Thus, the second and fourth letters are the side-edge
boundary conditions and the third letter is the trailing-edge boundary condition. We will
see in the results sections that the dynamics in the 12 cases are naturally classified into
four groups, based on whether the leading and trailing edges are fixed or free. Each group
is placed in one of the four coloured rectangles in the lower portion of figure 1. We present
the results for each group in the four subsections of § 5.2, numbered with the numbers
listed at the upper left corner of each group’s rectangle in figure 1. We list the equations
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for three examples from the set of 12 boundary conditions (and the others are analogous)

FRFR: z(−L, α2, t) = 0, z(L, α2, t) = 0,

∂α2z(α1, −W/2, t) = 0, ∂α2z(α1, W/2, t) = 0, (2.1)

FRRR: z(−L, α2, t) = 0, ∂α1z(L, α2, t) = 0,

∂α2z(α1, −W/2, t) = 0, ∂α2z(α1, W/2, t) = 0, (2.2)

RRRR: ∂α1z(−L, α2, t) = 0, ∂α1z(L, α2, t) = 0,

∂α2z(α1, −W/2, t) = 0, ∂α2z(α1, W/2, t) = 0. (2.3)

Whether the edge is fixed or free affects only the out-of-plane (z-) component of the
membrane motion at the edge. In all cases, no in-plane motion of the membrane edges
is allowed, i.e. the x- and y-coordinates of the edges are fixed (see figure 1)

Upstream/downstream edges: {x (±L, α2, t) = ±L, y (±L, α2, t) = α2} , −W
2

≤ α2 ≤ W
2

,

(2.4)

Side edges:
{

x
(

α1, ±W
2

, t
)

= α1, y
(

α1, ±W
2

, t
)

= ±W
2

}
, −L ≤ α1 ≤ L.

(2.5)

We start with the stretching energy per unit undeformed area for a thin sheet with
isotropic elasticity (described in § 1 of the supplementary material available at https://
doi.org/10.1017/jfm.2022.957 and Efrati, Sharon & Kupferman 2009; Alben et al. 2019)

ws = h
2

E
1 + ν

(
1

1 − ν
(ε2

11 + ε2
22) + 2ν

1 − ν
ε11ε22 + 2ε2

12

)
, (2.6)

where E is Young’s modulus, ν is Poisson’s ratio, h is the membrane’s thickness and the
strain tensor is

εij(α1, α2, t) = ēδij + 1
2

(
∂αir · ∂αjr − δij

)
. (2.7)

Here, ē denotes a constant prestrain corresponding to the pretension applied at the
boundaries and δij is the identity tensor, with i, j ∈ {1, 2}. We take the variation of the
stretching energy

Ws =
∫∫

ws dα1 dα2 (2.8)

with respect to the position r to obtain the stretching force per unit material area, i.e.
−δws/δr.

Integrating by parts to move derivatives off of δr terms, we obtain

δWs = Eh
1 + ν

∮ [(
1

1 − ν
ε11

(
∂r
∂α1

· δr
)

+ ν

1 − ν
ε22

(
∂r
∂α1

· δr
)

+ ε12

(
∂r
∂α2

· δr
))

υ1

+
(

1
1 − ν

ε22

(
∂r
∂α2

· δr
)

+ ν

1 − ν
ε11

(
∂r
∂α2

· δr
)

+ ε12

(
∂r
∂α1

· δr
))

υ2

]
dσ

− Eh
1 + ν

∫∫ [
∂

∂α1

(
1

1 − ν
ε11

∂r
∂α1

+ ν

1 − ν
ε22

∂r
∂α1

+ ε12
∂r
∂α2

)
+ ∂

∂α2

(
1

1 − ν
ε22

∂r
∂α2

+ ν

1 − ν
ε11

∂r
∂α2

+ ε12
∂r
∂α1

)]
· δr dα1 dα2. (2.9)
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The first integral in (2.9) can be used to obtain the free edge boundary conditions. It is a
boundary integral with respect to dσ , arc length along the boundary in the α1–α2 plane;
(υ1, υ2) is the outward normal in this plane. The integrand in the second integral in (2.9)
gives the stretching force per unit material area

f s = −δws

δr
= Eh

1 + ν

[
∂

∂α1

(
1

1 − ν
ε11

∂r
∂α1

+ ν

1 − ν
ε22

∂r
∂α1

+ ε12
∂r
∂α2

)
+ ∂

∂α2

(
1

1 − ν
ε22

∂r
∂α2

+ ν

1 − ν
ε11

∂r
∂α2

+ ε12
∂r
∂α1

)]
. (2.10)

The membrane dynamics is governed by the balance of momentum for a small material
element with area 	α1	α2

ρsh	α1	α2∂ttr = f s	α1	α2 − [p](α1, α2, t)n̂
√

det[∂αir · ∂αjr]	α1	α2, (2.11)

where ρs is the mass per unit volume of the membrane, uniform in the undeformed state;
[p](α1, α2, t) is the fluid pressure; n̂ is the unit normal vector,

n̂ = (∂α1r × ∂α2r)/‖∂α1r × ∂α2r‖, (2.12)

and det[∂αir · ∂αjr] is the determinant of the metric tensor, so
√

det[∂αir · ∂αjr]	α1	α2 is
the area of the material element in physical space.

We non-dimensionalize the governing equations by the density of the fluid ρf , the
half-chord L and the imposed fluid flow velocity U. The dimensionless time, space, and
pressure jump variables (denoted by tildes) are

t̃ = t
L/U

, (r̃, α̃1, α̃2) = (r, α1, α2)

L
, [̃p] = [p]

ρf U2 . (2.13)

The membrane equation (2.11) becomes

ρshU2

L
∂̃ttr = Eh

L(1 + ν)

[
∂̃α1

(
1

1 − ν
ε̃11∂̃α1r + ν

1 − ν
ε̃22∂̃α1r + ε̃12∂̃α2r

)
+∂̃α2

(
1

1 − ν
ε̃22∂̃α2r + ν

1 − ν
ε̃11∂̃α2r + ε̃12∂̃α1r

)]
− ρf U2[̃p]n̂

√
det[∂̃αir · ∂̃αjr]. (2.14)

Dividing (2.14) by ρf U2 throughout yields

ρsh
ρf L

∂̃ttr = Eh
ρf U2L(1 + ν)

[
∂̃α1

(
1

1 − ν
ε̃11∂̃α1r + ν

1 − ν
ε̃22∂̃α1r + ε̃12∂̃α2r

)
+∂̃α2

(
1

1 − ν
ε̃22∂̃α2r + ν

1 − ν
ε̃11∂̃α2r + ε̃12∂̃α1r

)]
− [̃p]n̂

√
det[∂̃αir · ∂̃αjr]. (2.15)

Thus, the dimensionless membrane equation (dropping tildes) is

R1∂ttr − Ks
{
∂α1

(
ε11∂α1r + νε22∂α1r + (1 − ν)ε12∂α2r

)
+ ∂α2

(
ε22∂α2r + νε11∂α2r + (1 − ν)ε12∂α1r

)}
= −[p]n̂

√
(∂α1r · ∂α1r)(∂α2r · ∂α2r) − (∂α1r · ∂α2r)2, (2.16)
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where R1 = ρsh/(ρf L) is the dimensionless membrane mass density, Ks = R3/(1 −
ν2) is a dimensionless stretching stiffness written in terms of R3 = Eh/(ρf U2L), the
dimensionless stretching rigidity, and we have written out the determinant under the square
root explicitly in (2.16). The prestrain ē in (2.7) is the strain in a membrane under uniform
tension T0 = Ksē, the ‘pretension’, one of the main control parameters here, as in our 2-D
study (Mavroyiakoumou & Alben 2020). We assume that the thickness ratio h/L is small,
but ρs/ρf may be large, so R1 may assume any non-negative value. As in Mavroyiakoumou
& Alben (2020), we have neglected bending rigidity, denoted as R2 in Alben & Shelley
(2008). In the extensible regime studied here, R3 is finite, so R2 = R3h2/(12L2) → 0 in
the limit h/L → 0. For simplicity and for ease of comparison with the 2-D case we set
the Poisson ratio ν (the transverse contraction due to axial stretching) to zero. A simple
estimate of the maximum tension induced by viscous stresses is provided by the viscous
drag on a flat plate, 2.66Re−1/2 in the present non-dimensionalization (Batchelor 1967),
which ranges from 10−2.6 to 10−1.1 for Re (the Reynolds number) in the range 103–106. In
this work the pretension ranges from 10−1.5 to 102, but is usually at or above 10−1, so in
a large number of cases the viscosity-induced tension is negligible. Therefore, to limit the
number of cases under discussion, we neglect the effect of viscosity.

We solve for the flow using the vortex-lattice method, a type of panel method (Katz &
Plotkin 2001) that solves for the 3-D inviscid flow past a thin body by posing a vortex
sheet on the body to satisfy the no-flow-through or kinematic condition. The vortex sheet
is advected into the fluid at the body’s trailing edge, thus avoiding a flow singularity there
(Katz & Plotkin 2001). The velocity u is a uniform background flow êx plus the flow
induced by a distribution of vorticity ω, via the Biot–Savart law (Saffman 1992)

u(x) = êx + 1
4π

∫∫∫
R3

ω(x′, t) × (x − x′)/‖x − x′‖3 dx′. (2.17)

The vorticity is a vortex sheet on the body and wake. With the body surface parametrized
by α1 and α2, we define a local coordinate basis by {ŝ1, ŝ2, n̂}

ŝ1 = ∂α1r
‖∂α1r‖; ŝ2 = ∂α2r

‖∂α2r‖; n̂ from (2.12). (2.18)

Thus, ŝ1 and ŝ2 span the body’s local tangent plane and n̂ is its normal vector. Here, ŝ1 and
ŝ2 are also the tangents to the material lines α2 = constant and α1 = constant, respectively.
When the body experiences in-plane shear, ŝ1 and ŝ2 are not orthogonal, but they do not
become parallel except for singular deformations that we do not consider.

