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Three-dimensional numerical simulations are performed to investigate the dynamics
of deep-ocean convection. Organized structures of denser fluid moving downwards,
known as plumes, are formed during the initial evolution. We propose a scaling for
the diameter and velocity of these plumes based on surface flux magnitude B0 and the
thermal/eddy diffusivity. Rotation effects are found to be negligible during this initial
evolution. At a later time t> 2π/f , where f is the Coriolis parameter, the flow comes
under the influence of rotation, which stabilizes the flow by inhibiting the conversion
of potential energy to turbulent kinetic energy. At moderate to low rotation rates,
the dense fluid plummets and spreads laterally as a gravity current along the bottom
boundary. However, at high rotation rates, the flow reaches a quasi-geostrophic state
(before the dense fluid reaches the bottom boundary) with an approximate balance
between the pressure gradient and the Coriolis forces. We also see the formation of
baroclinic vortices and a rim current at the interface of the mixed and surrounding
fluids at high rotation rates. A quantitative analysis of the root-mean-square velocities
reveals that higher rotation rates result in lower turbulence intensities. Closure of the
turbulent kinetic energy budget is also achieved with an approximate balance between
the buoyancy flux and the dissipation rate.

Key words: convection, turbulent flows

1. Introduction
Turbulent convection is a commonly occurring phenomenon in the oceans and

atmosphere. Deep convection in open ocean is a particular form of turbulent convec-
tion observed especially at high latitudes, such as the Northwestern Mediterranean,
the Labrador Sea, the Central Greenland Sea and the Weddell Sea. The surface
waters at these locations become denser, either due to atmospheric cooling or brine
rejection, and sink to greater depths. Deep-ocean convection plays an important role
in thermohaline circulation (Marshall & Schott 1999) through an efficient vertical
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mixing process which sometimes results in well-mixed layers extending down to
the abyss. The review article by Killworth (1983) provides useful insights into the
mechanism of open-ocean convection at various locations around the globe. However,
advances in observational techniques, sophisticated experimental tools and numerical
modelling have improved our understanding of the dynamics of deep-ocean convection
as reviewed by Marshall & Schott (1999).

The first attempt to unravel the mysteries of open-ocean deep convection is the
classical Mediterranean Ocean Convection (MEDOC) experiment in the Gulf of Lions,
Northwestern Mediterranean (Medoc 1970). The MEDOC experiment demonstrated
the formation of a homogeneous region as a consequence of surface forcing by strong
cold winds. Mixing of the water column down to 2000 m within a few days was
observed. Further investigations carried out by Gascard (1978) and Leaman & Schott
(1991) demonstrated the regular occurrence of deep convection at the end of the winter
period in the Gulf of Lions. The experiments of Leaman & Schott (1991) and Schott
et al. (1996) depicted the existence of small-scale convection cells, known as plumes,
in the Gulf of Lions and deduced that these plumes behave as mixing agents rather
than transporting bulk fluid in the downward direction. Analogous experiments by
Schott, Visbeck & Fischer (1993) in the Greenland Sea also corroborated the presence
of plumes and their role as mixing agents. More recently, observations by Testor et al.
(2018) in the Northwestern Mediterranean Sea reported deepening of the mixed layer
owing to horizontal inhomogeneities in density. They also observed sharpening of
fronts and the development of baroclinic instabilities resulting in mesoscale turbulence.
Similarly, field experiments were also conducted in the Labrador Sea by Lazier (1973)
and Clarke & Gascard (1983), and the presence of deep, mixed water columns as
a result of inter-annual variation in temperature and salinity was reported. Gordon
(1982) have also documented the sinking of freezing point surface water to a depth
of approximately 2700 m in the Weddell Sea during the winter.

Laboratory experiments of localized convection are also conducted by either
imposing a source of buoyancy flux at the surface (Maxworthy & Narimousa 1994;
Whitehead, Marshall & Hufford 1996) or by heating the bottom boundary (Brickman
1995; Coates, Ivey & Taylor 1995; Ivey, Taylor & Coates 1995) in a rotating
environment. The experiments of Maxworthy & Narimousa (1994) were performed
in an unstratified medium, and agree with the findings of Jones & Marshall (1993),
especially in terms of the length and velocity scales of the plumes. Similar plumes
are also reported by Aurnou et al. (2003) in their thermal convection experiments
in a rotating fluid. Whitehead et al. (1996), however, carried out their experiments
in a stratified medium and concluded that the depth of penetration of the convective
mixed layer depends only on the nature of the surface buoyancy flux and ambient
stratification rather than rotation. The unstratified experiments of Brickman (1995)
and the stratified experiments of Ivey et al. (1995) and Coates et al. (1995) revealed
the formation of baroclinic eddies at the edges of the heating disk after the initial
evolution, and are responsible for the lateral distribution of heat. Recently, Frank et al.
(2017) conducted experiments on saltwater point plumes in an unstratified rotating
environment and highlighted the importance of background rotation in the evolution
of plumes. They reported anticyclonic precession of the plume at a rate proportional
to the background rotation rate.

Several numerical studies were also performed (Madec et al. 1991; Jones &
Marshall 1993; Denbo & Skyllingstad 1996; Legg, McWilliams & Gao 1998; Raasch
& Etling 1998; Noh, Jang & Kim 1999; Noh, Cheon & Raasch 2003) with a focus
on understanding the flow physics and quantifying the length and velocity scales of
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the plumes in deep-ocean convection. The subgrid-scale features in these simulations
were parameterized by using either eddy viscosity models or a high artificial viscosity
and, therefore, the small-scale turbulence was not explicitly resolved. The simulations
of Madec et al. (1991), with the help of a simple parameterization scheme of
convection, focused on the mechanism responsible for the generation of the mesoscale
features and the energetics associated with them in deep-ocean convection in the
Northwestern Mediterranean Sea. Jones & Marshall (1993) performed simulations of
localized convection in a neutral environment using a non-hydrostatic ocean model
and proposed length and velocity scaling of the plumes. They deduced that if the
dynamics of the deep-ocean convection is dominated by the Earth’s rotation, the
length and velocity of the plumes vary as (B0/f 3)1/2 and (B0/f )1/2 respectively.
However, if the rotational effects are weak and the ocean depth becomes important,
the length and velocity scale as L3 (fluid depth) and (B0L3)

1/3, respectively. Large
eddy simulations (LES) were performed by Raasch & Etling (1998) to investigate the
growth of the convective mixed layer as a consequence of localized heating at the
bottom boundary in a rotating and stably stratified fluid. The heating flux magnitude
considered in their study was four orders of magnitude larger compared to the typical
cooling flux magnitudes measured in the ocean. Noh et al. (1999) also carried out
LES to study the effects of preconditioning and surface flux magnitude on convective
patterns. Direct numerical simulations were performed by Julien et al. (1996a,b) to
study the dynamics of plumes and the energetics in Rayleigh–Bénard convection
under the influence of rapid rotation.

