KOROVKIN THEOREMS FOR INTEGRAL OPERATORS WITH KERNELS OF FINITE OSCILLATION

M. J. MARSDEN AND S. D. RIEMENSCHNEIDER

Introduction. There has been considerable interest recently in the investigation of "Korovkin sets". Briefly, for X a Banach space and \mathscr{T} a family of linear operators on X, a subset $K \subset X$ is a Korovkin set relative to \mathscr{T} if for any bounded sequence $\left\{T_{n}\right\} \subset \mathscr{T}, T_{n} k \rightarrow k$ in X for each $k \in K$ implies $T_{n} x \rightarrow x$ for each $x \in X$. A large portion of these investigations have been carried out for X being one of the spaces $C(S), S$ compact Hausdorff, the usual L^{p} spaces of functions on some finite measure space, or some Banach lattice; while \mathscr{T} is one of the classes \mathscr{T}_{+}-positive operators, \mathscr{T}_{1}-contractions (i.e., $\|T\| \leqq 1$), or $\mathscr{T}_{+} \cap \mathscr{T}_{1}$.

In his paper [8], P. P. Korovkin showed that $\left\{1, t, \ldots, t^{m+2}\right\}$ forms what is now called a Korovkin set for operators \mathscr{S}_{m} (defined below) and the space $C[a, b]$. We shall consider the class \mathscr{S}_{m} as operators on the spaces $L^{p}[a, b]$, $1 \leqq p<\infty$, of Lebesgue measurable functions on the interval $[a, b]$. The operators will have the form

$$
A[f: x]=\int_{a}^{b} K(x, t) f(t) d t
$$

where $K(x, t)$ is a $[a, b] \times[a, b]$ Lebesgue measurable function.
Definition. An integral operator A is of class \mathscr{S}_{m} if for almost all x, there exists a partition of $[a, b]$ into at most $m+1$ intervals, $I_{1, x}, \ldots, I_{r, x},(r=r(x))$, such that the kernel $K(x, t)$ is of one sign ($\geqq 0$ a.e. or $\leqq 0$ a.e.) on each $I_{j, x}$, and alternates in sign on these intervals.

When the operators under consideration are algebraic or trigonometric polynomial valued, then certain quantitative results about the rate of convergence can be obtained. P. P. Korovkin first proved such results for $C[a, b]$ and algebraic polynomial valued operators of class \mathscr{S}_{m} in [9]. For trigonometric polynomial valued convolution operators of class \mathscr{S}_{m} on the L^{p} spaces, corresponding results have been established by Dzjadyk [6] for $m=0$, and by Butzer, Nessel, and Scherer [7] for other values of m.

A wealth of literature has developed on operators of class \mathscr{S}_{m}, concerning, for example, existence, relation to classical kernels, and optimal orders of convergence. We refer the interested reader to the survey article by P. L. Butzer [2] where a history and much of the literature appears.

[^0]In section 2 of the present work, a simple combination of the techniques of Dzjadyk [6] and Korovkin [9] yield that $\left\{1, t, \ldots, t^{m+2}\right\}$ is also a Korovkin set for \mathscr{S}_{m} on $L^{p}[a, b]$. Further, the techniques can be modified to establish the results for other sets of functions; in particular, the periodic case for $L^{p}[0,2 \pi]$ (sections 3 and 4). In section 5 , we derive quantitative results whose form resembles those in [3], although their proofs are related to the original method of Korovkin [9].

In the sequel, we use the notation

$$
A[h(x, t): x]=\int_{a}^{b} K(x, t) h(x, t) d t
$$

where x and t always refer to the variables in the image space and domain space respectively. Usually, $h(x, t)$ will be of the form $\sum_{j=1}^{k} g_{j}(x) f_{j}(t)$. Also, the phrase "agreeing in sign" allows zero to agree with anything. Further, the constants obtained in our proofs may depend on the length of the interval $[a, b]$, although this will not be explicitly stated.

This problem arose in a seminar on Korovkin sets at the University of Alberta, and we would like to thank the participants of that seminar, particularly, Professors A. Meir, Z. Ditzian, and T. R. Turner.
2. The Korovkin Theorem for powers. We begin with a lemma which is the essential idea used by Dzjadyk [6] in his proof for positive operators (i.e., $m=0$).

Lemma 2.1. If $\left\{A_{n}\right\}$ is a sequence of integral operators for which $\| A_{n}\left[f_{k}: x\right]-$ $f_{k}(x) \|_{L^{p}} \rightarrow 0$ for each $f_{k}(t)=t^{k}, k=0,1, \ldots, m$, then $\left\|A_{n}[p: x]-p(x)\right\|_{L^{p}} \rightarrow 0$ uniformly for all polynomials

$$
p(t)=\sum_{k=0}^{m} a_{k}(x, n) f_{k}(t),\left\|a_{k}(x, n)\right\|_{L_{\infty}} \leqq M<+\infty
$$

where M is an absolute constant.
Proof. For such polynomials, we have

$$
A_{n}[p: x]-p(x)=\sum_{k=0}^{m} a_{k}(x, n)\left\{A_{n}\left[f_{k}: x\right]-f_{k}(x)\right\}
$$

for almost all x. Thus,

$$
\left\|A_{n}[p: x]-p(x)\right\|_{L^{p}} \leqq M \sum_{k=0}^{m}\left\|A_{n}\left[f_{k}: x\right]-f_{k}(x)\right\|_{L^{p}}
$$

which tends to zero by hypothesis so that the lemma is proven.
We shall also require the following remark.
Remark 2.1. Let x be fixed and suppose that either $f(t)$ or $-f(t)$ agrees in sign with $K(x, t)$. If $g(t) \in L^{\infty}[a, b]$, then

$$
\left|\int_{a}^{b} K(x, t) g(t) f(t) d t\right| \leqq\left|\left|g \|_{L^{\infty}}\right| \int_{a}^{b} K(x, t) f(t) d t\right| .
$$

Theorem 2.1. Suppose that the sequence of integral operators $\left\{A_{n}\right\}$ on $L^{p}[a, b]$ satisfy:

$$
\begin{equation*}
A_{n}[f: x]=\int_{a}^{b} K_{n}(x, t) f(t) d t \tag{1}
\end{equation*}
$$

is of class \mathscr{S}_{m} for each $n,(n=1,2, \ldots)$;
(2) $\left\|A_{n}\right\|_{L^{p}} \leqq M<+\infty$; and
(3) $\left\|A_{n}\left[f_{k}: x\right]-f_{k}(x)\right\|_{L^{p}} \rightarrow 0$ as $n \rightarrow \infty$ for each function $f_{k}(t)=t^{k}$, $(k=0,1, \ldots, m+2)$. Then $\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}} \rightarrow 0$ for each f in $L^{p}[a, b]$.