For the vortex sheet on the body, the vorticity takes the form ω(x, t) =
γ (α1, α2, t)δ(n) = γ1(α1, α2, t)δ(n)ŝ1 + γ2(α1, α2, t)δ(n)ŝ2, with δ(n) the Dirac delta
distribution and n the signed distance from the vortex sheet along the sheet normal. The
vorticity is concentrated at the vortex sheet, n = 0, and γ is the jump in the tangential flow
velocity across the vortex sheet (Saffman 1992). The vorticity can be written similarly in
the wake vortex sheet, but a different parametrization is used since α1 and α2 are only
defined on the body. The nonlinear kinematic equation states that the normal component
of the body velocity equals that of the flow velocity at the body (Saffman 1992)

n̂ · ∂tr = n̂ ·
(

êx + 1
4π

−−
∫∫

SB+SW

γ (x′, t) × (r − x′)/‖r − x′‖3 dSx′
)

, (2.19)

where SB and SW are the body and wake surfaces, respectively. Since r and x′ lie on SB,
the integral in (2.19) is singular, defined as a principal value integral.
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The pressure jump across the membrane [p](α1, α2, t) can be written in terms of the
vortex-sheet strength components γ1 and γ2 using the unsteady Bernoulli equation written
at a fixed material point on the membrane. The formula and its derivation are lengthy so
they are given in § 2 of the supplementary material, but the form of the pressure jump
formula is

∂α1[p] = G(r, γ1, γ2, μ1, μ2, τ1, τ2, νv). (2.20)

Here, μ1 and μ2 are the tangential components of the average of the flow velocity on the
two sides of the membrane, i.e. the dot products of ŝ1 and ŝ2 with the term in parentheses
on the right-hand side of (2.19). Also, τ1, τ2 and νv are the components of the membrane’s
velocity in the {ŝ1, ŝ2, n̂} basis

τ1(α1, α2, t) = ∂tr · ŝ1; τ2(α1, α2, t) = ∂tr · ŝ2; νv(α1, α2, t) = ∂tr · n̂. (2.21a–c)

Equation (2.20) generalizes the 2-D formula from Mavroyiakoumou & Alben (2020,
appendix A) to the case of an extensible body in a 3-D flow. We integrate it from the
trailing edge using the Kutta condition

[p](α1 = 1, α2, t) = 0, (2.22)

to obtain [p](α1, α2, t) at all points on the membrane.
In summary, (2.16), (2.19) and (2.20) are a coupled system of equations for r, γ and [p]

that we can solve with suitable initial and boundary conditions to compute the membrane
dynamics.

3. Numerical method

We solve (2.16), (2.19) and (2.20) using an implicit iterative time-stepping approach. At
the initial time t = 0 the membrane has a very small uniform slope ∂α1z/∂α1x of 10−3,
or 10−5 if the small-amplitude regime is the focus of interest, and the free vortex wake
has length zero. The background flow speed is increased smoothly from 0 to 1 using a
saturating exponential function with a time constant 0.2.

We discretize the membrane with a uniform rectangular grid of M + 1 and N + 1
points in the α1 and α2 directions, respectively. The membrane grid becomes deformed in
physical space; an example is shown by the black lines on the green membrane surface in
figure 2. The vortex sheet is discretized as a lattice of vortex rings, one per membrane grid
cell. Each vortex ring consists of four vortex filaments, one along each side of the grid cell.
This discretization is a type of vortex-lattice method (Katz & Plotkin 2001; Hiroaki et al.
2021). To speed up the computations, we approximate the vortex-sheet geometries as flat,
a common approach in vortex-lattice methods (Katz & Plotkin 2001; Hiroaki et al. 2021).
This occurs in the kinematic equation (2.19), which we solve for γ on the body assuming
the body position and velocity (i.e. r, ∂tr and n̂) and γ on the wake are known. The values
of r, ∂tr and n̂ in (2.19) are those of the true membrane except in the vortex-sheet integrals,
where they and x′ correspond to the body in its flat position with uniform pretension in
the z = 0 plane and points in the wake are those of the body’s trailing edge, advected at
speed 1 in the x-direction. Studies have found that the flat-vortex-sheet approximation
is reasonable when bodies undergo small-to-moderate deflections (Izraelevitz, Zhu &
Triantafyllou 2017; Fernandez-Escudero et al. 2019). The approximation worsens at larger
membrane deflections, where the wake deflection would become similarly large and other
inviscid approximations (e.g. vortex shedding confined to the trailing edge) would also
lose validity. The approximate body and wake vortex sheets lie on the light blue and light
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U
Free wake panels Γ

ij

(x(α1, α2, t), y(α1, α2, t), z(α1, α2, t))
(b)(a)

Figure 2. Discretization of the membrane surface into panels with vortex rings. In panel (a) we show an
example of an FRRR deformed membrane (dark green surface) used for computing the inertial and elasticity
terms, together with the flat membrane panels (light blue surface) and flat wake panels (light grey surface) used
for the kinematic condition. In panel (b) we show a zoomed-in version of the same membrane with a subset of
the vortex rings (blue rounded rectangles) on top of the flat membrane and flat-wake panels. The curved arrows
illustrate the velocity induced by positive Γ according to the right-hand rule.

grey regions respectively in figure 2. The vortex sheets are approximated by lattices of
rectangular vortex rings that lie on the boundaries of the rectangular grid cells. Each line
segment in the grid is the support of two vortex lines, one from the vortex ring of each
neighbouring grid cell. Figure 2(b) shows a schematic example of 12 vortex rings in a
3 × 4 portion of the lattice that runs across the membrane’s trailing edge. The vortex rings
are shown as blue rounded rectangles slightly inside each black rectangular boundary, but
they actually run along the black edges. The circular arrows show the velocity induced by
a single vortex ring marked Γij.

The net circulation along each lattice line segment is the difference of the circulations
in the two neighbouring vortex rings. The net circulation per unit length in the ŝ1 direction
converges to γ1 in the limit of small mesh spacing in that direction, and similarly for γ2

γ1|xi+1/2,yj ≈ −Γ |xi+1/2,yj+1/2 − Γ |xi+1/2,yj−1/2

yj+1/2 − yj−1/2
; γ2|xi,yj+1/2 ≈ Γ |xi+1/2,yj+1/2 − Γ |xi−1/2,yj+1/2

xi+1/2 − xi−1/2
,

(3.1a,b)

using centred difference approximations. We linearly interpolate γ1 and γ2 values at the
panel edge midpoints from these expressions to values at the panel corners {xi, yj} and thus
obtain ∂α1[p] in (2.20).

We solve for the strengths of the vortex rings by imposing (2.19) at a set of r (in the
integral), called the control points or collocation points in vortex-lattice methods, and
here located at the centres of each vortex ring (shown as crosses in figure 2(b)). Hess
& Smith (1967); Yeh & Plotkin (1986) also placed the control points at the centres of
their vortex rings, quadrilaterals and triangles, respectively. Other methods shift the vortex
rings and control points downstream by one-quarter mesh spacing, which reproduces
certain formulas for the lift and moment on a flat plate (James 1972; Hough 1973; Katz &
Plotkin 2001; Moored 2018; Hiroaki et al. 2021). Such methods are considered low-order
methods, in contrast to higher-order methods that use curved body panel geometries and
non-constant polynomial representations for the distribution of circulation or velocity
potential on each panel (Willis, Peraire & White 2006; Cole et al. 2020). We proceed with
the low-order method described here for simplicity and because we find remarkably good
agreement with 2-D results using a different discretization method based on Chebyshev
polynomials and including the non-flat geometries of the body and wake vortex sheets,
including wake roll-up (Mavroyiakoumou & Alben 2020). We also find good agreement
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among results with different mesh sizes, although they indicate spatial convergence below
first order (see § 4).

The integral in (2.19) is replaced by a sum that gives the velocity induced by the four
sides of all the vortex rings. From Katz & Plotkin (2001), the velocity induced at a point
xp by a straight vortex line segment with circulation Γ that runs from x1 to x2 is

u = Γ

4π|r1 × r2|2
(

(r2 − r1) · r1

‖r1‖ − (r2 − r1) · r2

‖r2‖
)

· (r1 × r2); r1 ≡ xp − x1, r2 ≡ xp − x2.

(3.2)

When discretized, (2.19) becomes a linear system of equations for the vortex ring strengths.
The key advantage of approximating the body and wake vortex sheets as flat is that we can
precompute all the matrix entries in the linear system (the ‘influence coefficients’, i.e.
sums of the coefficients of Γ in (3.2)), before the time-stepping iterative solver for the
membrane position. For an M × N lattice of vortex rings on the body and an Mw × N
lattice in the wake (typically Mw 	 M), the cost of computing the influence coefficients
would be O(MMwN2) per iteration within each time step for general membrane and wake
shapes, but for flat vortex sheets this can be reduced to a one-time cost of O(MMwN)

(actually less) using repetition in relative positions of control points and vortex rings in the
flat wake to change from N2 to N. We also avoid an even larger cost to evolve the vortex
wake position, O(M2

wN2), although this could be reduced using fast summation methods
(Lindsay & Krasny 2001). The right-hand side vector for the linear system consists of the
remaining terms in (2.19), the body velocity and the background flow, using the actual
(non-flat) membrane position, and interpolated to give values at the control points.

