Equations of motion in Poincaré-Četaev variables with constraint multipliers

Q.K. Ghori

Abstract

Suslov's constraint multipliers are used to derive the equations of motion of dynamical systems (holonomic or nonholonomic) in the form of Poincaré-Četaev equations and in the canonical form. For holonomic systems defined by redundant variables, the constraint multipliers occuring in the canonical equations are determined and a modification of the Hamilton-Jacobi Theorem for integrating the canonical equations is presented.

1. Introduction

The method of constraint multipliers going back to Suslov [7] allows the reduction of Lagrange's equations of motion of a holonomic dynamical system to the ordinary canonical equations which can be integrated by the Hamilton-Jacobi Theorem. Employing such multipliers, Sul'gin [5], Sahaĭdarova [4], and others have published equations of motion of holonomic systems in redundant generalised coordinates. In his recent paper [6], Sul'gin has extended these equations to the case of linear nonholonomic systems.

We shall be concerned with the generalisations of these results in the Poincaré-Četaev variables. We begin with a conservative dynamical system whose position at any time t is specified by the variables $x_{1}, x_{2}, \ldots, x_{n}$. As in [2], let the set of operators $X_{0}, X_{1}, \ldots, X_{n}$

Received 30 January 1976.
with commutators
(1) $\left(x_{0}, x_{p}\right)=c_{0 p q} X_{q},\left(x_{p}, X_{q}\right)=c_{p q r^{X}} X_{r}(p, q, r=1,2, \ldots, n)$
define the infinitesimal displacements of the system; and let the parameters $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ and $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ characterize the real and possible displacements, so that the variation of an arbitrary function $f\left(x_{1}, \ldots, x_{n} ; t\right)$ in a real and possible displacement of the system is determined by the relation

$$
\begin{equation*}
d f=\left[X_{0}(f)+\eta_{p} X_{p}(f)\right] d t, \quad \delta f=\omega_{p} X_{p}(f) \quad(p=1,2, \ldots, n) \tag{2}
\end{equation*}
$$

and the differential constraints (holonomic or linear nonholonomic) are expressed by $m(<n)$ equations

$$
\begin{equation*}
F_{\alpha}=A_{\alpha p} \eta_{p}+A_{\alpha 0}=0 \quad(\alpha=1,2, \ldots, m ; p=1,2, \ldots, n) \tag{3}
\end{equation*}
$$

the ω 's satisfying the relations

$$
\frac{\partial F_{\alpha}^{\prime}}{\partial n_{p}} \omega_{p}=0 \quad(\alpha=1,2, \ldots, m ; p=1,2, \ldots, n)
$$

Here $C_{0 p q}, C_{p q r}, A_{\alpha p}$, and $A_{\alpha 0}$ are functions of $x_{1}, x_{2}, \ldots, x_{n}, t$, and the convention of summing over a repeated suffix is adopted.

2. Equations of motion with constraint multipliers

It has been shown in [3] that the motion of the dynamical system under consideration, for which the kinetic potential is

$$
L\left(x_{1}, \ldots, x_{n} ; \eta_{1}, \ldots, \eta_{n} ; t\right)
$$

is determined by the differential equations
(4) $\frac{d}{d t} \frac{\partial L}{\partial n_{p}}-C_{0 p q} \frac{\partial L}{\partial n_{q}}-C_{q p r} \eta_{q} \frac{\partial L}{\partial n_{r}}-X_{p}(L)-\lambda_{\alpha} \frac{\partial F_{\alpha}}{\partial n_{p}}=0$

$$
(\alpha=1,2, \ldots, m ; p, q, r=1,2, \ldots, n)
$$

where $\lambda_{I}, \ldots, \lambda_{m}$ are the Lagrange undetermined multipliers.
According to Suslov [7], we introduce the constraint multipliers M_{α} by the relations

$$
d M_{\alpha}=-\lambda_{\alpha} d t \quad(\alpha=1,2, \ldots, m) .
$$

We also note from (2) and (3) that

$$
X_{p}\left(F_{\alpha}\right)=\eta_{q} X_{p}\left(A_{\alpha q}\right)+X_{p}\left(A_{\alpha 0}\right),
$$

and

$$
\frac{d}{d t} \frac{\partial F_{\alpha}}{\partial \eta_{p}}=X_{0}\left(A_{\alpha p}\right)+n_{q} X_{q}\left(A_{\alpha p}\right)
$$