Proof. Since $\left\|A_{n}\right\| \leqq M$ uniformly in n, it suffices to prove the theorem for functions with at least $m+2$ continuous derivatives. In the sequel, $f \in C^{m+2}[a, b]$, and x will be such that $K_{n}(x, t)$ has the sign change property for each n (this excludes only a set of measure zero).

For each fixed x and n, we construct an interpolating polynomial $p_{x, n}(t)$ agreeing with $f(t)$ at the endpoints $t_{1, x, n}, \ldots, t_{r, x, n}$ of the intervals $I_{1, x, n}, \ldots, I_{r+1, x, n}(r=r(x, n) \leqq m)$ which are not a or b. Further, if x is not one of the $t_{j, x, n}$, we require $p_{x, n}(x)=f(x)$ and $p_{x, n}{ }^{\prime}(x)=f^{\prime}(x)$. The degree, $l=l_{x, n}$, of $p_{x, n}(t)$ is no greater than $m+1$.

Writing the remainder term of the interpolating polynomial in the Lagrange formula, we obtain

$$
\begin{aligned}
f(t) & =p_{x, n}(t)+\frac{f^{(l+1)}(c)}{(l+1)!} \prod_{j=1}^{r=r(x, n)}\left(t-t_{j, x, n}\right)(t-x)^{\alpha} \\
& =p_{x, n}(t)+g_{x, n}(t) q_{x, n}(t)
\end{aligned}
$$

where $c=c(t, x, n)$, and $\alpha=0$ if x is some $t_{j, x, n}, \alpha=2$ otherwise. Here $p_{x, n}(t)$ and $q_{x, n}(t)$ are polynomials of degree at most $m+2$ whose coefficients are uniformly bounded (the bound, M_{1}, depends only on f, its derivatives up to order $m+2$, and m). Further, $\left|g_{x, n}(t)\right| \leqq M_{2}$ where M_{2} depends only on f and m, while $q_{x, n}(t)$ agrees in sign with $K_{n}(x, t)$ or $-K_{n}(x, t)$ and $q_{x, n}(x)=0$.

Therefore, since $f(x)=p_{x, n}(x)$,

$$
\begin{aligned}
\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}} \leqq & \left\|A_{n}\left[p_{x, n}: x\right]-p_{x, n}(x)\right\|_{L^{p}} \\
& +\left\|A_{n}\left[g_{x, n} q_{x, n}: x\right]\right\|_{L^{p}} \\
\leqq & \left\|A_{n}\left[p_{x, n}: x\right]-p_{x, n}(x)\right\|_{L^{p}}+M_{2}\left\|A_{n}\left[q_{x, n}: x\right]\right\|_{L^{p}} \\
= & \left\|A_{n}\left[p_{x, n}: x\right]-p_{x, n}(x)\right\|_{L^{p}} \\
& +M_{2}\left\|A_{n}\left[q_{x, n}: x\right]-q_{x, n}(x)\right\|_{L^{p}}
\end{aligned}
$$

by Remark 2.1. Consequently, by Lemma 2.1, $\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}}$ converges to zero as n tends to infinity. The theorem is proven.

Remark 2.2. Let $M_{j}=\left\|f^{(j)}\right\|_{L^{\infty}, c}=\max \{|a|,|b|\}$, and $\alpha_{i j}=c^{j-i} / i!(j-i)!$. By carefully retracing the steps in the proof of Theorem 2.1, using Newton's
formula to represent $p_{x, n}(t)$ (see section 5 below), one can show that

$$
\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}} \leqq \sum_{j=0}^{m+2} M_{j} \sum_{i=0}^{j} \alpha_{i j}\left\|A_{n}\left[t^{i}: x\right]-x^{i}\right\|_{L^{p}}
$$

This bound, which is useful only for $f \in C^{m+2}[a, b]$, should be compared with a result by Ditzian and Freud [5].
3. The Korovkin Theorem for general systems. In this section we modify the arguments of the preceding section so as to obtain a theorem for a general system of functions. Included in this discussion are extended complete Chebyshev systems.

Let

$$
L_{m} y \equiv D^{m} y+\sum_{i=1}^{m} a_{i}(t) D^{m-i} y=0, \quad\left(D=\frac{d}{d t}\right)
$$

be a linear differential equation with $a_{i} \in C(\alpha, \beta)$. Either α or β, or both, may be singular points and we do not exclude the possibility that β is infinite. We do require α to be finite.

We suppose that $L_{m} y=0$ is disconjugate on $[\alpha, \beta]$. This means that all solutions have $m-1$ or fewer zeros on $[\alpha, \beta]$. For a definition of zeros at singularities and other information concerning disconjugate equations see Willett [11] and the references therein. When $L_{m} y=0$ is disconjugate on $[\alpha, \beta]$, there are functions $\xi_{i} \in C^{m+1-i}(\alpha, \beta), \xi_{i}>0$ on (α, β) such that L_{m} can be factored as

$$
L_{m}=\omega(t) D_{m} \ldots D_{2} D_{1}
$$

where $D_{i} y=D\left(y / \xi_{i}\right)$ and $\omega \equiv 1 / \xi_{m+1}=\xi_{1} \xi_{2} \ldots \xi_{m}$. Moreover, ξ_{2}, \ldots, ξ_{m} are integrable only on proper subintervals $[\alpha, c]$ of $[\alpha, \beta]$ and the m-tuple $\left(u_{1}, \ldots, u_{m}\right)$ of solutions defined by $D_{j} D_{j-1} \ldots D_{1} u_{j+1}=\xi_{j+1}, D^{k} u_{j+1}(\alpha)=0$ for $k=0, \ldots, j-1$, is a fundamental principal system on $[\alpha, \beta]$. (See Willett [11, Theorem 2.1].)

As an example, the differential equation

$$
\begin{equation*}
L_{2 r+1} y=D\left(D^{2}+1\right)\left(D^{2}+4\right) \ldots\left(D^{2}+r^{2}\right) y=0 \tag{3.1}
\end{equation*}
$$

corresponds to

$$
\begin{array}{r}
\xi_{1}(t)=\sin ^{2 r}\left(\frac{\beta-t}{2}\right), \quad \xi_{k+1}(t)=k \sin \left(\frac{\beta-\alpha}{2}\right) / 2 \sin ^{2}\left(\frac{\beta-t}{2}\right) \tag{3.2}\\
k=1, \ldots, 2 r
\end{array}
$$

and

$$
u_{k}(t)=\sin ^{2 r+1-k}\left(\frac{\beta-t}{2}\right) \sin ^{k-1}\left(\frac{t-\alpha}{2}\right) \quad \text { for } \alpha \leqq t \leqq \beta
$$

provided that $\beta-\alpha<2 \pi$. Observe that, in this example, $u_{k}(t)$ behaves like
$(t-\alpha)^{k-1}$ for t near α. These $u_{k}(t)$ are more convenient than the usual set $\{1, \cos t, \sin t, \ldots, \cos r t, \sin r t\}$ because of this fact an the fact that "polynomials" are more easily factored. In particular,

$$
\tilde{u}_{j}(t)=\tilde{u}_{j}\left(t ; t_{1}, t_{2}, \ldots, t_{j-1}\right)=u_{j}(t)+\sum_{1}^{j-1} a_{i} u_{i}(t)
$$

defined by requiring $\tilde{u}_{j}\left(t_{1}\right)=\tilde{u}_{j}\left(t_{2}\right)=\ldots=\tilde{u}_{j}\left(t_{j-1}\right)=0$ can be represented by

$$
\begin{equation*}
\tilde{u}_{j}(t)=\sin ^{2 r+1-j}\left(\frac{\beta-t}{2}\right) \sin ^{j-1}\left(\frac{\beta-\alpha}{2}\right) \prod_{i=1}^{j-1}\left(\sin \left(\frac{t-t_{i}}{2}\right) / \sin \left(\frac{\beta-t_{i}}{2}\right)\right) . \tag{3.3}
\end{equation*}
$$