The algorithm alternates between computing the membrane position at the current time
step and updating the vortex wake circulation for the next time step. To compute the
membrane position at the current time step, the distribution of circulation in the vortex
wake is assumed to be known from the previous steps of the algorithm, and is zero initially.
We then use a quasi-Newton iterative method (Broyden’s method (Ralston & Rabinowitz
2001)) to solve for the x, y and z components of the membrane position on the interior
points of the α1–α2 grid, resulting in 3(M − 1)(N − 1) unknowns for the iterative solver.

Broyden’s method solves a nonlinear system of equations f (x) = 0. In our case x
is a vector whose entries are the x, y and z components of the membrane position
r on the interior points of the α1–α2 grid. Here, f is a vector given by the three
components of the membrane equation (2.16), discretized at the interior α1–α2 grid
points using second-order finite differences for the temporal and spatial derivatives of the
membrane position. One-sided spatial differentiation formulas are used near boundaries
and backward temporal differentiation formulas are used, with the given initial values for
the membrane position and background flow, and zero initial bound circulation (see § 3 of
the supplementary material for details). Also, f requires the membrane position boundary
values, which are either prescribed (for a fixed boundary) or deduced from the guesses for
the values at the interior mesh points (for a free boundary). At each time step Broyden’s
method produces a sequence of iterates that converges to the solution for x starting from
an initial guess, which we choose to be the membrane position at the previous time step.
Usually convergence is obtained in just a few iterations.

Given the free wake position and circulation and the guess for r, we compute ∂tr and
n̂ and then compute the membrane circulation values by solving the linear system with
influence coefficients corresponding to the discretized kinematic equation (2.19). The
membrane circulation (and other quantities derived from it and r) are used to compute
∂α1[p] in the membrane equation (2.16). The pressure jump [p] is then computed by
integrating ∂α1[p] (2.20) with respect to α1 using the trapezoidal rule and imposing [p] = 0

953 A32-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

95
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.957


C. Mavroyiakoumou and S. Alben

at the trailing edge. All quantities on the right-hand side of (2.20) can be evaluated using
the guess for r and the circulations of the vortex rings on the membrane. Some quantities
(e.g. γ1 and γ2) are computed on the panel edge midpoints and others (e.g. μ1 and μ2) on
the panel centres; these are extrapolated to the corner points of each panel, where ∂α1[p]
is evaluated. Before integrating ∂α1[p], we decouple it into two parts, as explained at the
end of § 2 of the supplementary material. We integrate one part analytically and the other
part numerically using the trapezoidal rule, and apply [p] = 0 at the trailing edge. We use
this decoupled approach because it gives much better agreement with our previous 2-D
computations.

When Broyden’s method converges, we obtain the membrane position at the current
time step and the circulation values on the membrane. The next step is to update the wake
circulation values for the next time step. This is done by moving the vortex rings in the
wake and the last row of the vortex rings on the body downstream at speed 1. This is a
flat-wake approximation of the more general statement that lines in the wake vortex sheet
move at the average of the tangential components of the flow velocity on the two sides
of the wake vortex sheet (Saffman 1992). This turns out to be equivalent to the condition
that the pressure jump is zero across the wake, and advecting the last row of vortex rings
on the membrane into the wake at the trailing-edge flow velocity imposes [p] = 0 at the
trailing edge, known as the unsteady Kutta condition, which makes flow velocity finite at
the trailing edge (Saffman 1992; Katz & Plotkin 2001). The time step is set equal to the
streamwise grid spacing, so to move downstream at speed 1 each vortex ring in the wake
and along the membrane trailing edge in figure 2 simply shift to the next panel downstream.

In the next section we study the convergence of this numerical method as the membrane
grid is refined, and compare the large-span 3-D solutions with 2-D membrane solutions
computed using the method in Mavroyiakoumou & Alben (2020).

4. Validation of the 3-D model and algorithm

We now study the effect of spatial grid refinement on the membrane dynamics in test
cases using a square membrane at four different combinations of boundary conditions and
physical parameters. We then compare 3-D results in the quasi-2-D limit (large span, free
side edges) with results at same parameters using our previous 2-D algorithm that had
several differences: a Chebyshev–Lobatto mesh and Chebyshev differentiation matrices
were used; the kinematic and Kutta conditions were imposed with a Chebyshev–Galerkin
method and non-flat vortex sheets; and the full (non-flat) dynamics of the vortex-sheet
wake was computed (Mavroyiakoumou & Alben 2020). Three cases are compared: (i)
fixed–fixed (2-D) and FRFR (3-D), (ii) fixed–free (2-D) and FRRR (3-D), (iii) free–free
(2-D) and RRRR (3-D).

4.1. Spatial convergence for a square membrane
Ours and most other implementations of the vortex-lattice method are considered
low-order methods, as flat rather than curved body panel geometries are used, as well
as vortex rings rather than non-constant polynomial distributions of circulation on each
panel (Willis et al. 2006; Murua et al. 2012; Cole et al. 2020). First-order spatial accuracy
was found for certain quantities by Margason et al. (1985) and Grozdanov (2017) using
similar versions of the vortex-lattice method. We study the spatial convergence of our
method in four test cases with the following boundary conditions and (R1, T0, R3) values,
one from each of the coloured boxes in figure 1: an FFFF membrane with (R1, T0, R3) =
(10−0.5, 10−0.5, 100), an FFRF membrane with (100.5, 10−0.75, 101), an RFFF membrane
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FFFF, tp = 30 FFRF, tp = 22
(10−0.5, 10−0.5, 100) (100.5, 10−0.75, 101)

dx max |z| 	 max |z| Order max |z| 	 max |z| Order

2/40 0.5596 0.0171 1.89 0.2169 7.71 × 10−3 1.55
2/80 0.5425 4.60 × 10−3 1.46 0.2092 2.64 × 10−3 0.63
2/160 0.5379 1.67 × 10−3 . . . 0.2066 1.71 × 10−3 . . .

2/320 0.5363 . . . . . . 0.2048 . . . . . .

RFFF, tp = 22 RFRF, tp = 20
(100.5, 10−0.5, 101) (100, 10−0.75, 101)

dx max |z| 	 max |z| Order max |z| 	 max |z| Order

2/40 0.2417 4.72 × 10−3 — 0.2891 9.85 × 10−3 0.57
2/80 0.2369 — — 0.2989 6.64 × 10−3 0.38
2/160 — — . . . 0.3056 5.09 × 10−3 . . .

2/320 — . . . . . . 0.3107 . . . . . .

Table 1. The dx-convergence with fixed dy = 2/10 for four cases with boundary conditions and tp listed at the
top, and (R1, T0, R3) below, for membranes with aspect ratio 1. Recall that R1 is the dimensionless membrane
mass, T0 is the dimensionless pretension and R3 is the dimensionless stretching rigidity. The change in max |z|
between successive dx values and the estimated order of convergence are defined in (4.1a,b).

with (100.5, 10−0.5, 101) and an RFRF membrane with (100, 10−0.75, 101). All membranes
have aspect ratio one (W/2L = 1). We compute the dynamics of the membrane up to
a time tp ∈ [20, 30] at which large-amplitude oscillatory motion occurs, and record the
maximum of |z(α1, α2, t)| over the membrane surface and time.

In table 1 we present the maximum |z| values for four different streamwise mesh
spacings dx together with the change in max |z| between two successive dx values, and
the estimated order of convergence using three successive dx values

	 max |z| ≡ ∣∣max |z|dx − max |z|dx/2
∣∣ , Order ≡ log2

∣∣max |z|dx − max |z|dx/2
∣∣∣∣max |z|dx/2 − max |z|dx/4
∣∣ .

(4.1a,b)

We fix the spanwise mesh spacing dy = 2/10 (so ten panels cover the span), and recall that
dt = dx in all cases, so the time step and streamwise mesh spacing are refined together.

In general, RFFF membranes take a long time to reach the large-amplitude regime
(across R1), so the computations with dx = 2/160 and 2/320 were omitted because they
were very expensive to compute (due to the large wake size needed). Although the order
of convergence is below one in many cases, the 	 max |z| values are quite small. We
guess that 	 max |z| is a reasonable estimate of the error in each case, the difference
between the computed solution and the solution in the limit dx → 0. As a compromise
between computational effort and accuracy, we use dx = 2/40 (M = 40) in most cases (i.e.
throughout § 5), but we present a few comparisons between dx = 2/40, 2/80 and 2/160 in
the next subsection and find that the results are qualitatively similar.

Table 2 shows the max |z| values at four choices of the spanwise mesh spacing dy, with
dx fixed at 2/40 and the other parameters the same as in table 1. The dy convergence
is much faster than the dx convergence, presumably because dx sets the resolution near
the membrane trailing edge, a particularly sensitive region due to the vortex shedding
there (Alben 2009, 2010; Hiroaki et al. 2021). The value of 	 max |z| is uniformly small
in table 2, at most 4.4 % of the last max |z| value (with dy = 2/80). For computational
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FFFF, tp = 30 FFRF, tp = 22
(10−0.5, 10−0.5, 100) (100.5, 10−0.75, 101)

dy max |z| 	 max |z| Order max |z| 	 max |z| Order

2/10 0.5596 0.0119 2.05 0.2169 7.56 × 10−3 2.29
2/20 0.5715 2.87 × 10−3 6.13 0.2093 1.54 × 10−3 8.62
2/40 0.5744 4.11 × 10−5 . . . 0.2078 3.93 × 10−6 . . .