In view of the last relations, equations (4) assume the form
(5) $\frac{d}{d t}\left(\frac{\partial L}{\partial n_{p}}+M_{\alpha} \frac{\partial F_{\alpha}}{\partial n_{p}}\right)-C_{0 p q} \frac{\partial L}{\partial n_{q}}-C_{p q r} \eta_{q} \frac{\partial L}{\partial n_{p}}-X_{p}(L)-M_{\alpha} X_{p}\left(F_{\alpha}\right)$

$$
=M_{\alpha}\left(\Omega_{0 p}^{\alpha}+\eta_{q} \Omega_{q p}^{\alpha}\right) \quad(\alpha=1,2, \ldots, m ; p, q, r=1,2, \ldots, n),
$$

where

$$
\begin{equation*}
\Omega_{0 p}^{\alpha}=X_{0}\left(A_{\alpha p}\right)-X_{p}\left(A_{\alpha 0}\right), \Omega_{q p}^{\alpha}=X_{q}\left(A_{\alpha p}\right)-X_{p}\left(A_{\alpha q}\right) . \tag{6}
\end{equation*}
$$

The equations (5) are the Poincaréčetaev equations of motion of the nonholonomic system with constraint multipliers. The ($n+m$) equations (5) and (3) are sufficient to determine the ($n+m$) unknown quantities $x_{1}, x_{2}, \ldots, x_{n}, M_{1}, M_{2}, \ldots, M_{m}$ as functions of t.

Let us assume the vanishing of the nonholonomy terms $\Omega_{0 p}^{\alpha}$ and $\Omega_{q p}^{\alpha}$, occuring in equations (5). It follows that the constraint equations (3) are integrable and the system is holonomic. In such a case the x 's and t are connected by relations in the finite form

$$
\begin{equation*}
f_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n} ; t\right)=0 \quad(\alpha=1,2, \ldots, m) \tag{7}
\end{equation*}
$$

and equations (3) may be taken to be equivalent to

$$
F_{\alpha}=\frac{d f_{\alpha}}{d t}=x_{0}\left(f_{\alpha}\right)+\eta_{p} x_{p}\left(f_{\alpha}\right)=0 .
$$

Consequently we have

$$
\begin{equation*}
A_{\alpha p}=X_{p}\left(f_{\alpha}\right), A_{\alpha 0}=X_{0}\left(f_{\alpha}\right), \tag{8}
\end{equation*}
$$

and, in view of (l), the following relations hold:
(9)

$$
\begin{aligned}
& \Omega_{o p}^{\alpha}=\left(X_{0} X_{p}-X_{p} X_{0}\right) f_{\alpha}=c_{o p q} X_{q}\left(f_{\alpha}\right)=0, \\
& \Omega_{q p}^{\alpha}=\left(X_{q}^{X} X_{p}-X_{p} X_{q}\right) f_{\alpha}=c_{q p r^{X}}\left(f_{\alpha}\right)=0 .
\end{aligned}
$$

The preceding analysis shows that, for a holonomic system defined by redundant variables, the equations of motion with constraint multipliers are
(10) $\frac{d}{d t}\left(\frac{\partial L}{\partial n_{p}}+M_{\alpha} \frac{\partial F_{\alpha}}{\partial n_{p}}\right)-C_{0 p q} \frac{\partial L}{\partial n_{q}}-C_{q p r} \eta_{q} \frac{\partial L}{\partial n_{r}}-\chi_{p}(L)-M_{\alpha} X_{p}\left(F_{\alpha}\right)=0$ $(\alpha=1,2, \ldots, m ; p, q, r=1,2, \ldots, n)$.