In this study, localized convection typically observed in open-ocean deep convection
is considered. The current problem set-up is different from the classical ‘Rayleigh–
Bénard’ convection (Bénard 1901; Rayleigh 1916). The convective processes in
the ocean are characterized by intermittent localized forcing (Gascard & Clarke
1983) at the surface whereas the Rayleigh–Bénard convection typically represents
the convective phenomenon between two infinite plates at different temperatures.
Although the initial evolution for both deep-ocean convection and Rayleigh–Bénard
convection have similar characteristics such as plume formation, the late time flow
evolution in deep-ocean convection is significantly influenced by the horizontal
inhomogeneities in density, resulting in an entirely different set of physical processes
such as baroclinic instabilities and slantwise convection. The formation of a rim
current at the interface of the mixed and surrounding fluid is also a distinctive feature
found in the deep-ocean convection and is absent in traditional Rayleigh–Bénard
convection.

Deep-ocean convection has traditionally been categorized into three phases (Medoc
1970; Jones & Marshall 1993; Marshall & Schott 1999) namely pre-conditioning,
violent mixing and sinking and spreading. The pre-conditioning phase sets up an
environment for the convection process by transporting weakly stratified fluid from the
interior of the ocean to the surface by means of large-scale cyclonic circulations. Legg
et al. (1998) and Noh et al. (2003) investigated the influence of pre-conditioning on
the dynamics of the deep-ocean convection in a stratified environment by imposing
uniform surface buoyancy loss and mesoscale eddies as initial conditions. In the
studies with disk-shaped surface cooling, the location of the deep convection remains
fixed whereas the presence of an initial mesoscale eddy gives deep convection the
liberty of evolving in response to the motion of the baroclinic eddies and changes
in stratification. The cooling at the surface instigates the violent-mixing phase during
which the denser fluid at the surface sinks to greater depths in the form of multiple
plume-like structures, resulting in overturning and mixing of the entire water column.
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This localized mixing results in lateral density gradients between the mixed fluid and
the surrounding fluid. The sinking and spreading phase begins with the weakening
of the surface cooling, as a consequence of which the convective overturning process
ceases. The lateral density front under the influence of rotation undergoes baroclinic
instabilities and results in baroclinic eddies responsible for lateral mixing, entrainment
of surrounding fluid and restratification of the water column.

Although different phases of deep-ocean convection and their roles in overall
large-scale circulation are studied extensively (Medoc 1970; Jones & Marshall
1993; Marshall & Schott 1999), there are discrepancies in the parameterization
of deep-ocean convection due to the poor representation of small-scale turbulence.
The vertical mixing during convection occurs over hundreds of metres during a
period of hours (Aagaard & Carmack 1989). The existing ocean general circulation
models (OGCMs) cannot resolve these convective processes owing to their coarse
resolution. Therefore, the OGCMs use one-dimensional (1-D) parameterization
schemes (Rahmstorf 1993; Klinger, Marshall & Send 1996; Paluszkiewicz & Romea
1997) to represent the convective processes. These parameterizations inherently assume
homogeneity in the horizontal directions. In the real ocean the mixing owing to
convection is heterogeneous in nature (M. Ilicak, Adcroft & Legg 2014). Therefore,
these 1-D parameterization schemes are unable to accurately model the effect of
small-scale turbulence on large-scale circulation. In this study, we perform direct
numerical simulations (DNS) and LES with a focus on small-scale turbulence in
the deep-ocean convection process, particularly during the violent-mixing phase.
The present simulations explicitly resolve the energy containing eddies of the flow
imperative for understanding the effect of small-scale turbulence on the evolution
of large-scale flow structures. Note that DNS are carried out in a scaled-down
computational box and LES are performed at large scales O(10 km) while keeping
the Rossby number for both DNS and LES relevant to realistic values observed in
the ocean. We explore if the scaling laws proposed by Jones & Marshall (1993)
under neutral ocean conditions are valid in a weakly stratified environment with
Brunt–Väisälä frequency N 6 f . We also investigate the effects of rotation on the
overall flow evolution by varying the background rotation rate.

The problem formulation is presented in § 2. Results from the numerical simulations
are discussed in § 3 and the conclusions drawn from this study are given in § 4.

2. Problem formulation
2.1. Governing equations

The three-dimensional conservation equations for mass, momentum and temperature
deviation from the background subject to the Boussinesq approximation for an
unsteady incompressible flow are

continuity:
∇ · u= 0, (2.1)

momentum:

∂u
∂t
+ u · ∇u=−

1
ρ0
∇p′ − f k̂× u−

ρ̃

ρ0
gk̂+ ν∇2u−∇ · τ , (2.2)

temperature:

∂T̃
∂t
+ u · ∇T̃ = κt∇

2T̃ − u3
∂T(x3)

∂x3
−∇ · λ+ FT . (2.3)
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Here, u is the velocity vector with components (u1, u2, u3) in the x1, x2 and x3
(vertical) directions respectively, p′ is the deviation of pressure from the hydrostatic
background state, f is the Coriolis parameter, g= 9.81 m s−2 is the acceleration due
to gravity, ν (m2 s−1) is the kinematic viscosity, κt (m2 s−1) is the thermal diffusivity
and the Prandtl number Pr = ν/κt. The terms τ and λ represent the subgrid stress
tensor and temperature flux vector respectively. In the case of DNS, these terms will
be zeros as all the scales of the flow are well resolved and there is no need for
any subgrid-scale parameterization. However, in the case of LES, these terms need
to be evaluated from the resolved components of the velocity and temperature fields.
The subgrid-scale stress, τij, and subgrid temperature flux, λj, are parameterized as
follows:

τij =−2Cd∆̂
2
|S|Ŝij, (2.4)

λj =−Cθ∆̂
2
|S|
∂T̂
∂xj
, (2.5)

where ∆̂ is the filter (top hat) width, Cd is the model coefficient, Ŝij= 1/2(∂ ûi/∂xj+

∂ ûj/∂xi) is the resolved strain rate and |S| is defined as
√

2ŜijŜij. The subgrid eddy
viscosity and diffusivity are computed using the Smagorinsky model as:

νsgs =Cd∆̂
2
|S|, (2.6)

κsgs =Cθ∆̂
2
|S|, (2.7)

respectively. The model coefficient Cd is taken as 0.17 (Lilly 1967; McMillan &
Ferziger 1979; Meyers & Sagaut 2006) and, since the turbulent Prandtl number (Prt)
is assumed to be 1 (Taylor & Ferrari 2010), Cθ is also taken as 0.17.

The temperature can be decomposed into a reference temperature, T0, background
variation in the x3 direction, T(x3), and a deviation from the background, T̃(xi, t),
given by

T = T0 + T(x3)+ T̃(xi, t). (2.8)

In the ocean, the density can change as a result of variations in temperature, salinity
and pressure. However, in this study, since our focus is on understanding the plume
scaling and turbulent dynamics for a given background condition, we assume the
density to be a linear function of temperature only to avoid additional complexities.
The density is given by ρ = ρ0(1 − α(T − T0)), where T0 = 298 K is the reference
temperature, α = 2 × 10−4 K−1 is the coefficient of thermal expansion of water and
ρ0= 1000 kg m−3 is the reference density. The density deviation and the temperature
deviation are related to each other as follows:

ρ̃(xi, t)=−ρ0αT̃(xi, t). (2.9)

The background temperature gradient is related to the Brunt–Väisälä frequency
as ∂T(x3)/∂x3 = (1/gα)N2. We have chosen a constant value for the Brunt–Väisälä
frequency, N = 10−2 rad s−1 for DNS, and N = 3.16 × 10−5 rad s−1 for LES. The
reason for such a selection is to keep the ratio N/f 6 1 for DNS and LES. At the
initial time, t = 0, the temperature deviation is taken as zero. A surface forcing,
FT , is imposed at the top boundary in a circular region (see figure 1) given by
FT = H/ρ0Cwh, where H = −800 W m−2 is the cooling flux at the top surface,
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Linearly stratified
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FIGURE 1. Schematic of the computational domain. The dimensions of the computational
box are L1, L2 and L3 respectively in the x1, x2 and x3 directions. The coordinates
of the computational domain are in the ranges (−L1/2, L1/2), (−L2/2, L2/2) and
(−L3, 0) respectively. The surface forcing is applied in a circular region of radius r0 =

0.114L1 centred at (0, 0, 0) for both DNS and LES cases. All of the dimensional and
non-dimensional parameters are given in tables 1 and 2.