This representation holds for j both even and odd if $\beta-2 \pi<t_{i}<\beta$.
We need an interpolation formula based on (u_{1}, \ldots, u_{m+3}) whose remainder includes a factor agreeing in sign with $K_{n}(x, t)$.

For functions g_{1}, \ldots, g_{k} and numbers t_{1}, \ldots, t_{k}, let

$$
\left[\begin{array}{lll}
g_{1} & g_{2} \ldots . g_{k} \\
t_{1} & t_{2} & \ldots \\
t_{k}
\end{array}\right]
$$

denote the determinant of the $k \times k$ matrix whose (i, j) entry is $g_{i}\left(t_{j}\right)$. The notation

$$
\left[\begin{array}{llll}
g_{1} \ldots & \ldots & \ldots & g_{k} \\
t_{1} & \ldots & t_{i} & \ldots
\end{array} t_{k} .\right]
$$

will mean that the function f has replaced the function g_{i} in defining the i th row. We often suppose that $t_{1} \leqq \ldots \leqq t_{k}$. When ratios of such determinants are encountered with, for example, $t_{j-1}<t_{j}=t_{j+1}=\ldots=t_{j+k}$ we replace the $j+k$ column in both numerator and denominator by $D_{k} \ldots D_{1} g_{i}\left(t_{j}\right)$. This is consistent with an evaluation by l'Hospital's rule.

The following statement is the analog of Lemma 2.1.
Lemma 3.1. Let $\left(u_{1}, \ldots, u_{m}\right)$ be a fundamental principal system on $[\alpha, \beta]$ for $L_{m} y=0$, and $[a, b] \subset[\alpha, \beta]$. If $\left\{A_{n}\right\}$ is a sequence of integral operators on $L^{p}[a, b]$ for which $\left\|A_{n}\left[u_{k}: x\right]-u_{k}(x)\right\|_{L^{p}} \rightarrow 0$ for $k=1, \ldots, m$, then $\left\|A_{n}\left[p_{n}: x\right]-p_{n}(x)\right\|_{L^{p}} \rightarrow 0$ uniformly for all

$$
p_{n}(t)=p_{x, n}(t)=\sum_{k=1}^{m} a_{k}(x, n) u_{k}(t), \quad\left\|a_{k}(x, n)\right\|_{L^{\infty}} \leqslant M<+\infty
$$

The proof follows exactly as the proof of Lemma 2.1.
The next lemma will be an induction step in a proof that the coefficients $a_{k}(x, n)$ in the interpolation formula are bounded independently of x and n.

Lemma 3.2. Let $\left(u_{1}, \ldots, u_{m}\right)$ be a fundamental principal system on $[\alpha, \beta]$ for $L_{m} y=0$. Let $f \in C^{r-1}[\alpha, \beta]$ with $1 \leqq r \leqq m$, and set $g=D_{1} f$ and $v_{i}=D_{1} u_{i+1}$ for $i=1,2, \ldots, m-1$. Let $\alpha<t_{1} \leqq t_{2} \leqq \ldots \leqq t_{r}<\beta$, and i be fixed. Then
there exist numbers $\eta_{j}=\eta_{i j}$ for $j=1, \ldots, r-1$ such that $t_{j} \leqq \eta_{i j} \leqq t_{j+1}$ and, if $2 \leqq i \leqq r$,

$$
\begin{aligned}
& {\left[\begin{array}{c}
u_{1} \ldots f \ldots u_{r} \\
t_{1} \ldots t_{i} \ldots t_{r}
\end{array}\right] /\left[\begin{array}{c}
u_{1} \ldots . u_{r} \\
t_{1} \ldots . t_{r}
\end{array}\right]=} \\
& \qquad\left[\begin{array}{lll}
v_{1} \ldots & \ldots & \ldots \\
\eta_{1} \ldots & v_{r-1} \\
\eta_{i-1} & \ldots & \eta_{r-1}
\end{array}\right] /\left[\begin{array}{c}
v_{1} \ldots . v_{r-1} \\
\eta_{1} \ldots . \eta_{r-1}
\end{array}\right]
\end{aligned}
$$

while, if $i=1$,

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{lll}
f u_{2} \ldots & u_{r} \\
t_{1} t_{2} \ldots & \ldots & t_{r}
\end{array}\right] /} & {\left[\begin{array}{l}
u_{1} \ldots
\end{array} \ldots u_{r}\right.} \\
t_{1} \ldots & \ldots \\
t_{r}
\end{array}\right]=\left(f / u_{1}\right)\left(t_{1}\right)\right] .
$$

If α is not a singular point for $L_{m}, t_{1}=\alpha$ is permitted in these statements.
In the right members above, the relations $\eta_{s-1}<\eta_{s}=\ldots=\eta_{s+k}$ require that $D_{k+1} \ldots D_{2}$ be applied to the $s+k$ column in both numerator and denominator. Note that $\left(v_{1}, \ldots, v_{m-1}\right)$ is a fundamental principal system on $[\alpha, \beta]$ for $D_{m} \ldots D_{3} D_{2}$.