3. Canonical equations

In order to pass from equations (5) for the motion of a nonholonomic system to the canonical equations, we introduce new variables y_{p} by the relations

$$
\begin{equation*}
y_{p}=\frac{\partial L}{\partial n_{p}}+M_{\alpha} \frac{\partial F_{\alpha}}{\partial n_{p}} \quad(p=1,2, \ldots, n) \tag{11}
\end{equation*}
$$

Let us assume that in the ($n+m$) equations (11) and (3) the Jacobian of the ($n+m$) functions

$$
\frac{\partial L}{\partial n_{p}}+M_{\alpha} \frac{\partial F_{\alpha}}{\partial n_{p}}, F_{\alpha}
$$

with respect to the $\eta^{\prime} s$ and M^{\prime} s is different from zero. We can then solve these equations to obtain

$$
\begin{align*}
& \eta_{p}=\eta_{p}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n} ; t\right) \tag{12}\\
& M_{\alpha}=M_{\alpha}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n} ; t\right) .
\end{align*}
$$

Varying the function L in accordance with (2) and using (3) and (11), we get

$$
\begin{aligned}
\delta L= & \omega_{p} X_{p}(L)+\frac{\partial L}{\partial n_{p}} \delta \eta_{p} \\
= & \omega_{p}\left(\frac{d y_{p}}{d t}-M_{\alpha} X_{p}\left(F_{\alpha}\right)-C_{0 p q}\left(y_{q}-M_{\alpha} A_{\alpha q}\right)-\eta_{q} C_{q p r}\left(y_{r}-M_{\alpha} A_{\alpha p}\right)-M_{\alpha}\left(\Omega_{o p}^{\alpha}+\eta_{q} \Omega_{q p}^{\alpha}\right)\right)+ \\
& +\left(y_{p}-M_{\alpha} \frac{\partial F_{\alpha}}{\partial n_{p}}\right) \delta n_{p}
\end{aligned}
$$

which reduces to
(13) $\delta L+M_{\alpha} \delta F_{\alpha}=\omega_{p}\left[\frac{d y}{d t}-c_{0 p q^{y} q^{-c}}^{q p r} \eta^{\eta} q^{y_{r}}+\right.$

$$
\left.+M_{\alpha}\left(c_{0 p q^{A} \alpha q}+\eta_{q}^{C} C_{q p r} A_{\alpha p}-\Omega_{0 p}^{\alpha}-\eta_{q}^{\Omega_{q p}^{\alpha}}\right)\right]+y_{p} \delta \eta_{p}
$$

Let us introduce the function

$$
H\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n} ; t\right)=y_{p} \eta_{p}-L
$$

In the functions F_{α}, we replace the η 's by their values obtained from (12) and denote the resulting function by $H_{\alpha}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n} ; t\right)$, so that $\delta F_{\alpha}=\delta H_{\alpha}$ and the constraint equations (3) become

$$
\begin{equation*}
\text { (14) } \quad H_{\alpha}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n} ; t\right)=0 \quad(\alpha=1,2, \ldots, m) \tag{14}
\end{equation*}
$$

Varying the function H and using (13), we find that
$\delta H-M_{\alpha} \delta H_{\alpha}=\eta_{p} \delta y_{p}-\omega_{p}\left[\frac{d y_{p}}{d t}-C_{0 p q} y^{y^{-}} C_{q p r} \eta_{q}{ }^{y_{r}+}\right.$

$$
\left.+M_{\alpha}\left(C_{0 p q} A_{\alpha q}+\eta_{q} C_{q p r} A_{\alpha r}-\Omega_{0 p}^{\alpha}-\eta_{q} \Omega_{q p}^{\alpha}\right)\right]
$$