Cw = 3900 J Kg−1 K−1 is the specific heat of water and h is the depth over which
the surface forcing FT is applied. In our simulations, we apply the forcing at the
first vertical grid cell i.e. h = 1x3. Note that the buoyancy flux through the surface
is related to the cooling flux by B0 = gαH/ρ0Cw (Jones & Marshall 1993).

All the numerical values for the variables that will be discussed in the subsequent
sections are in SI units (L1, L2, L3 are in metres, time t is in seconds).

2.2. Numerical method and simulation parameters
Equations (2.1)–(2.3) are discretized using a staggered-grid method, i.e. velocity
fields are stored on the cell faces, whereas pressure and temperature fluctuations
are stored at the cell centres. The governing equations are advanced in time using a
mixed third-order Runge–Kutta and Crank–Nicolson scheme (Pham, Sarkar & Brucker
2009; Brucker & Sarkar 2010; Pal, de Stadler & Sarkar 2013; Pham & Sarkar 2014,
2018; Pal & Sarkar 2015). A second-order central finite-difference method is used to
compute spatial derivatives. The dynamic pressure is obtained by solving the Poisson
equation via a multigrid iterative method. Periodic boundary conditions are used in
x1 and x2 directions for all variables. In the vertical direction, Dirichlet and Neumann
boundary conditions are used as follows:

∂u1

∂x3
(x3 = 0,−L3)= 0,

∂u2

∂x3
(x3 = 0,−L3)= 0, u3(x3 = 0,−L3)= 0, (2.10a−c)

∂p′

∂x3
(x3 = 0,−L3)= 0,

∂T̃
∂x3

(x3 = 0,−L3)= 0. (2.11a,b)

This solver has been extensively validated and used for several DNS (Pham et al.
2009; Brucker & Sarkar 2010; Pal et al. 2013; Pal & Sarkar 2015) and LES (Pham
& Sarkar 2014, 2018) studies of stratified turbulence. Grid resolution in this study has
been chosen such that the smallest scales of the flow (Kolmogorov scales) are well
resolved in DNS.
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Case B0 (m2 s−3) f (s−1) Raf Ro T (s)

Effects of forcing B0, DNS
(1) DNS1 4× 10−9 0.006 5× 109 0.32 1047.2
(2) DNS2 1.26× 10−8 0.009 1.5× 1010 0.32 698.1
(3) DNS3 4× 10−8 0.013 5× 1010 0.32 483.3
(4) DNS4 8× 10−8 0.017 1× 1011 0.32 369.6
(5) DNS5 1.26× 10−7 0.019 1.5× 1011 0.32 330.7
(6) DNS6 2.4× 10−7 0.024 3× 1011 0.32 261.8
(7) DNS7 4× 10−7 0.029 5× 1011 0.32 216.66

Effects of rotation rate f , DNS
(8) DNS8 4× 10−7 0.134 5× 1011 0.032 46.89
(9) DNS9 4× 10−7 0.074 5× 1011 0.078 84.90
(10) DNS10 4× 10−7 0.029 5× 1011 0.32 216.66
(11) DNS11 4× 10−7 0.018 5× 1011 0.64 345.23
(12) DNS12 4× 10−7 0.013 5× 1011 1 465.42
(13) DNS13 4× 10−7 0.008 5× 1011 2.2 785.39

TABLE 1. Simulation parameters for DNS: here B0 is the magnitude of the buoyancy flux
applied near the surface, f is the Coriolis parameter. Raf =B0L4

3/κ
2
t ν is the (flux) Rayleigh

number, where κt = 0.143× 10−6 m2 s−1 is the thermal diffusivity and ν = 10−6 m2 s−1 is
the kinematic viscosity. The Rossby number is defined as Ro = B1/2

0 /f 3/2L3. The number
of grid points used for all of the cases in the x1, x2 and x3 directions are Nx = 1024,
Ny = 1024 and Nz = 512 respectively. The domain lengths in the corresponding directions
are L1 = 2.2 m, L2 = 2.2 m and L3 = 0.4 m for all of the cases listed above. T = 2π/f
is the inertial time period and signifies the importance of rotational effects on the flow.

Case B0 (m2 s−3) f (s−1) Raf Ro T (s)

Effects of forcing B0, LES
(1) LES1 4× 10−8 4.6× 10−5 5.0× 1011 0.32 1.36× 106

(2) LES2 6× 10−8 5.2× 10−5 7.5× 1011 0.32 1.19× 106

(3) LES3 1× 10−7 6.2× 10−5 1.2× 1012 0.32 1.0× 106

(4) LES4 2× 10−7 7.8× 10−5 2.5× 1012 0.32 7.97× 105

(5) LES5 13× 10−7 9.0× 10−5 3.7× 1012 0.32 6.97× 105

(6) LES6 4× 10−7 9.9× 10−5 5× 1012 0.32 6.33× 105

TABLE 2. Simulation parameters for LES: κt = 1.2 × 10−2 m2 s−1 and ν = 8.5 ×
10−2 m2 s−1 for LES. The number of grid points used for all of the LES cases in the
x1, x2 and x3 directions are Nx = 768, Ny = 768 and Nz = 256 respectively. The domain
lengths in the respective directions are L1 = 11 000 m, L2 = 11 000 m and L3 = 2000 m
for all of the LES cases listed above.

The Reynolds decomposition of any of the following quantities u1,u2, u3 and T̃ into
mean and fluctuating components is given by

φ = 〈φ〉 + φ′. (2.12)

Periodic boundary conditions are applied in the x1 and x2 directions, and therefore
horizontal averaging of the variables is performed to calculate the Reynolds averaged
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0
t = 59.2 s, Ro = 0.32, B0 = 4 ÷ 10-7 m2 s-3

t = 188.8 s, Ro  = 0.32, B0 = 4 ÷ 10-8 m2 s-3

t = 595.2 s, Ro = 0.32, B0 = 4 ÷ 10-9 m2 s-3

(a)

(b)

(c)
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-0.10

-0.15

-0.20

-0.25

0

-0.05

-0.10

-0.15

-0.20

-0.25

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x1 (m)

x 3
 (m

)
x 3
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-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

FIGURE 2. Contour plots of vertical velocity in the x2 = 0 plane for (a) B0 = 4 ×
10−9 m2 s−3 (DNS1), (b) B0 = 4 × 10−8 m2 s−3 (DNS3) and (c) B0 = 4 × 10−7 m2 s−3