2/80 0.5744 . . . . . . 0.2078 . . . . . .

RFFF, tp = 22 RFRF, tp = 20
(100.5, 10−0.5, 101) (100, 10−0.75, 101)

dy max |z| 	 max |z| Order max |z| 	 max |z| Order

2/10 0.2417 2.14 × 10−3 0.08 0.2891 7.59 × 10−3 1.70
2/20 0.2438 2.02 × 10−3 5.54 0.2815 2.34 × 10−3 1.63
2/40 0.2418 4.35 × 10−5 . . . 0.2792 7.58 × 10−4 . . .

2/80 0.2418 . . . . . . 0.2784 . . . . . .

Table 2. The dy-convergence with fixed dx = 2/40 for a membrane with aspect ratio 1. The error and order of
convergence shown are computed using (4.1a,b) but varying dy instead of dx. The (R1, T0, R3) values are the
same as in table 1.

efficiency with reasonable accuracy we use dy = 2/10 (N = 10) in most cases (i.e.
throughout § 5). Other recent vortex lattice works have also found that a modest number of
grid points in the spanwise direction is sufficient for good accuracy (e.g. Katz & Plotkin
2001, p. 429; Long & Fritz 2004; Nguyen et al. 2016, figure 6).

4.2. Comparisons of 2-D and 3-D results with different mesh sizes
We now compare 3-D results with free side edges with results from our 2-D algorithm
(Mavroyiakoumou & Alben 2020) in cases with both small- and large-amplitude
dynamics. We begin by comparing the 2-D fixed–fixed case with the 3-D FRFR case (fixed
leading and trailing edges, free side edges). We simulate both cases by starting with a flat
membrane at t = 0, and for t > 0 we keep the leading edge fixed at z = 0 and move the
trailing edge slightly away from and back to z = 0

z2-D(1, t) = z3-D(1, α2, t) = 2 sin

(
σ

(
t
η

)3

e−(t/η)3

)
, − W

2L
≤ α2 ≤ W

2L
, (4.2)

where σ is a small constant, 10−6–10−3, and η = 0.2.
Figure 3(a,c,e) plots the z-deflection of the membrane centre (in three dimensions) or

midpoint (in two dimensions) vs time at three choices of (R1, T0, R3) (listed in the caption).
The 2-D membrane has a Chebyshev–Lobatto mesh with 41 points. In three dimensions,
the number of panels in the streamwise direction (M) is 40, 80 or 160, with the aspect ratio
W/2L = 4, and the number of panels in the spanwise direction (N) 10 in each case. The
perturbation size, σ in (4.2), is 10−6. In panels (a–f ), the 3-D graphs become closer to the
2-D graph as M increases.

To the right of each set of time plots, membrane snapshots are shown, equally spaced in
time, for two dimensions (green lines) and three dimensions (with the same colours as in
the time plots, for each M), where the line shows the midspan profile. In all three examples,
the membranes tend to a steady single-hump shape at large times, as shown for the 2-D
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Figure 3. Comparisons of fixed–fixed (2-D) and FRFR (3-D) computations at three choices of (R1, T0, R3):
(a,b) (100, 10−0.25, 103), (c,d) (10−0.5, 10−0.5, 101) and (e, f ) (100.25, 10−0.75, 101.5). Recall that R1 is the
dimensionless membrane mass, T0 is the dimensionless pretension and R3 is the dimensionless stretching
rigidity. Panels (a,c,e) show plots of log10 |zcentre| vs time. Panels (b,d, f ) show snapshots of membranes at
equally spaced times (labelled at top left). The plots and snapshots are green for 2-D membranes and light
pink (M = 40), dark pink (M = 80) or black (M = 160) for 3-D membranes. Here, the aspect ratio W/2L = 4,
N = 10 and σ = 10−6 in (4.2).

case in Mavroyiakoumou & Alben (2020). In figure 3 there is good qualitative agreement
in all the membranes’ motions, and good quantitative agreement in most cases, particularly
between M = 160 (black lines) and two dimensions (green lines) in the small-amplitude
(growth) regime. At later times, the 3-D snapshots tend to converge, while the 2-D
snapshot is noticeably displaced from them, particularly in panel (d). The 3-D results
apparently converge to slightly different states than the 2-D results. Some difference is
inevitable due to the finite span in three dimensions and the corresponding difference in
the flow and membrane dynamics.

Next we compare the 2-D fixed–free case with the 3-D FRRR case. Now the trailing
edge is free, and a small transient perturbation is applied at the leading edge

z2-D(−1, t) = z3-D(−1, α2, t) = sin

(
σ

(
t
η

)3

e−(t/η)3

)
, − W

2L
≤ α2 ≤ W

2L
. (4.3)

Figure 4 compares the membranes’ centre-point deflections and snapshots similarly to
figure 3 but at three different choices of (R1, T0, R3), given in the figure 4 caption. In the
fixed–free case, oscillatory motions occur at large amplitude (Mavroyiakoumou & Alben
2020), and they tend to be periodic rather than chaotic at the O(1) values of R1 used in
figure 4. Again, there is good qualitative agreement in all cases, and good quantitative
agreement particularly in the linear growth regime. At large times in panels (a,b) and (e, f )
the three 3-D cases are clustered together and are somewhat separate from the 2-D case.
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Figure 4. Comparisons of fixed–free (2-D) and FRRR (3-D) computations at three choices of (R1, T0, R3):
(a,b) (100, 10−1, 102), (c,d) (10−0.5, 10−1, 102) and (e, f ) (100.5, 10−0.5, 102). Panels (a,c,e) show plots of
log10 |zcentre| vs time. Panels (b,d, f ) show snapshots of membranes at equally spaced times (labelled at top
left). The plots and snapshots are green for 2-D membranes and light pink (M = 40), dark pink (M = 80) or
black (M = 160) for 3-D membranes. Here, the aspect ratio W/2L = 4, N = 10 and σ = 10−6 in (4.3).

In panels (c,d) the M = 160 and 2-D case are relatively close, even at large times. Within
each panel the graphs have somewhat different periods of oscillation at large amplitude,
including some abrupt changes in the period, e.g. the 2-D graph near the final time in
panels (e, f ). However, if we compare the snapshots at qualitatively similar times, i.e. at
nearby peaks and troughs of the log10 |zcentre(t)| plots, instead of at the same times, then
we find better agreement. Comparisons of the 2-D case and the 3-D case with M = 160 at
nearby peaks and troughs are shown below the time plots, and show better agreement than
in the late-time comparisons on the right-hand side of the figure.

Finally, we compare the free–free 2-D case with 3-D RRRR cases. Now the membrane
starts with a small non-zero slope

z2-D(α1, 0) = z3-D(α1, α2, 0) = σα1, − W
2L

≤ α2 ≤ W
2L

, (4.4)

for σ = 10−3. In figure 5 we again compare the membranes’ deflections and snapshots for
three different (R1, T0, R3) combinations (in the figure caption) with R1 = O(1) that have
qualitatively different dynamics. With all edges free, the membrane can move uniformly
upward or downward yet keep the same shape, so there is a translational z motion to
consider along with the evolution of the membrane shape. Therefore, on the left-hand side
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Figure 5. Comparisons of free–free (2-D) and RRRR (3-D) computations at three choices of (R1, T0, R3):
(a,b) (10−0.5, 10−0.75, 101), (c,d) (100.5, 10−0.5, 102) and (e, f ) (10−0.25, 10−0.8, 102). Panels (a,c,e) show plots
of log10 | max(z) − min(z)| and zcentre vs time. Panels (b,d, f ) show snapshots of membranes at equally spaced
times (labelled at top left). The plots and snapshots are green for 2-D membranes and light pink (M = 40),
dark pink (M = 80) or black (M = 160) for 3-D membranes. Here the aspect ratio W/2L = 4, N = 10 and
σ = 10−3 in (4.4).

we plot the membrane deflection vs time, defined here as | max(z) − min(z)|, with max
and min taken over α1 (and α2 for three dimensions), and we also plot zcentre(t), which
shows the net translational motion. Panel (a) shows an oscillatory motion of zcentre, (c)
shows a steady translation and (e) shows a combination of the two. As in the fixed–fixed
and fixed–free cases, in each panel the agreement in the deflection | max(z) − min(z)|
is generally best at early times, and at later times there is a more noticeable difference,
particularly between the 2-D and 3-D plots in panels (c,d) and (e, f ). The snapshots at
the right show that in many cases the shapes agree well but there is a translational shift,
particularly at t = 8 in (b) (where the shift is small, ≈ 10−3) and at larger times in ( f ). As
in the fixed–free case, there are noticeable phase shifts among the motions at later times
for the oscillatory case in panel (b).

In summary, the comparisons of 3-D motions at M = 40, 80 and 160 and the 2-D motion
have shown good qualitative agreement in the types of dynamics – steady or oscillatory,
with or without translation – and good quantitative agreement as well in the magnitudes of
the deflections, the frequencies of oscillations and many detailed aspects of the dynamics.