On the other hand, we have

$$
\delta H-M_{\alpha} \delta H_{\alpha}=\omega_{p}\left(X_{p}(H)-M_{\alpha} X_{p}\left(H_{\alpha}\right)\right)+\left(\frac{\partial H}{\partial y_{p}}-M_{\alpha} \frac{\partial H_{\alpha}}{\partial y_{p}}\right) \delta y_{p}
$$

It follows that

$$
\begin{aligned}
& \eta_{p}=\frac{\partial H}{\partial y_{p}}-M_{\alpha} \frac{\partial H_{\alpha}}{\partial y_{p}}, \\
& \text { (15) } \frac{d y_{p}}{d t}=-X_{p}(H)+M_{\alpha} X_{p}\left(H_{\alpha}\right)+C_{0 p q} y_{q}+C_{q p r} q^{y_{r}}- \\
& -M_{\alpha}\left(C_{o p q} A_{\alpha q}+n_{q} C_{q p r} A_{\alpha p}-\Omega_{0 p}^{\alpha}-\eta_{q} \Omega_{q p}^{\alpha}\right) \\
& (\alpha=1,2, \ldots, m ; p, q, r=1,2, \ldots, n) \text {. }
\end{aligned}
$$

In case the dynamical system is holonomic satisfying conditions (8) and (9), the equations (15) reduce to the form

$$
\eta_{p}=\frac{\partial H}{\partial y_{p}}-M_{\alpha} \frac{\partial H_{\alpha}}{\partial y_{p}}
$$

(16) $\frac{d y_{p}}{d t}=-X_{p}(H)+M_{\alpha} X_{p}\left(H_{\alpha}\right)+C_{o p q^{y} q}+C_{q p r} q^{\eta} q^{y} r$

$$
(\alpha=1,2, \ldots, m ; p, q, r=1,2, \ldots, n)
$$

Finally we define a function K by the relation

$$
K=H-M_{\alpha} H_{\alpha} .
$$

To transform equations (15) we note that along a trajectory the constraint equations (14) hold, so that we may write

$$
\begin{equation*}
M_{\alpha} \frac{\partial H_{\alpha}}{\partial y_{p}}=\frac{\partial}{\partial y_{p}}\left(M_{\alpha} H_{\alpha}\right), \quad M_{\alpha} X_{p}\left(H_{\alpha}\right)=X_{p}\left(M_{\alpha} H_{\alpha}\right) \tag{17}
\end{equation*}
$$

Consequently the equations (15) for a nonholonomic system assume the form

$$
\eta_{p}=\frac{\partial K}{\partial y_{p}}
$$

$$
(\alpha=1,2, \ldots, m ; p, q, r=1,2, \ldots, n) .
$$

In the case of a holonomic system, the canonical equations (16) take the form

$$
\eta_{p}=\frac{\partial K}{\partial y_{p}}
$$

(19) $\frac{d y p}{d t}=-X_{p}(K)+C_{O p q^{y} q}+C_{q p r^{n} q^{y} y_{r}}(p, q, r=1,2, \ldots, n)$.

If the x^{\prime} s are assumed to be generalised coordinates and $\eta_{p}=\dot{x}_{p}$, then all the $C_{0 p q}, C_{q p r}$ vanish. In this special case equations (19) reduce to the equations obtained by Šahǎ̌darova [4] and equations (18) are identical with those published by Sul'gin [6].

In the rest of this work we limit ourselves to a holonomic system whose motion in the presence of integrable constraints of the form (3) or (14) is governed by the equations (16) or (18).

4. Determination of the constraint multipliers

Consider the motion of a holonomic system which is subjected to constraints of the form (14), the equations governing the motion being given by (16). We shall determine the constraint multipliers M_{α} as the solution of a system of m linear equations.