(DNS7). The domain height and Rossby number in all of these cases are L3= 0.4 m and
Ro= 0.32, respectively. We have only shown the vertical domain in the range [0,−0.25]
in order to zoom in on the initial evolution of the plumes. Each snapshot corresponds to
a time t≈ 100× (κt/B0)

1/2 for all three cases.

value as follows:

〈φ〉 =
1

L1 × L2

∫ L1/2

−L1/2

∫ L2/2

−L2/2

φ dx1 dx2. (2.13)

Tables 1 and 2 show the complete list of numerical experiments that we performed
in this study. In the first set of test cases, corresponding to DNS (see cases
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DNS1–DNS7), the buoyancy flux magnitude and the Coriolis parameter are varied,
keeping the Rossby number constant. We are motivated to quantify the initial plume
characteristics such as plume velocity and diameter in terms of B0 and κt. The number
of grid points in all of the DNS cases is Nx= 1024, Ny= 1024 and Nz= 512 in the x1,
x2 and x3 directions, respectively. The corresponding domain lengths are L1 = 2.2 m,
L2 = 2.2 m and L3 = 0.4 m. Similarly, we have performed additional large eddy
simulations (see table 2, cases LES1–LES6) to verify if the scaling obtained from
the DNS simulations performed at laboratory scale is still valid at geophysical scales.
The number of grid points in all of the LES cases in the x1, x2 and x3 directions is
Nx = 768, Ny = 768 and Nz = 256 respectively. The domain lengths in the respective
directions are L1= 11 000 m, L2= 11 000 m and L3= 2000 m. Also, it is to be noted
that, in the LES cases, the thermal diffusivity κt = 1.2× 10−2 m2 s−1, and kinematic
viscosity ν = 8.5 × 10−2 m2 s−1, so as to keep the flux Rayleigh number similar
between the DNS and LES cases. All of the results in the upcoming sections are
presented in dimensional time units.

3. Results
3.1. Initial evolution

Cooling at the surface increases the density of the fluid in the top layers. Therefore,
this denser fluid at the surface sinks whereas the lighter fluid from below rises, setting
up a circulation in the entire domain. The downward moving columns of denser fluid,
known as plumes, transport the denser fluid away from the top surface. A quantitative
analysis of the early evolution of the plumes, such as their characteristic length and
velocity scales, suggests that the background rotation rate has little impact initially.

Figure 2(a–c) shows contour plots of vertical velocity u3 in a vertical (x1–x3) plane
at x2= 0 for cases DNS1, DNS3, DNS7. Owing to the fact that the surface cooling is
applied symmetrically in both horizontal directions, the (x2–x3) plane snapshots (not
shown here) at x1 = 0 also show a similar flow evolution. Three different snapshots
correspond to different values of B0 ranging from 4× 10−9 to 4× 10−7 m2 s−3. Note
that the Coriolis parameter f is also changing among these three cases to keep the
Rossby number constant at Ro= 0.32. The time instance at which each plot is shown
corresponds to an early evolution of the flow where the plumes are well organized
and the rotation effects are negligible. In all plots, the plumes are associated with
downward velocities, implying that they are transporting the denser fluid from the top
surface towards the bottom. Two important differences to be noted among these cases
are the increase in the vertical velocity magnitude and the decrease in the plume width
with increasing B0.

Since the Coriolis effects only become prominent at a later time (i.e. at t> 2π/f ),
there must be another time scale which governs the initial flow evolution. Based on
the force balance between dominant terms in the vertical momentum and temperature
equations (see appendix A for details), we formulated time (Ti), length (Di) and
velocity (U3,i) scales for the plumes using the magnitude of surface buoyancy flux B0
and thermal diffusivity κt (m2 s−1) as follows:

Ti ∼

(
κt

B0

)1/2

, (3.1)

Di ∼

(
κ3

t

B0

)1/4

, (3.2)
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FIGURE 3. (a) Line plots of vertical velocity at a depth x3 = −0.05 m for DNS
(represented by a dotted line in figure 2a–c). The coloured arrows depict individual plumes.
(b) Line plots of vertical velocity at a depth x3 = −50 m for LES. (c) Plume diameter
plotted as a function of loge(κ

3
t /B0), and (d) peak downward velocity as a function of

loge(κtB0). The blue dashed line is drawn to fit the data points.

U3,i ∼ (κtB0)
1/4. (3.3)

Consistent with the above scaling, we found that the time at which the plumes start
to disintegrate into small-scale turbulence is proportional to (κt/B0)

1/2. Accordingly,
figure 2(a–c) shows time t≈ 100× (κt/B0)

1/2 for all three cases.
Figure 3(a) shows line plots of the vertical velocity as a function of x1 at x2 = 0,

x3 = −0.05 m (along the dotted line in figure 2a–c). The plot is only shown in the
range −0.17 m< x1 <−0.08 m such that individual plumes can be clearly identified.
Similar line plots for the LES cases at x3 = −50 m are shown in figure 3(b). For
DNS1–DNS7 and the LES cases, it is evident that the plume velocity is increasing,
and the plume diameter is decreasing with increasing B0. We quantified the plume
characteristics by calculating the plume velocity and diameter for all of the plumes
in the range −0.1L1 < x1 < 0.1L1 and averaging them subsequently. Plume diameter
is measured as the distance between the two crests i.e. where the gradient ∂u3/∂x1
becomes zero. Plume velocity is defined as the peak downward velocity associated
with each plume.

Figure 3(c,d) shows the average plume diameter and velocity for DNS1–DNS7
and the LES cases. The blue dashed line represents the theoretical scaling given
by (A 10) and (3.3). It is evident that the plume diameter and velocity agree well
with the theoretical scalings in DNS1–DNS7 and the LES cases. It is important to
note that these theoretical scalings are only valid during the initial evolution, when
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FIGURE 4. Line plots of vertical velocity for cases LES6 and LES7 shown at −650 m<
x1 < 0 m, (x2, x3)= (0,−50) m and at time t= 3.94 h.

Case B0 (m2 s−3) f (s−1) Ro κt (m2 s−1) ν (m2 s−1) Raf

(1) LES7 4× 10−7 9.9× 10−5 0.32 0.143× 10−6 10−6 3.13× 1026

TABLE 3. Simulation parameters for high Ra LES: the number of grid points used in the
x1, x2 and x3 directions is Nx = 768, Ny = 768 and Nz = 256, respectively. The domain
lengths in the respective directions are L1 = 11 000 m, L2 = 11 000 m and L3 = 2000 m.

the flow is not fully turbulent. At a later time, when the plumes disintegrate into
small-scale turbulence, identification of the plumes and quantification of their length
scales become very difficult.