Proof. Because of continuity, it suffices to assume that $t_{1}<t_{2}<\ldots<t_{r}$. In this case,

$$
\begin{aligned}
& {\left[\begin{array}{c}
u_{1} \ldots f \ldots . u_{r} \\
t_{1} \ldots t_{i} \ldots . t_{r}
\end{array}\right] /\left[\begin{array}{c}
u_{1} \ldots u_{r} \\
t_{1} \ldots t_{r}
\end{array}\right]=} \\
& \qquad\left[\begin{array}{llll}
1 & u_{2} / u_{1} \ldots f / u_{1} \ldots u_{r} / u_{1} \\
t_{1} & t_{2} & \ldots t_{i} & \ldots t_{r}
\end{array}\right] /\left[\begin{array}{ccc}
1 & u_{2} / u_{1} \ldots & \ldots u_{r} / u_{1} \\
t_{1} & t_{2} & \ldots . t_{r}
\end{array}\right]
\end{aligned}
$$

Upon setting the numerator equal to $\left(G / u_{1}\right)\left(t_{r}\right)=G\left(t_{r}\right) / u_{1}\left(t_{r}\right)$ and the denominator equal to $\left(H / u_{1}\right)\left(t_{r}\right)$, this ratio becomes

$$
\frac{\left(G / u_{1}\right)\left(t_{r}\right)}{\left(H / u_{1}\right)\left(t_{\tau}\right)}=\frac{\left(G / u_{1}\right)\left(t_{r}\right)-\left(G / u_{1}\right)\left(t_{r-1}\right)}{\left(H / u_{1}\right)\left(t_{\tau}\right)-\left(H / u_{1}\right)\left(t_{r-1}\right)}=\frac{D_{1} G\left(\eta_{r-1}\right)}{D_{1} H\left(\eta_{r-1}\right)}
$$

with $t_{r-1}<\eta_{r-1}<t_{r}$ by Cauchy's extended theorem of the mean.
Since t_{r} appears only in the last column of $G / u_{1}, D_{1} \mathrm{G}$ differs from G / u_{1} only in the last column, which is differentiated. By continuing in this way, columns 2 through r of both the numerator and denominator may be replaced by derivatives. If $i>1$, each of these columns is headed by a zero and the determinant orders may be reduced. If $i=1$, then expansion on the first column of the numerator produces the desired expression.

Lemma 3.3. Let $\left(u_{1}, \ldots, u_{m}\right)$ be a fundamental principal system on $[\alpha, \beta]$ for $L_{m} y=0$. Let $[a, b] \subset(\alpha, \beta)$ and $f \in C^{r-1}[a, b]$ with $1 \leqq r \leqq m$. If $a \leqq t_{1} \leqq \ldots \leqq t_{r} \leqq b$ and $1 \leqq i \leqq r \leqq m$, then

$$
\left|\left[\begin{array}{c}
u_{1} \ldots f
\end{array} \ldots . . u_{r}\right] /\left[\begin{array}{ccc}
u_{1} \ldots & u_{r} \\
t_{1} \ldots & \ldots & t_{i}
\end{array} \ldots . t_{r} .\right]\right| \leqq M<\infty
$$

independent of the t_{j}. If α is not a singular point for L_{m}, a may be set equal to α in these statements.

Proof. This follows from the previous lemma by induction on r since $f, u_{1}, \ldots, u_{m-1}$ are sufficiently smooth on $[a, b]$. Indeed, the induction process gives the quotient as a linear combination of generalized derivatives of the form

$$
\begin{equation*}
\mathscr{D}^{k-1} f(\eta) \equiv\left[1 / \xi_{k}(\eta)\right] D_{k-1} \ldots D_{1} f(\eta) \tag{3.4}
\end{equation*}
$$

Since the ξ_{j} are strictly positive on $[a, b]$, the coefficients $\alpha_{i k}(\eta)$ in

$$
\begin{equation*}
\mathscr{D}^{i-1} f(\eta)=\sum_{k=1}^{i} \alpha_{i k}(\eta) D^{k-1} f(\eta) \tag{3.5}
\end{equation*}
$$

are bounded uniformly and independently of f. These latter facts will be useful in section 5.

For disconjugate equations, the following theorem, similar to Theorem 2.1, holds:

Theorem 3.1. Let $L_{m+3} y=0$ be disconjugate on $[\alpha, \beta]$ and let $[a, b] \subset(\alpha, \beta)$ be a fixed interval. Suppose that the sequence of integral operators $\left\{A_{n}\right\}$ on $L^{p}[a, b], 1 \leqq p<\infty$ satisfy:
(1) $A_{n}[f: x]=\int_{a}^{b} K_{n}(x, t) f(t) d t$
is of class \mathscr{S}_{m} for each n;
(2) $\left\|A_{n}\right\|_{L^{p}} \leqq M<+\infty$; and
(3) $\left\|A_{n}\left[u_{i}: x\right]-u_{i}(x)\right\|_{L^{p}} \rightarrow 0$ as $n \rightarrow \infty$ for $i=1, \ldots, m+3$, where $\left(u_{1}, \ldots, u_{m+3}\right)$ is a fundamental principal system on $[\alpha, \beta]$ for L_{m+3}. Then, for each $f \in L^{p}[a, b]$, there holds

$$
\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}} \rightarrow 0, \quad n \rightarrow \infty .
$$

Moreover, if α is not a singular point for L_{m+3}, then $a=\alpha$ is permitted in these statements.

Proof. Let $f \in C^{m+2}[a, b]$ and let x be such that $K_{n}(x, t)$ has the sign change property for each n. For fixed n, let $t_{j}=t_{j, x, n}$, for $1 \leqq j \leqq r=r(x, n) \leqq m$ be as in the proof of Theorem 2.1. If x equals some $t_{j, x, n}$, set $l=r-1$. Otherwise, set $l=r+1$ and $t_{r+1, x, n}=t_{r+2, x, n}=x$.

Consider

$$
R(t)=\left[\begin{array}{ccc}
u_{1} \ldots u_{l+1} & f \tag{3.6}\\
t_{1} \ldots t_{l+1} & t
\end{array}\right] /\left[\begin{array}{c}
u_{1} \ldots u_{l+1} \\
t_{1} \ldots . t_{l+1}
\end{array}\right] .
$$

When expanded, the right member of (3.6) indicates a formula for interpolating f at t_{1}, \ldots, t_{l+1} by a "generalized polynomial" of "degree" l.

On the one hand

$$
\begin{aligned}
R(t)= & {\left[\left[\begin{array}{cc}
u_{1} \ldots u_{l+1} & f \\
t_{1} \ldots t_{l+1} & t
\end{array}\right] /\left[\begin{array}{cc}
u_{1} \ldots u_{l+1} & u_{l+2} \\
t_{1} \ldots t_{l+1} & t
\end{array}\right]\right] } \\
& \times\left[\left[\begin{array}{cc}
u_{1} \ldots u_{l+1} & u_{l+2} \\
t_{1} \ldots t_{l+1} & t
\end{array}\right] /\left[\begin{array}{c}
u_{1} \ldots u_{l+1} \\
t_{1} \ldots t_{l+1}
\end{array}\right]\right]=g_{x, n}(t) q_{x, n}(t)
\end{aligned}
$$

where $g_{x, n}(t)$ is bounded independently of x, n, t, and the t_{j} by Lemma 3.3 with m replaced by $m+3$. Moreover, since $D_{l+2} D_{\imath+1} \ldots D_{1} y=0$ is disconjugate on $[\alpha, \beta], q_{x, n}(t)$ or $-q_{x, n}(t)$ agrees in sign with $K_{n}(x, t)$.