Inviscid simulations of airfoils and flapping plates in two dimensions and three
dimensions have shown that the largest computational errors tend to occur in flow
quantities near the trailing edge (Katz & Plotkin 2001; Alben 2008a, 2010; Hiroaki
et al. 2021). The Kutta condition makes the flow velocity and pressure jump finite there,
but their spatial derivatives across the edge are infinite there in general (Alben 2010),
and the numerical solution is sensitive to the mesh near the trailing edge (Alben 2010;
Hiroaki et al. 2021). For the present simulations, this sensitivity can be seen in the
pressure jump distribution near the trailing edge. In figure 6 we plot the pressure jump
vs streamwise location along the membrane midspan, y = 0, for two different examples
of FRRR membranes in the large-amplitude regime, at R1, T0 and R3 given in the figure
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Figure 6. Two examples of how the pressure distribution changes with increasing numbers of streamwise
panels. Panels (a–c) show plots of log10 |zcentre| vs time and z(α1, 0, tp) and [p](α1, 0, tp) vs x(α1, 0, tp),
respectively, for an FRRR membrane with R1 = 10−0.25, T0 = 10−0.75 and R3 = 101 at times tp where
|zcentre(t)| has a peak that is closest to 14.5 (enclosed in the orange square), for each M. Panels (d–f ) show
the same quantities for an FRRR membrane with R1 = 100, T0 = 10−0.75 and R3 = 101, for the troughs in
|zcentre(t)| nearest to tp ≈ 12.6. The plots are black for M = 40, blue for M = 80, red for M = 160 and green
for M = 320. Here, the aspect ratio W/2L = 4, N = 10 and σ = 10−4 in (4.3).

caption, and for various M listed at the top. Both cases reach oscillatory large-amplitude
states, shown by the centre deflection vs time in panels (a) and (d), respectively. In panels
(b) and (e) we compare the midspan deflections that occur at |zcentre| peaks near t = 14.5
and troughs near 12.6, respectively – the peaks and troughs that occur in the orange boxes
of panels (a,d). For each M the times of the peaks/troughs are slightly different due to
phase shifts, as in the snapshot comparisons in figure 4(a,c,e). Panels (c, f ) show the
midspan pressure jump distributions at these times. The pressure jump distributions are
more oscillatory and have larger deviations at these M than the deflections (b,e), perhaps
because in the membrane equation (2.16) [p] is balanced by terms that include second
spatial derivatives of deflection, so z is smoother than [p]. We also find oscillations with
similar spatial length scales in ∂ttz (not shown), perhaps indicating the effect of membrane
inertia and added mass on [p]. The pressure jump distributions in (c, f ) only approximately
reach zero at the trailing edge, more closely for larger M, which also resemble the generic
square-root behaviour there, as well as the generic inverse-square-root behaviours at the
leading edge (Golberg 1990; Alben 2009, 2010). Although the deviations from M = 40 to
320 are significant, the overall form of the [p] and z distributions at M = 40 are reasonable
approximations to those at M = 320.

Now we briefly present a comparison of the dynamics in two and three dimensions
using different numbers of panels across the span for three dimensions: N = 10, 20 and
40. Figure 7 shows comparisons of (a) fixed–fixed, (b) fixed–free and (c) free–free 2-D
cases with the corresponding 3-D cases at M = 40 and aspect ratio 4. The 3-D plots
converge more rapidly here with increasing N than with increasing M in the previous
figures, similarly to tables 1 and 2. In the remainder of this work we use N = 10.
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Figure 7. Comparisons of 2-D and 3-D membrane deflections at three boundary conditions and (R1, T0, R3)

values: (a) fixed–fixed vs FRFR at (100, 10−0.25, 103); (b) fixed–free vs FRRR at (100, 10−1, 102); and
(c) free–free vs RRRR at (10−0.25, 10−0.8, 102), where both log10 | max(z) − min(z)| and zcentre are plotted, at
left and right, respectively. The plots are green for 2-D membranes and light pink (N = 10), dark pink (N = 20)
or black (N = 40) for 3-D membranes. Here, 41 Chebyshev–Lobatto points are used in two dimensions and for
the 3-D cases W/2L = 4, M = 40 and σ = 10−6, 10−6 and 10−3, respectively in (a–c).

We have compared the small- and large-amplitude dynamics in two and three
dimensions at several (R1, T0, R3) values, and shown the effect of varying the numbers
of streamwise and spanwise panels in three dimensions, M and N, at aspect ratio 4. Next,
we compare the dynamics across a much larger set of R1 and T0 values, but restricted to
the small-amplitude regime (where R3 has a negligible effect). We also show the effect of
increasing the 3-D membrane aspect ratio from 1 to 8, approaching the 2-D limit.

4.3. Comparison of stability boundaries and mode shapes in two and three dimensions
The small-amplitude membrane dynamics can be organized in terms of the stability
boundary in R1–T0 space. We again apply the small perturbations (4.2)–(4.4) to the FRFR,
FRRR and RRRR membranes, across a grid of values in R1–T0 space. At each R1 we find
exponential decay in membrane deflections above a critical T0 and exponential growth
below this T0 (followed by large-amplitude, nonlinear dynamics). The stability boundary
is the curve of critical T0 vs R1, and is found by interpolating between neighbouring T0
points with positive and negative growth rates.

In figure 8 we compare the stability boundaries in the 2-D fixed–fixed (a), fixed–free
(b) and free–free (c) cases with the 3-D FRFR, FRRR and RRRR cases, respectively, with
3-D aspect ratios 1, 2, 4 and 8. Two stability boundaries are shown for the 2-D case. The
orange lines, from Mavroyiakoumou & Alben (2020), are calculated from the growth rates
in time-stepping simulations starting from small perturbations, as in the 3-D cases here.
The red lines, from Mavroyiakoumou & Alben (2021b), are calculated by linearizing the
2-D equations and solving the nonlinear eigenvalue problem; the imaginary parts of the
eigenvalues are the growth rates. The eigenvalue method was able to identify very small
positive growth rates at R1 ≥ 102, too small to be distinguishable from no growth or very
slow decay in the time-stepping method. Here, the red line has a sharply upward slope
(similar to Tiomkin & Raveh (2017)), unlike the orange line. The stability boundaries
for the 3-D cases with aspect ratios 1, 2, 4 and 8 range from light blue to dark blue. In
(a) and at large R1 in (b,c) the boundaries tend towards the 2-D boundaries as aspect
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Figure 8. Comparisons of stability boundaries in two dimensions (orange from Mavroyiakoumou & Alben
2020; red from Mavroyiakoumou & Alben 2021b) and three dimensions with aspect ratios 1, 2, 4 and 8 (ranging
from light blue to dark blue) for (a) fixed–fixed and FRFR, (b) fixed–free and FRRR and (c) free–free and
RRRR cases. Below the stability boundary, 3-D midspan profiles with aspect ratio 8 (black) are compared with
2-D profiles (green) during the linear growth regime. Here, R3 = 101, N = 10, M = 40 (for FRFR and FRRR
membranes) and M = 80 (for RRRR membranes) for all aspect ratios.

ratio increases. As in studies of 3-D flexible plates (Eloy, Souilliez & Schouveiler 2007;
Eloy et al. 2008; Banerjee et al. 2015), more bodies are unstable at high aspect ratio, i.e.
the stability boundary moves up as the aspect ratio increases. In the region of instability
for aspect ratio 8, we compare the aspect ratio 8 midspan snapshots at small amplitude
(black lines) with the 2-D snapshots (green lines) over a range of R1 and T0. In (a), all
the membranes lose stability by divergence without flutter, so the membranes’ deflections
grow exponentially without change of shape. The snapshots show the eigenmode shapes,
which become more fore–aft asymmetric as T0 decreases, although at large amplitude the
membranes tend to single-hump shapes that are nearly fore–aft symmetric as in figure 3.
The agreement is uniformly very good between two and three dimensions in panel (a).

Panel (b) shows the same comparison for the 2-D fixed–free and 3-D FRRR cases. The
modes are somewhat underresolved for T0 < 10−1 and the growth rates in two and three
dimensions do not agree well, so we omit the membrane snapshots in this region of the
parameter space. Even with a much finer mesh, the fastest growing 2-D modes are difficult
to resolve in this region using an eigenvalue solver (Mavroyiakoumou & Alben 2021b).
This underresolution may affect the apparent lack of convergence of the 3-D stability
boundaries with increasing aspect ratio to the 2-D boundaries at small R1. At moderate
R1 (∈ [10−0.5, 100.5]), interestingly, the stability boundaries approximately coincide at all
aspect ratios, while at larger R1 the stability boundaries shift upward with increasing aspect
ratio similarly to panel (a). Unlike in panel (a), here the snapshots oscillate and change
shape in the small-amplitude growth regime. In panel (d) we show sets of six snapshots
for the 2-D (green) and 3-D (black) cases during time intervals between two consecutive
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peaks or troughs in the graph of zcentre(t). The snapshots are normalized to have uniform
maximum deflections. The agreement between two and three dimensions is very good in
all cases. The third snapshots in each sequence are overlaid in the instability region in
panel (b). In (b,d) the values of log10 R1 and log10 T0 for each set of snapshots are the
multiples of 0.5 and 0.25 respectively that intercept each set.

Panels (c,e) show the same comparison for the 2-D free–free and 3-D RRRR cases.
The stability boundaries and resolution issues are similar to those in panel (b), but here
adequate resolution is obtained down to smaller T0. At small R1 values, the 3-D stability
boundaries actually move away from the 2-D boundaries as the aspect ratio increases. This
is due to special cases with very small but positive growth rates over a large range of T0
at small R1. Cases with aspect ratio 8 and growth rates < 0.04 are marked in panel (c) by
grey boxes. Such cases only occur close to the stability boundary at large R1, as expected,
but occur over a large range of T0 from the dark blue line to the orange (2-D) line at small
R1. Below the orange line, the 3-D growth rates abruptly become much larger, so setting
aside the cases with very slow growth, we have better agreement in the stability boundary
for two and three dimensions with aspect ratio 8. There is nothing obviously wrong with
these slow-growth cases (such as very jagged shapes or non-physical motions); unlike
most of the results in this section, they may be a case where the 3-D large-span dynamics
is qualitatively different from the 2-D dynamics.