3.2. High Rayleigh number LES
In addition to the above-discussed LES cases, another test case, LES7, is performed to
demonstrate the validity of the theoretical plume scaling at the high Rayleigh number
relevant to real ocean scenarios. The simulation parameters for this case are given in
table 3. The only difference in simulation parameters between cases LES6 and LES7
is that the thermal diffusivity κt is nearly five orders of magnitude smaller in LES7
compared to LES6. The corresponding Rayleigh numbers for cases LES6 and LES7
are 5 × 1012 and 3.13 × 1026, respectively. Figure 4 shows the line plots of vertical
velocity for cases LES6 and LES7 at −650 m< x1<0 m, (x2, x3)= (0,−50) m and at
time t= 3.94 h. The length and the velocity scales associated with downward moving
plumes for case LES7 are larger compared to those of LES6. Based on the theoretical
scaling given in (A 10)–(3.3), one can expect the diameter and velocity associated with
the plumes to have smaller values for LES7 compared to LES6. However, the LES
data show an opposite trend. This is because, at high Rayleigh numbers, the subgrid
eddy viscosity and diffusivity (not the molecular viscosity and thermal diffusivity)
govern the turbulent energy transfer among different scales of the flow. In LES7, the
subgrid eddy diffusivity κsgs is several orders of magnitude larger compared to the
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Ro = 0.32, B0 = 4 ÷ 10-7 m2 s-3
LES7, t = 3.94 h
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FIGURE 5. Contour plot of the subgrid diffusivity κsgs (m2 s−1) for case LES7 shown
at x2 = 0 (x1–x3 plane) and time t = 3.94 h. Vertical profiles of κsgs are also shown at
x1 =−500 m and x1 = 100 m.

thermal diffusivity κt (table 3), as evident from the contour plot at x2=0 (x1–x3 plane),
and time t= 3.94 h in figure 5. Line plots of κsgs at x1=−500 m (red coloured line)
and x1 = 100 m (blue line) are also shown in figure 5(b). An average value of κsgs
is computed over a region beneath the cooling disk (−1250 m < x1 < 1250 m and
−400 m < x3 < 0 m). The vertical extent of averaging is chosen based on the line
plots of figure 5, which show negligible κsgs below a depth of 400 m. Based on this
averaged value of κsgs (0.034 m2 s−1), the theoretical values of the plume diameter and
velocity are 232 m and 0.067 m s−1, respectively. The corresponding values obtained
from LES data are 230 m and 0.077 m s−1, respectively. Therefore, even at a high
Rayleigh number of the O(1026), we obtain a good agreement between theory and
simulation data.

Previous numerical study by Jones & Marshall (1993) reported a plume diameter
of O(1 km) and an average plume velocity of O(0.15 m s−1) during the initial
evolution of the flow. They considered a vertical diffusivity of 0.2 m2 s−1 and
B0 = 4 × 10−7 m2 s−3. So, the theoretical values of the diameter and velocity
corresponding to the above mentioned B0 and diffusivity are 876 m and 0.1 m s−1,
respectively. Thus, it is evident that the theoretical scalings (A 10)–(3.3) provide
reasonable estimates of the plume velocity and length scales during the initial
evolution of the flow when the effects of background rotation are still negligible.

Figure 6 presents the horizontal (x1) turbulent kinetic energy spectra for DNS and
LES at x3/L3=−0.8. The energy drops by more than four orders of magnitude in both
DNS and LES, implying that the grid resolution in both DNS and LES is sufficient
to capture a wide range of scales spanning from the largest eddy down to small-scale
turbulence.

3.3. Effects of rotation
After the initial evolution period, the plumes disintegrate to small-scale structures, and
nonlinear dynamics plays a dominant role in the flow evolution until the rotational
effects become important at t > 2π/f . The lateral dynamics of the flow is then
governed by the combined effects of the pressure gradient and the Coriolis forces.
Figure 7 shows contour plots of the pressure perturbation for three different test
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FIGURE 6. Horizontal (x1) spectra of turbulent kinetic energy (Ek) for DNS and LES
at x3/L3 = −0.8; η is the Kolmogorov length scale. The DNS cases are shown at time
t∼ 251 s, whereas the LES cases are shown at time t∼ 3.94 h.

cases (DNS9, DNS10 and DNS13, as shown in table 1) where the Coriolis parameter,
f , is varied, keeping B0 = 4 × 10−7 m2 s−3. Low pressure zones are created due to
fluid motion beneath the disk of cooling, whereas high pressure exists in the zone
surrounding the disk of cooling. This difference in the lateral distribution of the
pressure perturbation results in a horizontal pressure gradient force. With the increase
in Ro (decrease in rotation rate f ), the pressure gradient force becomes dominant as
compared to the Coriolis force, resulting in the entrainment of the surrounding fluid
towards the centre of the domain. This phenomenon can be observed by the velocity
vectors pointed towards the centre in the upper half of the domain in figure 7(c).
It is important to note that the time t = 128 s at which figure 7(a–c) is shown
corresponds to different inertial periods for each case. For the Ro = 0.078 case
(DNS9), the inertial period is 85 seconds, so the rotation is already influencing the
flow at t= 128 s. However, for cases at Ro= 0.32 (DNS10), 2.2 (DNS13), the inertial
periods are 216 and 785 s, respectively. So the rotation has a negligible effect at
t= 128 s for these two cases.

Velocity vectors shown for Ro= 0.078 (high rotation rate) in figure 7(a) reveal an
interesting flow pattern. There are two circulation cells in the left half of the domain
in contrast to a single circulation cell at Ro= 2.2. The circulation cell between x3 =

−0.1 and x3= 0 in figure 7(a) is probably the effect of rotation. Strong Coriolis forces
drive the fluid away from the centre and can be visualized by the outward pointing
velocity vectors at x3≈−0.1 in figure 7(a). However, for Ro= 2.2, since the rotational
effects are negligible at this time, only the pressure gradient force governs the flow
circulation. Another contrasting flow pattern between the low and high rotation cases
can be found near the centre of the domain. For Ro = 0.078, there is a wide band
of upward pointing vectors centred around x1 = 0, whereas for Ro = 2.2, there is a
relatively narrow band of upwards pointing velocity vectors at x1 = 0.

The entrainment of fluid towards the centre is weaker for Ro= 0.078 as compared
to Ro= 2.2. As evident in figure 7(a–c), the pressure difference between x1 = 0 and
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FIGURE 7. Contour plots of pressure perturbation and velocity vectors in the x2 = 0
plane: (a) Ro= 0.078 (DNS9), (b) Ro= 0.32 (DNS10) and (c) Ro= 2.2 (DNS13) at time
t≈ 128 s for B0 = 4× 10−7 m2 s−3.
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FIGURE 8. Contour plots of vertical velocity in the x2= 0 plane: (a) Ro= 0.078 (DNS9),
(b) Ro= 0.32 (DNS10) and (c) Ro= 2.2 (DNS13) at time t≈ 251 s for L3 = 0.4.

x1=±0.5 is strongest in the case of Ro= 2.2 and thus the overall circulation strength
is consistent with the pressure difference across the different regions of the flow.