On the other hand, $R(t)=f(t)-p_{x, n}(t)$ where

$$
\left.\begin{array}{rl}
p_{x, n}(t) & =\sum_{k=1}^{l+1} u_{k}(t)\left[\begin{array}{llll}
u_{1} & \ldots & f & \ldots
\end{array} u_{l+1}\right. \tag{3.7}\\
t_{1} \ldots & \ldots
\end{array} t_{k} \ldots t_{l+1}\right] /\left[\begin{array}{lll}
u_{1} & \ldots & u_{l+1} \\
t_{1} & \ldots & t_{l+1}
\end{array}\right]
$$

where, again by Lemma 3.3 , the $a_{k}(x, n)$ are uniformly bounded.
Finally,

$$
\left.\begin{array}{rl}
q_{x, n}(t) & =u_{l+2}(t)-\sum_{k=1}^{l+1} u_{k}(t)\left[\begin{array}{cccc}
u_{1} & \ldots & u_{l+2} & \ldots
\end{array} u_{l+1}\right. \\
t_{1} & \ldots
\end{array} t_{k} \ldots \ldots t_{l+1}\right] /\left[\begin{array}{lll}
u_{1} & \ldots & u_{l+1} \\
t_{1} & \ldots & t_{l+1}
\end{array}\right]
$$

where, again by Lemma 3.3, the $b_{k}(x, n)$ are uniformly bounded.
Now, since $f(x)=\sum_{k=1}^{l+1} a_{k}(x, n) u_{k}(x)$, we have

$$
A_{n}[f: x]-f(x)=\sum_{k=1}^{l+1} a_{k}(x, n)\left\{A_{n}\left[u_{k}: x\right]-u_{k}(x)\right\}+A_{n}\left[g_{x, n} q_{x, n}: x\right] .
$$

By Remark 2.1, we have

$$
\begin{aligned}
\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}} & \leqq M_{1} \\
& \times \sum_{k=1}^{m+2}\left\|A_{n}\left[u_{k}: x\right]-u_{k}(x)\right\|_{L^{p}}+M_{2}\left\|A_{n}\left[q_{x, n}: x\right]\right\|_{L^{p}}
\end{aligned}
$$

where M_{1} and M_{2} are bounds on $\left|a_{k}(x, n)\right|$ and $\left|g_{x, n}(t)\right|$ respectively. Since $q_{x, n}(x)=\sum_{k=1}^{l+2} b_{k}(x, n) u_{k}(x)=0$,

$$
A_{n}\left[q_{x, n}: x\right]=\sum_{k=1}^{l+2} b_{k}(x, n)\left\{A_{n}\left[u_{k}: x\right]-u_{k}(x)\right\}
$$

so that

$$
\left\|A_{n}\left[q_{x, n}: x\right]\right\|_{L^{p}} \leqq M_{3} \sum_{k=1}^{m+3}\left\|A_{n}\left[u_{k}: x\right]-u_{k}(x)\right\|_{L^{p}}
$$

where M_{3} is a bound on $\left|b_{k}(x, n)\right|$. The proof of the theorem is complete.

Remark 3.1. As a corollary of the above proof, we have that if x is one of the $t_{j, x, n}$ for almost all x and all n, then u_{m+2} and u_{m+3} may be deleted from hypothesis (3).

The discussion in this section could have been framed in terms of extended complete Chebyshev systems (see Karlin and Studden [7]). We have preferred the language of disconjugacy because it emphasizes the primary role of the operator L_{m} and because of the applicability to trigonometric polynomials (see the next section).
4. Trigonometric polynomials. In this section, we consider the space $L^{p}[0,2 \pi]$ of 2π-periodic functions. To account for periodicity, the definition of the class \mathscr{S}_{m} is modified to include a possible sign change at $t=2 \pi(t=0)$. The modification is easily implemented by requiring that m be even.

Let $m \geqq 0$ and r be integers such that

$$
\begin{equation*}
2 r \geqq m+2 \tag{4.1}
\end{equation*}
$$

Consider the set $K=\{1, \sin t, \cos t, \ldots, \sin r t, \cos r t\}$. We now show the following theorem.

Theorem 4.1. Let $r, m \geqq 0$ and K be as above. Then K is a Korovkin set for integral operators of class \mathscr{S}_{m} on $L^{p}[0,2 \pi], 1 \leqq p<\infty$. Further, for those integral operators of class \mathscr{S}_{m} on $L^{p}[0,2 \pi]$ whose kernels satisfy: the kernel $K(x, t)$ changes sign at $t=x$ (i.e., x is one of the $t_{j, x, n}$) for almost all x, then K is still a Korovkin set when (4.1) is replaced by

$$
\begin{equation*}
2 r \geqq m . \tag{4.2}
\end{equation*}
$$

We cannot directly use the results of section 3 because the differential equation (3.1) is not disconjugate on an interval $[\alpha, \beta]$ for which $[0,2 \pi] \subset[\alpha, \beta)$. Since the expressions

$$
\begin{equation*}
\left(1 / \xi_{k+1}(t)\right) D_{k} \ldots D_{1} y(t) \tag{4.3}
\end{equation*}
$$

are non-singular at $t=\beta$ only for $k=2 r$ and $k=2 r+1$, Lemma 3.3 cannot be extended to the full interval $[\beta-2 \pi, \beta]$. Here the $\xi_{i}, i=1, \ldots, 2 r+1$ are given by (3.2).

The device we shall use is to select α, β and $r^{\prime} \leqq r$ after x and $\left\{t_{j, x, n}: j=\right.$ $\left.1,2, \ldots, 2 l^{\prime}\right\}$ have been specified. Then $\xi_{1}(t)$ in (4.3) is replaced by

$$
\tilde{\xi}_{1}(t)=\sin ^{2 r}\left(\frac{\beta-t}{2}\right) .
$$

By selecting $\beta=\beta(x)$ and $\alpha=\beta-2 \pi+\delta$ so that $\alpha+\delta \leqq x \leqq \beta-\delta$ and each of the $t_{j, x, n}$ are more than δ away from $\alpha, \beta, \alpha \pm 2 \pi$, and $\beta \pm 2 \pi$, and then invoking periodicity to translate to the interval $[\beta-2 \pi, \beta]$, we will obtain the interpolation formula

$$
\begin{equation*}
f(t)=p_{x, n}(t)+g_{x, n}(t) q_{x, n}(t) \tag{4.4}
\end{equation*}
$$

for periodic functions f having $2 r^{\prime}$ continuous derivatives. Here

$$
\begin{aligned}
& p_{x, n}(t)=\sum_{k=1}^{l+1} a_{k}(x, n) u_{k, x, n}(t) \\
& q_{x, n}(t)=\sum_{k=1}^{l+2} b_{k}(x, n) u_{k, x, n}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
g_{x, n}(t) & =\left[\begin{array}{cc}
u_{1} \ldots u_{l+1} & f \\
t_{1} \ldots t_{l+1} & t
\end{array}\right] /\left[\begin{array}{cc}
u_{1} \ldots u_{l+1} & u_{l+2} \\
t_{1} \ldots t_{l+1} & t
\end{array}\right] \\
& =\left(1 / \xi_{l+2}(\eta)\right) D_{l+1} \ldots D_{1} f(\eta) \quad(\beta-2 \pi<\eta<\beta)
\end{aligned}
$$

with $\alpha+\delta \leqq t_{j}=t_{j, x, n}(\pm 2 \pi) \leqq \beta-\delta$ and $u_{j}(t)=u_{j, x, n}(t)$ given by

$$
u_{j}(t)=\tilde{\xi}_{1}(t) \int_{\alpha}^{t} \xi_{2}(\tau) \ldots \int_{\alpha}^{\tau} \xi_{j}(\tau)(d \tau)^{j-1}
$$