The agreement between the snapshots in two (green) and three dimensions (black) in
panels (c,e) is generally very good, although not quite as good as in (b,d), particularly
in some cases at T0 = 10−1 and 10−1.25 that are clearly underresolved. In (c,e) higher
resolution is used: M = 80 for RRRR and 81 Chebyshev–Lobatto points are used in two
dimensions, vs 40 and 41 respectively in (a,b,d). In four cases at the upper right of (c,e)
|zcentre| grows without oscillating, similarly to a divergence instability, so the six snapshots
are equally spaced over a large portion of the small-amplitude regime.

We have presented a broad range of evidence of good qualitative agreement between the
2-D and 3-D dynamics, even with fairly modest 3-D mesh sizes (M = 40 and N = 10 in
most cases) and other significant computational differences. In two dimensions we used
a Chebyshev–Lobatto mesh, computed wake roll-up and used a Galerkin method for the
kinematic equation and Kutta condition, with a non-flat body and wake in the kinematic
condition. In three dimensions we used a uniform mesh, flat approximate vortex sheets on
the body and wake and a collocation method for the kinematic condition. We now proceed
to study and classify the dynamics of 3-D membranes with square aspect ratios at all 12 of
the boundary conditions in figure 1.

5. Membrane dynamics across parameter space for 12 boundary conditions

We now broadly classify the membrane dynamics with respect to R1, T0 and R3 at all
12 combinations of fixed and free boundary conditions at the edges. In a few cases the
large-amplitude dynamics does not seem to depend very strongly on aspect ratio, so we set
it to 1 here, but it would be good to explore this parameter in future work.

To find where the membranes are unstable, we apply the perturbation (4.4) with σ =
10−5 for all 12 boundary conditions at a large number of R1 and T0 values, and as before
we find the critical T0 at each R1 by interpolation of growth rates.

Figure 9 shows the stability boundaries for the 12 boundary conditions, listed at right.
Based on the locations of the boundaries and the qualitative features of membranes’
large-amplitude dynamics (presented later), the 12 boundary conditions naturally fall into
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Figure 9. Stability boundaries for the 12 boundary conditions, listed at right, and placed in four groups that
depend on only the leading- and trailing-edge conditions, as in figure 1.

four groups, listed at right in figure 9 and shown in figure 1, and determined by only the
leading- and trailing-edge conditions. The conditions at these edges seem to determine
the qualitative behaviours of the membranes’ dynamics more strongly than the side-edge
conditions. However, the side edges can still have important effects, particularly for the
large-amplitude results we will present.

In the 2-D vs 3-D comparisons, we have already shown one stability boundary from
three of the four groups: FRFR from group 1, FRRR from group 2 and RRRR from
group 4. The other stability boundaries within these groups are similar – nearly flat in
group 1, upward sloping in group 2 and either flat or upward sloping in group 4, although
the flatness at small R1 for RRRR is affected by the slow-growth cases in figure 8(c).
Perhaps due to these cases, there is more variability in the boundaries of group 4 at small
R1, while the boundaries are more uniform across groups 1 and 2. The data for group 3,
with the leading edge free and trailing edge fixed, are completely new, and stand out from
the other groups in two respects. The group 3 stability boundaries are orders of magnitude
higher in T0 than those of the other groups. There is also about an order-of-magnitude
variation of the critical T0 within group 3, higher (less stable) with more side edges free.
At large R1 it is difficult to distinguish slow growth and slow decay, particularly for RRFR,
so the stability boundary is dashed to indicate this lack of certainty.

In the supplementary material, figure S1 marks (R1, T0) pairs where the small-amplitude
instability corresponds to divergence or flutter with divergence, for each of the 12 boundary
conditions. Divergence (without flutter) is most common for group 1 (fixed–fixed), while
flutter with divergence is more common for the other three groups.

5.1. Large-amplitude scaling laws
We now study how key quantities – the typical magnitudes of deflections, and for unsteady
cases, frequencies of oscillations – depend on R1, T0 and R3 in the large-amplitude
regime. We set the perturbation magnitude σ to 10−3 for groups 1, 2 and 4 and 10−2
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for group 3, larger than the 10−5 value we used for the stability boundaries, to reach the
large-amplitude regime faster. We also tested a few cases with different σ : ±10−5 and
several values ranging from 10−3 to 10−1. With σ = −10−5 we obtained the mirror image
of the large-amplitude steady state with σ = 10−5. With different positive σ and all other
parameters the same, in most cases the same large-amplitude steady state was found (static
or oscillatory). However, we did find one RFRF case where σ = 10−3, 10−2 and 0.03 gave
one steady shape and σ = 0.06 and 0.1 gave a different steady shape.

In our 2-D work (Mavroyiakoumou & Alben 2020, 2021b,a) we also studied
the typical spatial wavenumbers of membrane deformations, but these are somewhat
difficult to quantify precisely without higher spatial resolution, which is more feasible
computationally in two dimensions. However, there is sometimes a correlation between
wavenumbers and frequencies, which are computed here.

In figure 10 we show how the time-averaged deflection depends on R3 at several fixed
values of R1 (listed in the legends of panels (a,c,d)) and T0 for all 12 boundary conditions.
We define the time-averaged deflection of the membrane as the maximum membrane
deflection minus the minimum deflection, averaged over time

〈zdefl〉 ≡ 1
t2

∫ t1+t2

t1

(
max

−1<α1,α2<1
z(α1, α2, t) − min

−1<α1,α2<1
z(α1, α2, t)

)
dt, (5.1)

where t1 and t2 are sufficiently large that 〈zdefl〉 changes by less than 1 % with further
increases in these values. As in the 2-D studies (Mavroyiakoumou & Alben 2020, 2021a),
deflection scales as 1/

√
R3 at moderate and large R3 in all 3-D cases. The scaling begins

at larger R3 for the third column, so the R3 range there is a factor of 102 higher than in
the other columns. At R3 = 102, the deflection magnitudes are generally much higher in
column 3 than in the other columns. Selected T0 values are shown in figure 10 but the
same scaling holds at other T0 values, two of which are shown in the Appendix. We briefly
explain the 1/

√
R3 scaling similarly to Mavroyiakoumou & Alben (2020). We expand

terms in the z component of the membrane equation (2.16) in the limit of small deflections,
by inserting Taylor series for z and its derivatives. T0 and R3 enter through the ē and Ks
terms respectively. T0 multiplies (∂2

α1
+ ∂2

α2
)z and R3 multiplies a term that is cubic in

derivatives of z. Using the kinematic and pressure jump equations, (2.19) and (2.20), we
find that γ2 is linear in z and therefore so is [p] and the [p] term in (2.16). At steady
state, the amplitude is set by a balance of the destabilizing [p] term and the stabilizing R3
term; the T0 term is similar in magnitude to these terms near the stability boundary, and
becomes insignificant at smaller T0. Balancing R3O(|z|3) and the O(|z|) pressure term, we
have |z| ∼ R−1/2

3 .
In the third column, smaller R1 values (listed in the top panel) are used compared with

the other columns, because the third-column cases did not reach large amplitude within
350 time units at the larger R1. In a few cases data are omitted because membranes were
stable (FFRF with R1 = 10−0.5) or did not attain steady-state motions by t = 350 (RRFF
and RRFR with R1 = 100.5).

The other main quantity we measure is the membrane’s frequency of oscillation. This
is calculated as the reciprocal of the period of oscillation, the time between successive
peaks in zcentre(t) near the end of the computation (typically t = 350). We plot the
frequency data in figure 11, similarly to the amplitude data in the previous figure, but
now vs R1, the most important parameter for frequency, at various fixed values of T0
and R3 (listed in the titles and in the legends in the first two columns, respectively).
Unlike the amplitude, the membranes’ shapes and frequencies do not vary much with R3.
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Figure 10. Time-averaged deflections of the membranes (defined by (5.1)) vs R3 for various R1 (listed in the
top panel of each column, i.e. panels (a,c,d), except (column 2) which uses the same values as panel (a))
and fixed T0 for all 12 boundary conditions. Recall that R1 is the dimensionless membrane mass, T0 is the
dimensionless pretension and R3 is the dimensionless stretching rigidity. Panels (a,e,i), (b, f,j), (c,g,k) and (d,h,l)
correspond to groups 1–4 in figures 1 and 9. The dotted black line in each panel indicates the scaling R−1/2

3 .

In most cases with large R1 (∈ [101, 102]) and some cases with moderate R1 (∈ [100, 101]),
the frequency approximately scales as 1/

√
R1, as in the large-amplitude 2-D studies

Mavroyiakoumou & Alben (2020, 2021a). The scaling can be explained in two or three
dimensions by balancing the R1∂ttz term in the membrane equation with the other terms,
which are independent of R1. Assuming a period of oscillation T , we have R1∂ttz ∼
R1z/T2 ∼ O(z) for the remaining terms (i.e. the [p] term), so at large R1 the frequency
= 1/T ∼ 1/

√
R1.

There is more variability in the frequency dependence on R1 than in the amplitude
dependence on R3, for a few main reasons. At large R1, the oscillation period is longer, so
longer times are needed to reach a steady state, and the estimates of period and frequency
are based on smaller and perhaps noisier data sets. The oscillations are periodic in some
cases but chaotic in others, and in the latter cases the frequency is only a rough estimate
of the long-time average. Finally, the oscillatory motion may change qualitatively (e.g. the
membrane shapes may change) as R1 increases in the ranges considered here, which may
cause deviations from the simple 1/

√
R1 scaling law.