Contour plots of vertical velocity are shown in figure 8 for cases DNS9, DNS10
and DNS13 at Rossby numbers of 0.078, 0.32 and 2.2, respectively. This plot is
shown at t≈ 251 s, which corresponds to 2.95 inertial periods for Ro= 0.078 (a) and
1.16 inertial periods for Ro= 0.32 (b). Therefore, the rotational effects are prominent
for both these cases. However, for Ro = 2.2, this time corresponds to 0.3 inertial
periods, and thus rotation effects are still negligible. Comparing figures 8(a)–8(c)
shows that the vertical velocity magnitude is highest for the Ro= 2.2 case. There is a
narrow region at x1= 0 with strong upward velocity surrounded by downward moving
fluid. However, in the case of Ro = 0.078, there is a strong downward velocity at
the centre x1 = 0 surrounded by upward moving fluid. As shown in figure 8(c) for
Ro = 2.2, the downward moving fluid hits the bottom boundary where the vertical
momentum is converted to horizontal momentum and the fluid spreads as a gravity
current along the bottom surface. However, for Ro = 0.078 (figure 8a), the flow
reaches a quasi-steady state by this time, and the dense fluid barely reaches the
bottom boundary. For Ro = 0.32 (figure 8b), the dense fluid starts spreading as a
gravity current by this time. However, it soon reaches a quasi-steady state and the
fluid stops spreading laterally. At this stage, a geostrophic balance is achieved. The
gravity current observed in our simulations at high Rossby numbers was not reported

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

94
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.94


889 A35-16 A. Pal and V. K. Chalamalla

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) (b)

(c) (d)

-0.2 0 0.2

-0.2 0 0.2 -0.2 0 0.2

-0.2 0 0.2
t = 252.8 s
x3/L3 = -0.95

t = 251.2 s
x3/L3 = -0.95

t = 251.2 s
x3/L3 = -0.95

t = 250.5 s
x3/L3 = -0.95

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 0 0.4 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 0 0.4
x1 (m)

x 2
 (m

)
x 2

 (m
)

x1 (m)
0.8 -0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 0 0.4 0.8

-0.4 0 0.4 0.8

Ro =  0.032, L3 = 0.4 m

Ro =  0.32, L3 = 0.4 m

Ro =  0.078, L3 = 0.4 m

Ro =  2.2, L3 = 0.4 m

FIGURE 9. Contour plots of vertical vorticity (ω3) in horizontal planes near the bottom
boundary (x3/L3 =−0.95) for (a) Ro= 0.032 (DNS8), (b) Ro= 0.078 (DNS9), (c) Ro=
0.32 (DNS10), (d) Ro = 2.2 (DNS13) and at t ≈ 251. (Note that the domain sizes are
adjusted in these panels to show the details of the structures clearly. The actual sizes of
the domains are −1.1< x1 < 1.1 and −1.1< x2 < 1.1.)

in the earlier numerical studies of Jones & Marshall (1993), possibly due to their
coarse vertical resolution. The formation of gravity currents at the bottom boundary
is also observed for Ro= 0.25 in the experiments of Maxworthy & Narimousa (1994)
(figure 8c). It is also important to note that the case Ro = 2.2 has not reached a
steady state yet and the dense fluid will continue to spread as a gravity current until
a much later time. However, the simulation has been terminated at this instance to
avoid the gravity current moving out of the computational domain.

To understand the flow features near the bottom boundary, we plotted the contours
of vertical vorticity (ω3) in a horizontal (x1–x2) plane near the bottom boundary
(x3/L3 = −0.95), as shown in figure 9. The plots are shown at t ≈ 251 s for all
cases. This time instants correspond to 5.4, 2.9, 1.16 inertial periods for Ro= 0.032
(DNS8), 0.078 (DNS9) and 0.32 (DNS10), respectively. Figure 9(a,b) shows that the
flow in these two cases is already affected by rotation significantly, as evident from
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the modified structure of the rim current and baroclinic vortices. The rim current is
the geostrophic current formed at the interface of a dense and a lighter fluid due to
the combination of pressure gradient and Coriolis forces. In this case, the pressure
gradient force is directed radially inward and the Coriolis force is directed radially
outward, so the rim current is in the azimuthal direction, perpendicular to both the
pressure gradient and Coriolis forces. Since the rotation effects are already prominent
by this time for Ro=0.032, 0.078, the rim current has undergone baroclinic instability,
as is evident from the baroclinic vortices in figure 9(a,b). An experimental study by
Griffiths & Linden (1981) reported the formation of similar baroclinic vortices
when a buoyant fluid is released into a two-layer rotating system. For Ro = 0.32,
t = 251 s corresponds to 1.16 inertial periods, therefore the rim current feels weak
rotational effects and is in the process of undergoing baroclinic instability, as shown
in figure 9(c). For Ro= 2.2, the rotation effects are negligible, and therefore there is
no evidence of a rim current. The instability of the gravity current spreading along
the bottom surface results in small-scale vortices, as shown in figure 9(d).

An interesting feature found from the vorticity field for higher rotation cases is that
there is a cyclonic circulation near the top surface, and an anti-cyclonic circulation
near the bottom boundary (see movies 1–4 in the supplementary material available
at https://doi.org/10.1017/jfm.2020.94). A similar phenomenon is also reported in an
observational study near the Greenland Sea (Schott et al. 1993). In the cases with low
rotation rates, cyclonic circulation is observed near the top surface similar to the high
rotation cases. However, near the bottom boundary, both cyclonic (inner region) and
anti-cyclonic (near the periphery of mixed fluid) circulations are observed.

As mentioned earlier, the effect of rotation is found to be prominent after the first
inertial period. Due to the variation of the Coriolis parameter f among the different
cases, the inertial period varies by nearly an order of magnitude (see table 1). For
example, at a low rotation rate (DNS13), the inertial period is much longer than
in the high rotation cases (DNS8, DNS9). The mixed fluid in DNS13 reaches the
bottom boundary and spreads as a gravity current well before the first inertial period.
Therefore, comparing the flow evolution at the same dimensional time rather than the
same non-dimensional time (based on the inertial period) accentuates the contrasting
flow features between the low and high rotation cases.

3.4. Turbulent statistics
As discussed in the previous section, low Rossby number cases reach a quasi-steady
state, where further expansion in the lateral directions is inhibited by a balance of
Coriolis and pressure gradient forces. However, for the high Rossby number cases,
dense fluid plunges down quickly, leading to an increase in turbulence. Therefore, it
is important to understand how the turbulence evolves during the convection processes
for various Rossby numbers. In this section, a detailed analysis of the root-mean-
square (r.m.s.) velocities and turbulent kinetic energy budget is presented.

3.4.1. Root-mean-square velocity
Figure 10 shows the vertical profiles of non-normalized and normalized u1,rms at

intermediate and late times for different rotation rates. The analogous profiles of u3,rms

are shown in figure 11. It is evident from figures 10 and 11 that the magnitude of
turbulence decreases with increasing rotation rate. In a rotating environment, a fluid
parcel experiences a Coriolis force opposing the existing horizontal pressure gradient.
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FIGURE 10. Vertical profiles of u1,rms (a,c) at times t ≈ 151 s and 251 s, respectively.
Panels (b,d) show u1,rms normalized by (B0/f )1/2. The domain depth is L3 = 0.4 in all
cases.

At low rotation rates, the horizontal pressure gradient dominates over the Coriolis
force, drawing the fluid parcel towards the centre. This fluid parcel eventually plunges
and releases its potential energy to turbulent kinetic energy. However, an increase
in the rotation rate results in an increased Coriolis force, which is balanced by the
horizontal pressure gradient. This horizontal force balance stabilizes the flow by
inhibiting the downward motion of the fluid parcel, and hence impedes the release of
potential energy to turbulent kinetic energy (Veronis 1970).