Here, also, $l=2 l^{\prime}-1$ if x equals some $t_{j, x, n}$ and $l=2 l^{\prime}+1, t_{l}=t_{l+1}=x$ if x does not equal some $t_{j, x, n}$. As before, $p_{x, n}\left(t_{j}\right)=f\left(t_{j}\right), q_{x, n}\left(t_{j}\right)=0$, and, if $l=2 l^{\prime}+1, D p_{x, n}(x)=D f(x)$.

With $\delta<2 \pi / 3 m$, the above construction is possible for almost all x. Since $\alpha+\delta \leqq t_{j} \leqq \beta-\delta$, Lemma 3.3 assures that $\left|a_{k}(x, n)\right| \leqq M_{1}$ and $\left|b_{k}(x, n)\right| \leqq M_{3}$. To insure that $\left|g_{x, n}(t)\right| \leqq M_{2}$, we must choose $2 r^{\prime}=l+1$ (see (4.3) and the lines that follow it). Since $2 l^{\prime} \leqq m$, we may do so with r satisfying (4.1) or (4.2). Here M_{1} and M_{2} depend on f and perhaps on its first $2 r+1$ derivatives. This dependence will be explored more deeply in section 5 when we consider constraints on the $t_{j, x, n}$ as $n \rightarrow \infty$.

Finally,

$$
u_{k, x, n}(t)=\sum_{j=0}^{r^{\prime}}\left[c_{j, k}(x, n) \cos j t+d_{j, k}(x, n) \sin j t\right]
$$

with $\left|c_{j, k}(x, n)\right| \leqq M_{4}$ and $\left|d_{j, k}(x, n)\right| \leqq M_{4}$ independently of f and r^{\prime}. Thus, as in the manner of section 3,

$$
\begin{aligned}
&\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}} \leqq\left(M_{1}+M_{2} M_{3}\right) \sum_{j=1}^{2 r+1}\left\|A_{n}\left[u_{j, x, n}: x\right]-u_{j, x, n}\right\|_{L^{p}} \\
& \leqq\left(M_{1}+M_{2} M_{3}\right)(2 r+1) M_{4} \\
& \quad \times \sum_{j=0}^{r}\left\{\left\|A_{n}[\cos j t: x]-\cos j x\right\|_{L^{p}}\right. \\
&\left.\quad+\left\|A_{n}[\sin j t: x]-\sin j x\right\|_{L^{p}}\right\}
\end{aligned}
$$

and Theorem 4.1 is proved.
5. Quantitative results. We now consider the question of rate of convergence to zero of $\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}}$ when the operators A_{n} are of class \mathscr{S}_{m} and are polynomial valued.

There are two cases. The first case is when A_{n} is an nth degree algebraic polynomial valued operator on $L^{p}[a, b]$ and $K_{1}=\left\{1, t, \ldots, t^{m+2}\right\}$. The second is when A_{n} is an nth degree trigonometric polynomial valued operator on $L^{p}[0,2 \pi]$ and $K_{2}=\{1, \sin t, \cos t, \ldots \sin r t, \cos r t\} \quad(m+3=2 r+1)$. We shall show that there exist functions $f \in C^{m+2}$ such that

$$
\lim _{n \rightarrow \infty} \sup n^{m+2}\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}}>0 .
$$

This question was studied extensively for convolution kernels by Butzer, Nessel and Scherer [3].

If we know more about the structure of the kernel, then we can improve the result. To this end, we make the following definition.

Definition. Let $\left\{A_{n}\right\}$ be a sequence of integral operators of class \mathscr{S}_{m}. The essential number of sign changes for the sequence $\left\{A_{n}\right\}$ is the smallest j_{0} for which there exist $\delta>0$ and n_{0} such that for each x (except possibly a set of measure zero) and each $n \geqq n_{0}$ at most j_{0} of the $t_{j, x, n}$ lie in any interval of length δ. For the periodic case, we consider intervals of length δ on the circle.

The notion of essential number of sign changes means that at most j_{0} of the $t_{j, x, n}$ cluster at some point in the interval. A more natural condition would be that at most j_{0} of the $t_{j, x, n}$ cluster at x (see for example, Butzer, Nessel and Scherer [3]).

Lemma 5.1. Let $L_{m+3} y=0$ be disconjugate on $[\alpha, \beta]$ with $\left(u_{1}, \ldots, u_{m+3}\right)$ as the corresponding fundamental principal system. Let $[a, b] \subset(\alpha, \beta)$ and let $\left\{A_{n}\right\}$ satisfy the conditions of Theorem 5.1. Then

$$
\begin{aligned}
&\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}} \leqq M\left\{\|f\|_{\infty}+\left\|f^{\left(j_{0}+2\right)}\right\|_{\infty}\right\} \\
& \times \sum_{k=1}^{m+3}\left\|A_{n}\left[u_{k}: x\right]-u_{k}(x)\right\|_{L^{p}}
\end{aligned}
$$

for all $f \in C^{j_{0+2}}$ where M is independent of f. Moreover, if x equals some $t_{j, x, n}$ for almost all x and all n, then

$$
\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}} \leqq M\left\{\|f\|_{\infty}+\left\|f^{(j 0)}\right\|\right\} \sum_{k=1}^{m+3}\left\|A_{n}[u: x]-u_{k}(x)\right\|_{L^{p}}
$$

for $f \in C^{j_{0}}$.
Lemma 5.1 will apply directly to K_{1} and $L^{p}[a, b]$ if we set $\alpha=0$ and $\beta=\infty$. With the modifications described in section 4 (see (4.3) and the lines which follow it), the conclusions of Lemma 5.1 will apply to K_{2} and $L^{p}[0,2 \pi]$. In particular, j_{0} may be even or odd.

Note that in the case $j_{0}=m$, this lemma follows from a careful look at our proofs in section 3 since the coefficients there are bounded by the derivatives of f. For the general case, we need the coefficients given by certain "generalized" divided differences. We begin by giving an alternate form for the interpolating "polynomials" $p_{x, n}(t)$ defined in (3.7). As in section 3, we suppose that $L_{m+3} y=0$ is disconjugate on $[\alpha, \beta]$ and consider $x, t, t_{j, x, n} \in[a, b] \subset(\alpha, \beta)$.