At small R1 the frequency typically plateaus here (in the first and third
columns). A different behaviour was seen in 2-D simulations of tethered membranes
in Mavroyiakoumou & Alben (2021a) which were similar to the 2-D free–free case.
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Figure 11. Plots of mean frequency log10 f vs mass density log10 R1 with various R3 and fixed T0 values for
all 12 boundary conditions. Panels (a,e,i), (b, f,j), (c,g,k), (d,h,l) correspond to groups 1–4 in figures 1 and 9.
The dotted black line in each panel indicates the scaling R−1/2

1 .

There, the frequencies scaled as R−5/6
1 at small R1 and the shapes had very sharp spatial

features that required hundreds of points in the streamwise direction to resolve, much
higher resolution than we use here in three dimensions. In the corresponding case here,
the fourth column of figure 11, we have a limited set of data at small R1 (at different
T0 than in the fourth column) that show increasing frequencies as R1 decreases, but
it is difficult to characterize the scaling behaviour. At small R1 one might expect a
plateau if the limit R1 → 0 is a regular perturbation problem, e.g. if the membrane shape
does not change much in the limit R1 → 0, as seems to occur in the first and third
columns. However, if the membrane becomes ever wavier as R1 decreases, the frequency
may also diverge, consistent with the 2-D tethered membrane data in Mavroyiakoumou
& Alben (2021a) and the closely related problem of a fixed–free flag with bending
rigidity (Alben 2022). The fourth and second columns, respectively, are similar to these
cases.

The highest frequencies occur in the third column, and these are much higher than in
the first column at the same R1. The third-column frequencies are only moderately higher
than those in the second column at the R1 where both are given, 100.5.

One interesting difference with two dimensions that we will discuss further in the next
section is that in three dimensions we find many cases of oscillatory membranes with
leading and trailing edges fixed, corresponding to the frequencies in the first column. In
two dimensions, all physically reasonable fixed–fixed cases assumed steady single-hump
shapes. In panel (e) data are only presented at R3 = 102 and in panel (i) data are only
presented at R3 = 100, because the membranes did not oscillate at the other R3 values
across the full range of R1 shown at these T0.
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5.2. Large-amplitude dynamics
We have presented basic scaling relationships for the amplitudes and frequencies of
steady-state large-amplitude membrane motions. In this section we characterize the types
of motions – e.g. a shape that is steady, or with periodic or chaotic oscillations – across all
12 boundary conditions. We consider in turn each of the four groups in figure 1, determined
by the conditions at the leading and trailing edges. We use three values of the stretching
rigidity parameter R3: 100, 101 and 102. Somewhat below 100, deflections become
unrealistically large in some cases. At R3 = 102, the motions generally approximate the
large-R3 asymptotic regime.

We consider values of T0 that are relatively close to the stability boundary, within
1–1.5 orders of magnitude of it. In general, as T0 decreases, our algorithm requires more
iterations for convergence at a given time step. At T0 far below the stability boundary
(� 1.5 orders of magnitude), the iterative method in our computational method tends to
stagnate without converging at an early time step. In some cases, the stagnation occurs
after a sharp angular feature appears in the membrane shape. Presumably larger T0 inhibits
the formation of such features. By contrast, our 2-D algorithm from Mavroyiakoumou &
Alben (2020, 2021a) was able to compute at arbitrarily small T0, where the T0 term became
insignificant compared with the R3 term in the total stretching force. There we found only
modest changes in the dynamics as T0 increased from zero to the stability boundary, so
possibly the 3-D results here indicate what would happen at very small T0, but we defer
this question to future work.

In each case we consider a wide range of membrane mass R1, from small to large.
Incidentally, we find that the iteration count increases at smaller R1, but this does not
prevent convergence, unlike at small T0.

5.2.1. Leading and trailing edges fixed (FFFF, FRFF, FRFR)
We begin with membranes whose leading and trailing edges are fixed at zero deflection
(group 1 in figures 1 and 9). Figure 12 shows typical motions and where they occur
in parameter space. Each row of the top 3 × 3 array of panels corresponds to different
side-edge conditions (FFFF, FRFF or FRFR), and each column to a different R3 value (100,
101 or 102). The different colours in each panel indicate where different types of motions
occur in R1–T0 space, with representative examples below. Purple is used for steady
single-hump shapes, green for small oscillations (periodic or not) about single-hump
shapes, and yellow for up–down symmetric oscillations, usually periodic. Small black
dots indicate periodic cases. Blue is used for cases that had slowly decaying oscillations
at t = 350, and could approach the green or purple states at later times. Such cases occur
at large R1 and the oscillations tend to be less periodic than at smaller R1. A few white
regions in the upper corners of the FFFF panels indicate motions that were still in the
exponential growth regime at t = 350, while cases in the white region in the FRFR panel at
R3 = 100 failed to converge at an early time. The three rows at the bottom of figure 12 show
representative examples of the membrane motions in the purple, green and yellow regions.
Just to the right of small rectangles with these colours, the motions are shown by sequences
of 11 midspan snapshots (overlaid), and then further to the right, smaller sequences of four
3-D snapshots, arrayed horizontally. All these sequences are for FFFF cases, but single
3-D snapshots from the same type of motion with other side-edge conditions are shown at
the far left in each row.

As noted previously, only steady single-hump shapes (purple) occur in two dimensions
with fixed leading and trailing edges (Mavroyiakoumou & Alben 2020), whereas
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Figure 12. Typical membrane dynamics with fixed leading and trailing edges. The colour plots classify the
different membrane dynamics across a grid of (R1, T0) values for three values of R3 (100, 101, 102) with black
dots indicating periodic motions. Recall that R1 is the dimensionless membrane mass, T0 is the dimensionless
pretension and R3 is the dimensionless stretching rigidity. Representative examples of motions in the purple,
green and yellow regions are shown in (d–f ), identified by small coloured rectangles. To the right of the
rectangles are overlaid sequences of 11 midspan snapshots in black, for FFFF boundary conditions. To the
right of the midspan snapshots are a smaller representative sequence of four 3-D snapshots, from left to right
with increasing time. To the left of the midspan snapshots are single 3-D snapshots representing similar cases
with other side-edge conditions (FRFF and FRFR).

steady-state oscillations are surprisingly common in three dimensions, particularly with
all four edges fixed. Here, up–down symmetric periodic motions (yellow) are much more
common than with the other side-edge conditions, which typically have moderately small
or no oscillations about a single-hump shape. The yellow motion includes a travelling
wave of deflection that moves upstream, unlike in the 2-D fixed–free and free–free cases
(Mavroyiakoumou & Alben 2020). Compared with the steady purple shape, the green
motion has more variability not just in time but also in the spanwise direction, exemplified
by the snapshot to the left of the small green rectangle in the second row from the bottom.
In experiments, oscillatory cases with fixed leading and trailing edges have been reported
mainly at non-zero angle of attack, where leading-edge vortex shedding seems particularly
significant (Rojratsirikul, Wang & Gursul 2010, figure 4). Fewer details have been given
for unsteady motions at zero angle of attack in experiments (Galvao et al. 2006).
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Figure 13. Typical membrane dynamics with fixed leading edges and free trailing edges. The colour plots in
(a) show the time-averaged number of zero crossings of the membranes’ midspan profiles at various (R1,T0)
values for R3 = 101. The black dots indicate periodic motions. Representative examples of motions at a
sequence of R1 values from 10−1 to 101.5 are shown in (b–g). Overlaid sequences of 11 midspan snapshots
are shown in black, for FRRF boundary conditions. To the right of the midspan snapshots are a smaller
representative sequence of four 3-D snapshots, from left to right with increasing time. To the left of the
midspan snapshots are single 3-D snapshots representing similar cases with other side-edge conditions (FFRF
and FRRR).

5.2.2. Leading edge fixed and trailing edge free (FFRF, FRRF, FRRR)
The typical motions are qualitatively different in the second group (group 2 in figures 1
and 9), with the leading edge fixed and the trailing edge free. Hence, we classify the
motions somewhat differently in figure 13, with colours denoting the number of times
the midspan profile crosses z = 0 (not including the leading edge), time averaged. This
classifies the spatial waviness of the profiles. Here, R3 is fixed at 101; at other R3 the
deflection amplitude varies but the numbers of zero crossings are almost unchanged. The
numbers of zero crossings decrease almost monotonically as R1 increases, and chaotic
states (without black dots) with larger amplitudes and more up–down asymmetry become
more common, similarly to the 2-D results in Mavroyiakoumou & Alben (2020). In the
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white regions at the upper left of each panel, membranes are stable. In the white regions
at the lower right, the computations did not converge when the membranes reached large
amplitude but before they attained a steady-state motion, so results are not reported.

Typical membrane motions are shown in the rows at the bottom, one for each R1 in a
sequence from 10−1 to 101.5. Here, the motions resemble different modes of a flapping flag
(Connell & Yue 2007; Alben 2008b, 2022), with travelling waves that pass downstream,
unlike for group 1. Another difference here is that the side-edge conditions do not change
the type of motion. As in Mavroyiakoumou & Alben (2020), at small R1 the deflection
envelope has small amplitude near the trailing edge. At large R1 (e.g. 101.5) the travelling
waves become more like standing waves, with fixed nodes and antinodes.