The comparison of non-normalized and normalized velocity profiles (figure 10c,d)
shows that the normalization with (B0/f )1/2 drifts the profiles apart near the top
surface. At the bottom boundary, a jet-like feature is observed at t = 251 s. This
jet-like feature is attributed to the interaction of the gravity current with the viscous
boundary layer. Also, the magnitude of this jet decreases with increasing rotation
rate, consistent with the previously discussed idea of the Coriolis force being a
stabilizing factor suppressing the conversion of potential energy to kinetic energy.
The comparison of non-normalized and normalized u1,rms profiles near the bottom
boundary shows that normalization with (B0/f )1/2 brings the profiles closer to each
other, however, a proper collapse is not achieved. This jet-like feature was absent
in the previous numerical study of Jones & Marshall (1993) owing to a coarse
vertical resolution and high values of the eddy viscosity and thermal diffusivity. The
central region also has a trend similar to the bottom boundary. The normalization
of the velocity profiles brings them closer to each other, however, the normalized
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FIGURE 11. Vertical profiles of u3,rms (a,c) at times t≈ 151 and 251, respectively. Panels
(b,d) show u3,rms normalized by (B0/f )1/2. The domain depth is L3 = 0.4 in all cases.

profiles of the lowest rotation rate ( f = 0.008, DNS13) and the highest rotation rate
( f = 0.134, DNS8) simulations are still significantly far apart. Some of the previous
studies suggested a velocity scaling of (B0L3)

1/3 at lower rotation rates. However, we
found that this scaling performs no better than (B0/f )1/2 in low rotation cases. In
summary, although the velocity field appears to scale with (B0/f )1/2 in some regions
of the flow, in agreement with previous studies (Jones & Marshall 1993; Maxworthy
& Narimousa 1994), there are certain regions (e.g. near the top surface) of the flow
where normalization actually results in the velocity profiles drifting apart.

The profiles of u3,rms at time t = 151 s (figure 11a) show a maximum vertical
velocity near the mid-depth location and gradual decrease towards the boundaries.
The magnitude of u3,rms also decreases with an increase in rotation rate. At a later
time t = 251 s, the location of maximum vertical velocity shifts towards the bottom
boundary, except for high rotation rates ( f = 0.074 and 0.134). At low rotation rates,
the denser fluid under the effect of gravity collapses onto the bottom boundary. When
this denser turbulent fluid hits the bottom solid wall, vertical momentum is transferred
into horizontal momentum, as is evident from the jet-like features shown in the u1,rms

profiles (figure 10). At high rotation rates, the Coriolis effect prevents the denser
fluid from collapsing onto the bottom boundary, and thus prevents conversion of
vertical momentum into horizontal momentum. An interesting phenomenon occurs at
an intermediate rotation rate of f = 0.029 s−1, corresponding to a Ro = 0.32, where
the upper half of the profile resembles higher rotation rates and the bottom half of
the profile resembles lower rotation rates.
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3.4.2. Turbulent kinetic energy budget
An analysis of the turbulent kinetic energy (TKE) budget is presented in this section

to understand the role of turbulent energetics in the deep-ocean convection process.
We compute the various terms of the TKE budget equation as follows:

d(TKE)
dt

= P+ B− ε−
∂Ti
∂xi
− εsgs −

∂Ti,sgs

∂xi
, (3.4)

where
P=−〈u′iu

′

j〉
dUi

dxj
, B=−

g
ρ0
〈ρ ′u′3〉, (3.5)

are the turbulent production and turbulent buoyancy flux respectively,

ε= 2ν〈s′ijs
′

ij〉, (3.6)

is the turbulent dissipation rate, where s′ij =
1
2((∂u′i/∂xj) + (∂u′j/∂xi)) is the turbulent

strain rate and ∂Ti/∂xi is the transport term where

Ti =
1
2
〈u′iu

′

ju
′

j〉 +
〈u′ip

′
〉

ρ0
− 2ν〈u′js

′

ij〉. (3.7)

The subgrid dissipation εsgs is defined as:

εsgs =−

〈
τ ′ij
∂u′i
∂xj

〉
. (3.8)

The subgrid transport ∂Ti,sgs/∂xi is calculated as:

∂Ti,sgs

∂xi
= 〈τ ′iju

′
i〉. (3.9)

The subgrid dissipation and transport terms are zero for DNS.
Figures 12(a), 12(c) and 12(e) show all the terms of the TKE budget equation for

DNS10, LES6 and LES7 for Ro = 0.32 at t ≈ 251 s and 20.5 h, respectively. The
shear production term P is negligible at all times for both DNS and LES owing to
the absence of externally imposed shear. The transport term for both DNS and LES
has some spatial variability owing to the turbulence, however, the vertically integrated
values are negligible compared to the dominant terms in the budget. The turbulent
buoyancy flux B for both DNS and LES is the primary source of turbulence whereas
the turbulent dissipation rate is the energy sink. Figures 12(a), 12(c) and 12(e) show
that energy transfer to turbulence occurs near the top surface, as evident from the
high turbulent buoyancy flux between x3/L3 = 0 and x3/L3 ≈ −0.5. The dissipation
rate (ε for DNS10, ε and εsgs for LES6, εsgs for LES7) is maximum near the bottom
boundary, suggesting that the interaction of the mixed fluid with the viscous boundary
layer plays an important role in the energy dissipation.

Figures 12(b), 12(d) and 12( f ) show the time evolution of the vertically integrated
TKE budget terms. All quantities are negligible until t ≈ 50 s for DNS and t ≈ 3 h
for LES as the flow remains laminar. At a later time, due to the conversion from
potential energy to TKE by means of turbulent buoyancy flux B, the flow turns
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FIGURE 12. TKE budget, Ro = 0.32 (DNS10 in table 1): (a) all the terms in the TKE
budget at time t = 251 s, (b) time evolution of vertically integrated TKE budget terms.
TKE budget, Ro= 0.32 (LES6 in table 2): (c) all the terms in the TKE budget at time
t = 20.5 h, (d) time evolution of vertically integrated TKE budget terms. TKE budget,
Ro = 0.32 (LES7 in table 3): (e) all the terms in the TKE budget at time t = 20.5 h,
( f ) time evolution of vertically integrated TKE budget terms.

turbulent and small-scale features appear. The ‘Balance’ term (represented by the
green dashed curve) in figures 12(b), 12(d) and 12(e) is the sum of all the quantities
on the right-hand side of the TKE budget equation (3.4). Close agreement between
the ‘Balance’ term and the unsteady term d(TKE)/dt shows that the residual is small
and the TKE budget closure is well maintained for both DNS and LES. A nominal
value of residual (d(TKE)/dt – Balance) also suggests that the grid spacing considered
in DNS is small enough to resolve the smallest scales of turbulence. It also signifies
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that the large scales are well resolved in LES, and the Smagorinsky model is able
to parameterize the small scales accurately. It is important to note that the increase
in dissipation rate for DNS (figure 12b) is small until t ≈ 100 s, but a sudden jump
is observed when t > 100 s. This is due to the fact that the dense turbulent fluid
reaches the bottom boundary at t ≈ 100 s and the subsequent interaction of the
turbulent fluid with the bottom boundary increases the dissipation rate substantially.
Similarly, in LES6, a uniform increase in both resolved and subgrid dissipation is
observed after t≈ 5.5 h, signifying the interaction of the dense fluid with the bottom
boundary. For DNS, at t > 210 s, the turbulent quantities reach a quasi-steady state,
with the unsteady term close to zero, and the turbulent buoyancy flux is approximately
balanced by the turbulent dissipation rate. A similar quasi-steady state is observed in
LES cases for t > 20.5 h. We have also analysed the flow evolution at a later time
(not shown in the figure) and found that the buoyancy flux and d(TKE)/dt terms
oscillate around the steady state values, whereas the dissipation term remains similar.
Closure of the TKE budget is also achieved for the rest of the cases in tables 1
and 2.