Let the j th order (generalized) divided difference $f\left[t_{1}, \ldots, t_{j}\right]$ be specified by

$$
\begin{aligned}
f\left[t_{1}, \ldots, t_{j}\right] \equiv & \text { (coefficient of } u_{j}(t) \text { in the generalized polynomial } u(t) \\
& \text { of order } \left.j \text { which interpolates } f(t) \text { at } t_{1}, \ldots, t_{j}\right) .
\end{aligned}
$$

Here $D^{i} u\left(t_{k}\right)=D^{i} f\left(t_{k}\right)$ if t_{k} occurs with multiplicity $i+1$ or more. The unique existence of $u(t)$ is guaranteed by the disconjugacy of $D_{j} \ldots D_{1} y=0$. Indeed,

$$
u(t)=f(t)-\left[\begin{array}{c}
u_{1} \ldots u_{j} f \\
t_{1} \ldots . t_{j} t
\end{array}\right] /\left[\begin{array}{c}
u_{1} \ldots u_{j} \\
t_{1} \ldots
\end{array}\right]
$$

so that

$$
f\left[t_{1}, \ldots, t_{j}\right]=\left[\begin{array}{ccc}
u_{1} \ldots u_{j-1} & f \tag{5.1}\\
t_{1} \ldots t_{j-1} & t_{j}
\end{array}\right] /\left[\begin{array}{c}
u_{1} \ldots u_{j} \\
t_{1} \ldots . t_{j}
\end{array}\right] .
$$

For $f \in C^{k-1}(\alpha, \beta)$, Lemma 3.2 yields

$$
\begin{equation*}
f\left[t_{1}, \ldots, t_{k}\right]=\mathscr{D}^{k-1} f(\eta) \tag{5.2}
\end{equation*}
$$

where \mathscr{D}^{k-1} is as in (3.4) (see also DeVore and Richards [4]). For the set $K_{1}, \mathscr{D}^{k} y=D^{k} y / k!$. For $K_{2}, \mathscr{D}^{k} y$ is given by (4.3) and (3.2).

With the Newton polynomials $\tilde{u}_{i}(t)=\tilde{u}_{i}\left(t ; t_{1}, \ldots, t_{i-1}\right)$ specified by

$$
\tilde{u}_{i}(t)=\left[\begin{array}{cc}
u_{1} \ldots u_{i-1} & u_{i} \\
t_{1} \ldots t_{i-1} & t
\end{array}\right] /\left[\begin{array}{c}
u_{1} \ldots u_{i-1} \\
t_{1} \ldots t_{i-1}
\end{array}\right],
$$

we have

$$
\begin{equation*}
u(t)=\sum_{i=1}^{j} f\left[t_{1}, \ldots, t_{i}\right] \widetilde{u}_{i}(t) \tag{5.3}
\end{equation*}
$$

We shall use (5.3) with $j=l+1, t_{j}=t_{j, x, n}$, and, possibly $t_{l}=t_{l+1}=x$ (notation established in the proof of Theorem 3.1) to represent $u(t)=p_{x, n}(t)$ as given by (3.7). Note that the coefficients of the u_{j} in $\widetilde{u}_{i}(t)$ are bounded independently of f (see Lemma 3.3). From (3.6),
(5.4) $\quad R(t)=g_{x, n}(t) q_{x, n}(t) \equiv f\left[t_{1}, \ldots, t_{l+1}, t\right] \tilde{u}_{l+2}(t)$
with $l+1 \leqq m+2$. Thus, to establish Lemma 5.1, we must show that

$$
\begin{equation*}
\left|f\left[t_{1}, \ldots, t_{i}\right]\right| \leqq M\left[\|f\|_{\infty}+\left\|f^{\left(j_{0}+2\right)}\right\|_{\infty}\right] \tag{5.5}
\end{equation*}
$$

for $i=1, \ldots, m+3$.
If $i \leqq j_{0}+3$, then (5.5) follows from (5.2), (3.5) and the well-known
relation $\left\|f^{(i-1)}\right\|_{\infty} \leqq M_{i}\left[\|f\|_{\infty}+\left\|f^{\left(j_{0}+2\right)}\right\|_{\infty}\right]$ (see, for example, Ditzian and Freud [5, Lemma 3.2]).

If $i>j_{0}+3$, we use the recurrence relation

$$
\begin{equation*}
f\left[t_{1}, \ldots, t_{j}\right]=\left[\tilde{u}_{j-1}\left(t_{j}\right) / \tilde{u}_{j}\left(t_{j}\right)\right]\left\{f\left[t_{1}, \ldots, t_{j-2}, t_{j}\right]-f\left[t_{1}, \ldots, t_{j-1}\right]\right\} \tag{5.6}
\end{equation*}
$$

to replace $f\left[t_{1}, \ldots, t_{j}\right]$ by a linear combination of $\left(j_{0}+3\right)$-order divided differences. Relation (5.6) is easily proved by interchanging t_{j-1} and t_{j} in the discussion preceding (5.3). The coefficients $\tilde{u}_{j-1}\left(t_{j}\right) / \widetilde{u}_{j}\left(t_{j}\right)$ are bounded if and only if $t_{j-1}-t_{j}$ is bounded away from zero. Since the essential number of sign changes is j_{0}, the t_{j} may be ordered so that $\left|t_{j-1}-t_{j}\right|>\delta>0$. This fact together with the result for $i \leqq j_{0}+3$ establishes (5.5).

By combining the above results, we have Lemma 5.1 proved once we remark that $j_{0}+2$ may be replaced by j_{0} in the above discussion if x equals some $t_{j, x, n}$ for almost all x and all n.

We note that for the set K_{1}, the coefficient in (5.6) is $\tilde{u}_{j-1}\left(t_{j}\right) / \tilde{u}_{j}\left(t_{j}\right)=$ $1 /\left(t_{j}-t_{j-1}\right)$ because of cancellation. For the set K_{2}, we use the alternative basis given by (3.3). Then we have

$$
\tilde{u}_{j-1}\left(t_{j}\right) / \tilde{u}_{j}\left(t_{j}\right)=\frac{\left(\sin \frac{1}{2}\left(\beta-t_{j-1}\right)\right)\left(\sin \frac{1}{2}\left(\beta-t_{j}\right)\right)}{\left(\sin \frac{1}{2}(\beta-\alpha)\right)\left(\sin \frac{1}{2}\left(t_{j}-t_{j-1}\right)\right)},
$$

which shows why we require intervals of length δ on the circle in the periodic case.