5.2.3. Leading edge free and trailing edge fixed (RFFF, RRFF, RRFR)
Next, we consider membranes whose leading edge is free and trailing edge is fixed (group 3
in figures 1 and 9). We showed in figure 9 that here the critical pretensions for instability
are much larger than in the other cases. The space of motions is qualitatively different than
for groups 1 and 2. In figure 14, we identify just three types of motions, with approximately
periodic, up–down symmetric oscillations in most cases, characterized by three typical
midspan profiles shown in the bottom three rows: a low-mode shape with at most a
single interior z extremum (light purple), a higher-mode shape with one or two interior
z extrema (yellow) and a low-mode shape with a multi-valued z profile near the trailing
edge at certain times (dark purple). This last motion is more common at smaller R1 and
does not appear with both side edges fixed or at the largest R3 (right column), where
the first motion dominates. White regions are again cases in which the computations did
not converge when the membranes reached large amplitude but before they attained a
steady-state motion. Another special feature of group 3 is that the small-amplitude growth
rates are generally much less than in the other groups, so data are omitted for R1 > 100

because the amplitudes were growing and had not yet reached a steady state at t = 350.
In some cases at R1 = 101.5 and 102 (not shown) the amplitude neither grows nor decays
noticeably after the initial perturbations, as also occurred in some 2-D cases at large R1
(Mavroyiakoumou & Alben 2020).

The motions of group 3 seem more likely to violate the physical assumptions of the
model than the other groups. The oscillation amplitude is highest at the leading edge, so
leading-edge vortex shedding is probably important unless the oscillation amplitudes are
very small (i.e. at R3 = 103 and 104, where the motions are similar to those in the R3 =
102 column, light purple generally). Vortex shedding would probably occur in multiple
locations upstream of the trailing edge for the dark purple motions, due to large deflection
amplitudes and slopes.

5.2.4. Leading and trailing edges free (RFRF, RRRF, RRRR)
Group 4 consists of membranes with the leading and trailing edges free (figures 1
and 9). With fewer of the edges fixed, we find a wider variety of dynamics. In figure 15
we use seven categories to classify the motions, with representative examples in the
seven rows at the bottom, each labelled using a small rectangle with a certain colour
and symbol that is repeated at data points in this category in the 3 × 3 array of colour
plots above. The first three rows represent categories of steady shapes with one, two
or three internal inflection points, respectively. The fourth row represents a category of
motions with small oscillations about one of the steady shapes. To identify these cases,
we decompose the midspan deflection z(α1, 0, t) as the sum of its time average and the
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Figure 14. Typical membrane dynamics with free leading edges and fixed trailing edges. The colour plots
classify the different membrane dynamics across a grid of (R1, T0) values for three values of R3 (100, 101, 102)
with black dots indicating periodic motions. Representative examples of motions in the light purple, yellow and
dark purple regions are shown in (d–f ), identified by small coloured rectangles. To the right of the rectangles
are overlaid sequences of 11 midspan snapshots in black, for RFFF boundary conditions (d,e) and RRFF
boundary conditions ( f ). To the right of the midspan snapshots are a smaller representative sequence of four
3-D snapshots, from left to right with increasing time. To the left of the midspan snapshots are single 3-D
snapshots representing similar cases with other side-edge conditions (RRFR and RRFF).

remainder, the unsteady part. Motions are in the fourth category if the maximum minus
the minimum of the unsteady deflection is non-zero but much less than the maximum
minus the minimum of the time-averaged deflection. The fifth row represents unsteady
motions whose unsteady part is comparable to or larger than the steady part (in the same
sense as for the fourth category). The sixth row is for a special type of unsteady motion
with all edges free (RRRR) that is time periodic. These motions have translational and
deformational dynamics with O(1) frequencies, and their translational motions are more
precisely time periodic than those at large R1. The seventh row is for another special type
of unsteady RRRR motion that has both large spanwise and large chordwise curvatures.

The sixth and seventh categories occur only for the RRRR case, which seems to
have a wider variety of motions because it is free to translate in z. As in the 2-D case
(Mavroyiakoumou & Alben 2020), the translational motion is distinct from but coupled to
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Figure 15. Typical membrane dynamics with free leading and trailing edges. The colour plots classify the
different membrane dynamics across a grid of (R1, T0) values for three values of R3 (100, 101, 102) with black
dots indicating periodic motions. Representative examples of motions in all the coloured regions are shown in
(d–j), identified by small coloured rectangles with symbols. To the right of the rectangles are overlaid sequences
of 11 midspan snapshots in black, for RFRF (d, f,g,h), RRRF (e) and RRRR boundary conditions (i,j). To the
right of the midspan snapshots are a smaller representative sequence of four 3-D snapshots, from left to right
with increasing time. To the left of the midspan snapshots are single 3-D snapshots representing similar cases
with other side-edge conditions (RRRF and RRRR).
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the shape deformation dynamics, and the combination of the two results in more types of
dynamics. Other categories of motions that occur only with certain edge conditions are the
second and third, the steady states with two or three interior inflection points, respectively.
The second occurs for RRRF and RRRR and the third for RFRF, both mainly at
small R1. The fourth category, small oscillations about a steady shape, occurs only with
one or both side edges fixed (RFRF and RRRF). The first category, a steady shape with
a single inflection point, occurs with all side edge conditions, but in the RRRR case it
translates either up or down in z at almost constant speed, with occasional reversals in
direction (as in Mavroyiakoumou & Alben 2020, figure 20). The fifth category, of general
unsteady motions, occurs with all side-edge conditions at large R1. Here, motions tend
to be more asymmetrical and irregular and have larger oscillation amplitudes. The large
body mass may allow the body to maintain its momentum against resisting fluid forces for
longer times.

6. Conclusions

We have developed a model and numerical method to compute the small- and
large-amplitude dynamics of thin membranes in 3-D inviscid flows. We provided
numerical evidence that indicates convergence of our method with respect to spatial
grid refinement. The 3-D solutions agree remarkably well with those computed in 2-D
flows with different discretization techniques, particularly when the aspect ratio in three
dimensions is large.

With fixed or free boundary conditions at each of the four edges, we have 16
combinations of boundary conditions for rectangular membranes, reduced to 12 when
symmetric cases are accounted for. We computed the dynamics in all 12 cases with
various values of the three key physical parameters: membrane mass (R1), pretension
(T0) and stretching rigidity (R3). The 12 cases fit naturally into four groups that are
determined by the leading- and trailing-edge boundary conditions. Within each group there
are strong similarities in the shapes and locations of the stability boundaries, the typical
magnitudes of membranes’ deflections and their oscillation frequencies in unsteady cases,
and the typical shapes of the membranes at the midspan location. The side-edge boundary
conditions can cause small or large qualitative differences in the dynamics within each
group. The differences are relatively small for the fixed–free case (group 2); the midspan
shape is almost unchanged at a free side edge or gradually scaled to flat at a fixed side
edge. The differences are larger for the fixed–fixed and free–fixed cases (groups 1 and 3);
changes in side-edge conditions lead to the appearance or disappearance of certain types
of oscillation modes. In group 4 (free–free) the side edges have an even larger effect, for
example by allowing or preventing translational motions that lead to a wider variety of
dynamics.

As in two dimensions, the deflection magnitudes scale as R−1/2
3 and the oscillation

frequencies scale as R−1/2
1 at large values of R3 and R1 respectively. The stability

boundaries and dynamics in groups 1, 2 and 4 have many resemblances to the 2-D cases
with same leading- and trailing-edge conditions studied in Mavroyiakoumou & Alben
(2020). The fixed–free case in three dimensions is very similar to the 2-D case in terms
of increasing waviness with decreasing R1, a more limited effect of T0 on the shapes and
R3 mainly setting the amplitudes of oscillation but not the shapes. The free–free case
in three dimensions has some of the same types of states as in two dimensions: periodic
oscillatory states and vertical translational states that may be nearly steady with a non-zero
mean slope, or undergo periodic or chaotic oscillations.
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Figure 16. Time-averaged deflections of FRFR and FRFF membranes (defined by (5.1)) vs R3 for various R1

and fixed T0 (10−0.25 and 10−0.75). The dotted black line indicates the scaling R−1/2
3 .

However, there are important qualitative differences in three dimensions. Unlike the
2-D fixed–fixed case where all membranes converge to steady single-hump shapes, the
3-D version (group 1) has cases with small and large unsteady oscillations, particularly
when both side edges are fixed. The 3-D results contradicted our intuition from the 2-D
study that more fixed edges lead to fewer unsteady states. The 3-D free–free case (group 4)
has complicated spanwise curvature distributions, particularly with one or both side edges
free. There are more types of motions here than in the 2-D free–free case. We did not study
the 2-D analogue of group 3, free–fixed, but the variations with side-edge conditions here
show that 3-D effects can be significant. Taken together these results validate the use of
2-D models for a good qualitative understanding of membrane motions and scaling with
parameters, but also show that certain important phenomena can only be seen with the 3-D
model.

Future work could investigate several topics, for example: the effect of aspect ratio; a
non-zero Poisson ratio; including non-flat vortex sheets in the kinematic condition and
computing wake roll-up (e.g. using a tree code Lindsay & Krasny 2001) and consequences
for the membrane dynamics, especially at large mass density ratio and small stretching
rigidity (Mavroyiakoumou & Alben 2020, figures 17 and 23); the types of motions at
smaller T0, which would require altering the algorithm to be able to compute steady-state
motions in this regime; mixed fixed and free boundary conditions on a single edge; and
different membrane shapes.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.957.
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Appendix. Membrane deflections vs stretching rigidity at different pretension values

For two of the 12 boundary conditions (FRFF and FRFR) we plot in figure 16 the average
membrane deflection at T0 = 10−0.25 and 10−0.75, instead of 10−0.5 in figure 10, and see
that the deflection values increase at smaller T0 (similarly to Mavroyiakoumou & Alben
2020; Tiomkin & Jaworski 2022) but the same 1/

√
R3 scaling holds in all cases.
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