In DNS, since all the scales of the flow are explicitly resolved, dissipation is
entirely contributed by the resolved scales of the flow. However, in LES, dissipation
has contributions from both the resolved and subgrid scales of the flow. The ratio
between the largest and the smallest scales of the flow increases with increasing Ra.
Even though the grid resolution is exactly the same for LES6 and LES7, owing to
the difference in Ra, the fraction of the scales explicitly resolved in LES7 is much
smaller than in LES6. Owing to this, the resolved dissipation is much smaller as
compared to the subgrid-scale dissipation in LES7.

4. Conclusions

Three-dimensional direct numerical simulations and large eddy simulations are
performed to investigate the dynamics of deep-ocean convection in a stratified rotating
framework. DNS are performed at laboratory scales and LES are carried out at large
scales (O(10 km)) to understand the effect of the imposed surface buoyancy flux
and background rotation rate on the dynamics of deep-ocean convection. The Rossby
numbers in both DNS and LES are kept relevant to the real ocean convection, varying
from 0.032 (high rotation rates) to 2.2 (low rotation rates). The highest Rayleigh
number that is considered in the present simulations is 1026, which lies within the
range of Rayleigh numbers, 1025–1031, typically observed in the ocean (Maxworthy
& Narimousa 1994). Each DNS uses approximately half a billion grid points with a
grid spacing fine enough to resolve the small-scale turbulence. As evident from the
horizontal spectra of turbulent kinetic energy, the Kolmogorov length scale is well
resolved in DNS. Similarly, turbulent eddies are well resolved in LES, as evident
from the energy spectrum showing an approximately four orders of magnitude drop
in the energy.

The initial evolution of the flow (t� 2π/f ) manifests downward moving dense fluid
columns (plumes) with a well-defined shape. We proposed a scaling for the diameter
and velocity of these plumes based on the balance between the leading-order terms in
the vertical velocity and temperature equations. Surface flux magnitude B0 and thermal
(eddy) diffusivity κt(κsgs) were used to quantify the initial plume characteristics. The
Coriolis parameter was not considered to characterize initial flow evolution as the
rotation effects are found to be negligible when t<2π/f . We found a reasonably good
agreement between the theoretical values of the plume diameter and velocity when
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compared with the corresponding values obtained from the numerical simulations. We
also found that varying the rotation rate at a particular surface flux magnitude does
not change the early plume characteristics. It is important to note that the scaling
proposed here for initial flow evolution may have limited applicability when the flow
is dominated by background rotation or in the presence of background shear, both of
which can alter the plume characteristics significantly. It is possible that, in situations
where the surface cooling is observed to be localized and the rotation effects are not
prominent, the plume characteristics at real ocean convection sites can be deduced
from the scalings proposed in this study. However, this conjecture warrants further
investigation at various test sites where deep-ocean convection is observed.

At time t>2π/f , the rotational effects become important and the flow evolution can
be understood by considering a balance between the Coriolis and pressure gradient
forces. At low rotation rates (Ro> 0.32), denser fluid formed due to surface cooling
plunges quickly, hits the bottom boundary and spreads as a gravity current. At high
rotation rates Ro < 0.32, the denser fluid spreads in the lateral directions before
reaching the bottom boundary and attains a quasi-steady state with an approximate
balance between the pressure gradient and Coriolis forces. An interesting feature
observed at higher rotation rates is the formation of the rim current at the periphery
of the mixed fluid. The lateral density gradient that exists at the interface comes under
the influence of rotation and forms the rim current, similar to the geostrophic current
observed in the oceans. This rim current undergoes baroclinic instability, resulting in
the formation of baroclinic vortices and turbulent eddies which augment the mixing
rate.

The r.m.s. velocities are found to decrease with an increase in rotation rate,
in agreement with the previous studies by Raasch & Etling (1998) and Jones &
Marshall (1993). High rotation acts as a stabilizing agent by establishing a balance
between the horizontal pressure gradient and the Coriolis force. This horizontal force
balance inhibits the plummeting of the fluid parcels and hence hinders the conversion
of potential energy to turbulent kinetic energy. The r.m.s. velocity profiles manifest a
jet-like feature (figure 11) near the bottom boundary for Ro > 0.32. This qualitative
feature of the flow can only be observed when the grid resolution in the vertical
direction is fine enough to capture the boundary layer dynamics. The vertical grid
resolution of Jones & Marshall (1993) was not fine enough to capture this feature.

In summary, the initial flow evolution is found to be governed by a balance between
the diffusion and buoyancy flux while the rotation effects are negligible. At a later
time, the rotational effects become important and the scaling proposed by Jones &
Marshall (1993) can predict flow quantities to a good extent. However, it is important
to note that, in certain regions of the flow, for example, near the top surface where the
rotational effects on plumes are negligible, normalization of the u1,rms velocity profiles
with the scaling proposed by Jones & Marshall (1993) results in a drifting apart of
the profiles rather than a collapse of the profiles. Overall, this study gave us insights
into the relative importance of buoyancy flux, diffusion and rotation rate at various
stages of the flow evolution. The role of background stratification in the flow evolution
will be considered in a future study, especially when the ambient is strongly stratified
(N/f > 1).
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Appendix A
Since the Coriolis effects become prominent at a later time (i.e. at t> 2π/f ), there

must be another time scale which governs the initial evolution of the plumes. The
scaling for initial flow evolution can be obtained by considering leading-order terms
in the vertical momentum (i = 3 in (2.2)) and temperature deviation (2.3) equations.
First, considering the temperature deviation equation, the leading-order balance will
be between the advection and the diffusion terms as shown below:

U3,i
dT̃
dx3
∼ κt

d2T̃
dx2

3
, (A 1)

U3,i
T̃
h
∼ κt

T̃
h2
, (A 2)

U3,ih∼ κt, (A 3)

where h is the vertical length scale, U3,i is the vertical velocity scale associated with
plumes.

Now, considering the vertical momentum equation, the balance will be between the
advection and the buoyancy terms as shown below:

U3,i
dU3,i

dx3
∼

gρ̃
ρ0
. (A 4)

Multiplying the above equation with U3,i, we obtain

U2
3,i

dU3,i

dx3
∼

gρ̃U3,i

ρ0
, (A 5)

U2
3,i

U3,i

h
∼ B0, (A 6)

U3
3,i

h
∼ B0. (A 7)

Now, we obtain the scaling for U3,i by eliminating h from (3.3) and (3.7), as given
below:

U3,i ∼ (κtB0)
1/4. (A 8)

Based on the dimensional analysis, the time scale can be obtained as

Ti ∼

(
κt

B0

)1/2

. (A 9)

Now, from the continuity equation, we know that U1,i/Di ∼ U3,i/h, where Di is
the horizontal length scale associated with the plumes. However, the horizontal and
vertical velocity scales, U1,i and U3,i, have similar magnitudes during the initial flow
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evolution. Thus, the horizontal length scale associated with the plume Di can be
obtained as

Di ∼U3,i × Ti ∼

(
κ3

t

B0

)1/4

. (A 10)
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