Theorem 5.1. Let A_{n} be nth degree algebraic (trigonometric) polynomial valued integral operators of class \mathscr{S}_{m} on $L^{p}[a, b]$ (respectively, $L^{p}[0,2 \pi]$) with j_{0} essential sign changes. Then at least one of the sequences

$$
n^{j_{0}+2}\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}}, \quad f \in K_{1}\left(\text { respectively, } f \in K_{2}\right)
$$

does not converge to zero. In addition, if x equals some $t_{j, x, n}$ for almost all x and all n large, then $n^{j_{0}+2}$ may be replaced by $n^{j_{0}}$ in the assertion.

Proof. We first consider K_{1} and algebraic polynomial valued operators. If the theorem were not true, then by Lemma 5.1,

$$
\begin{aligned}
n^{j 0+2}\left\|A_{n}[f: x]-f(x)\right\|_{L^{p}} \leqq M\left\{\|f\|_{\infty}+\right. & \left.\left\|f^{\left(j_{0}+2\right)}\right\|_{\infty}\right\} n^{j 0+2} \\
& \times \sum_{k=0}^{m+2}\left\|A_{n}\left[t^{k}: x\right]-x^{k}\right\|_{L^{p}} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. To obtain a contradiction, we obtain $f_{n} \in C^{j_{0+2}}$ for which $\left\|f_{n}\right\|_{\infty} \leqq 1,\left\|f_{n}^{\left(j_{0+2)}\right.}\right\|_{\infty} \leqq 1$ and $\left\|A_{n}\left[f_{n}: x\right]-f_{n}(x)\right\|_{L^{1}} \geqq C / n^{j_{0}+2}$ for sufficiently large n, where C is an absolute constant. The following simple construction is due to A . Meir.

Consider the nth degree Chebshev polynomial on $[-1,+1] T_{n}(x)=$ $x^{n}+p(x)\left(p(x)\right.$ lower order terms) (see Achieser [1]). Then $\left\|T_{n}\right\|_{\infty}=2^{-n+1}$, so we select a polynomial $Q_{n}(x)$ so that $Q_{n}^{\left({ }^{(j 0+2)}\right.}(x)=2^{n-1} T_{n}(x)$ and
$\left\|Q_{n}(x)\right\| \leqq 1$. For any algebraic polynomial $P(x)$ of degree at most n, we have

$$
\begin{aligned}
\int_{-1}^{1}\left|Q_{n}(x)-P(x)\right|=2^{n-1}\left[\left(n+j_{0}+2\right) \ldots\right. & (n+1)]^{-1} \\
& \times \int_{-1}^{1}\left|x^{n+j_{0}+2}-\widetilde{P}(x)\right| d x
\end{aligned}
$$

where $\widetilde{P}(x)$ is a polynomial of degree $n+j_{0}+1$. By a well-known result (Achieser [1, p. 94]), we obtain

$$
\int_{-1}^{1}\left|Q_{n}(x)-P(x)\right| d x \geqslant 2^{-j_{0}-2}\left(n+j_{0}+2\right)^{-j_{0}-2}
$$

A simple change of variable transforms Q_{n} to f_{n} on $[a, b]$.
For the trigonometric case, a similar argument utilizes the fact that zero is a best L^{p}-approximation $(1 \leqq p<\infty)$ to $\cos \left(j_{0}+n+2\right) x$ by trigonometric polynomials of degree $j_{0}+n+1$ (see Shapiro [10, p. 57]). The proof is complete.
6. Remarks. The above theorems may be extended to a wider class of operators; namely, those operators belonging to the operator norm closure of the integral operators of class \mathscr{S}_{m}. This would permit certain differences to be considered; e.g., $L^{p}[0,2 \pi], A f(x)=f(x+\delta)+f(x-\delta)-f(x)$ would be in the extended class \mathscr{S}_{2}.

A careful look at the proofs indicates that most do not depend on the L^{p} norm per se. In fact, we only require that (i) the C^{m+2} functions be dense in our space, and (ii) that $|f| \leqq|g|$ implies $\|f\| \leqq C| | g \|$. Thus, the theorems are valid for any Banach space of measurable functions which enjoy these properties.

The discussion in section 3 allows infinite intervals to be included. Since functions in C^{m+2} with compact support are dense in the L^{p}-spaces on an infinite interval, the bounds on the coefficients of the interpolating polynomials depend on the generalized derivatives (3.4) evaluated only on a compact set (depending on f) which avoids the singularities. Thus, the arguments may be carried out. As an example, on [0, ∞), the equation

$$
L_{m+3} y \equiv(D+1) \ldots(D+m+3) y=0
$$

has the fundamental principal system $\left(e^{-x}, e^{-2 x}, \ldots, e^{-(m+3) x}\right)$. Consequently, the set $K=\left\{e^{-x}, \ldots, e^{-(m+3) x}\right\}$ is a Korovkin set for \mathscr{S}_{m} on $L^{p}[0, \infty)$ $1 \leqq p<\infty$.

References

1. N. I. Achieser, Vorlesungen über Approximationstheorie (Akademie-Verlag, Berlin, 1967).
2. P. L. Butzer, A survey of work on approximation at Aachen, 1968-1972. In "Approximation Theory, pp. 31-100, Proc. 1973 Austin Conf. G. G. Lorentz ed. (Academic Press, New York, 1973).
3. P. L. Butzer, R. J. Nessel, and K. Scherer, Trigonometric convolution operators with kernels having alternating signs and their degree of convergence, Jber. Deutsch. Math.-Verein 70 (1967), 86-99.
4. R. DeVore and F. Richards, The degree of approximation by Chebyshevian Splines, Trans. Amer. Math. Soc. 181 (1973), 401-418.
5. Zeev Ditzian and Geza Freud, Linear approximating processes with limited oscillation (to appear in J. Approximation Theory).
6. V. K. Dzjadyk, Approximation of functions by positive linear operators and singular integrals (Russian), Mat. Sb. 70 (1966), 508-517.
7. S. Karlin and W. J. Studden, Tchebycheff systems: with applications in analysis and statistics (Interscience Publishers, New York, 1966).
8. P. P. Korovkin, Convergent sequences of linear operators (Russian), Uspehi Mat. Nauk 17 (1962), 147-152.
9. - On the order of approximation of functions by linear polynomial operators of the class \mathscr{S}_{m}, In "Studies of Contemporary Problems in the Constructive Theory of Functions" (Proc. Second All-Union Conf. on the Constructive theory of Functions, Baku 1962), I. I. Ibragimov Editor, Acad. Sci. Azerbaijani SSR Inst. Math. Mech., Izad. Akad. Nauk Azerbaĭdžan SSR, Baku, 1965, 163-166.
10. H. S. Shapiro, Topics in approximation theory (Springer-Verlag, Berlin, 1971).
11. D. Willett, Disconjugacy tests for singular linear differential equations, SIAM J. Math. Anal. 2 (1971), 536-545.

University of Alberta,
Edmonton, Alberta;
University of Pittsburgh,
Pittsburgh, Pennsylvania

[^0]: Received May 7, 1973 and in revised form, January 2, 1974. This research was partially supported by National Research Council of Canada Grants.