For the sake of simplicity, let us assume the constraints to be stationary. Then equations (14) have the form

$$
\begin{equation*}
H_{\alpha}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=0 \quad(\alpha=1,2, \ldots, m), \tag{20}
\end{equation*}
$$

and the canonical equations (16) reduce to the form

$$
\eta_{p}=\frac{\partial H}{\partial y_{p}}-M_{\alpha} \frac{\partial H_{\alpha}}{\partial y_{p}}
$$

(21) $\frac{d y_{p}}{d t}=-X_{p}(B)+M_{\alpha} X_{p}\left(H_{\alpha}\right)+C_{q p r} n^{n} q^{y_{r}}$

$$
(\alpha=1,2, \ldots, m ; p, q, r=1,2, \ldots, n) .
$$

Differentiating (20) with respect to the time, we obtain

$$
\eta_{p} X_{p}\left(H_{\alpha}\right)+\frac{\partial H_{\alpha}}{\partial y_{p}} \frac{d y_{p}}{d t}=0 .
$$

Substituting for η_{p} and $\frac{d y_{p}}{d t}$ from (21), we have
(22)

$$
\begin{array}{r}
{\left[\frac{\partial H}{\partial y_{p}}-M_{\beta} \frac{\partial H_{\beta}}{\partial y_{p}}\right] X_{p}\left(H_{\alpha}\right)+\frac{\partial H_{\alpha}}{\partial y_{p}}\left[-X_{p}(H)+M_{\beta} X_{p}\left(H_{\beta}\right)+C_{q p r} y_{r}\left(\frac{\partial H}{\partial y_{q}}-M_{\beta} \frac{\partial H_{\beta}}{\partial y_{q}}\right)\right]=0} \\
(\alpha, \beta=1,2, \ldots, m ; p, q, r=1,2, \ldots, n)
\end{array}
$$

Let us define the Poisson bracket (f, g) by the relation

$$
\begin{align*}
&(f, g)=\left[\frac{\partial f}{\partial y_{p}} X_{p} g-\frac{\partial g}{\partial y_{p}} X_{p} f\right]+C_{q r_{r}} y_{r} \frac{\partial f}{\partial y_{q}} \frac{\partial g}{\partial y_{p}} \tag{23}\\
&(p, q, r=1,2, \ldots, n)
\end{align*}
$$

In view of (23), the equations (22) are equivalent to

$$
\left(H, H_{\alpha}\right)-M_{\beta}\left(H_{\beta}, H_{\alpha}\right)=0 \quad(\alpha, \beta=1,2, \ldots, m)
$$

These equations are a set of m linear equations to find $M_{1}, M_{2}, \ldots, M_{m}$. Substituting their values in (21), we have $2 n$ equations to find the η^{\prime} 's and $y^{\prime} s$.

5. Hamilton-Jacobi Theorem

We again consider holonomic systems whose motion in the presence of constraint equations (3) or (14) is described with redundant variables by canonical equations of the form (19) or with constraint multipliers by equations of the form (16). For such systems, the integration of the equations of motion can be effected by a method analogous to the well-known Hamilton-Jacobi method.

In order to formulate the Hamilton-Jacobi Theorem for the canonical equations (16), we consider, as in [1, 3], the partial differential equation

$$
\begin{equation*}
X_{0}(S)+H\left(x_{1}, \ldots, x_{n} ; X_{1}(S), \ldots, X_{n}(S) ; t\right)+\phi=0 \tag{24}
\end{equation*}
$$

The function ϕ is to be determined in such a way that if $S\left(x_{1}, \ldots, x_{n} ; a_{1}, \ldots, a_{n} ; t\right)$, containing n arbitrary constants a_{1}, \ldots, a_{n}, is a complete integral of (24), then the integrals of equations (16) are given by

$$
\begin{align*}
& y_{p}=x_{p}(S) \tag{25}\\
& b_{p}=A_{p}(S) \quad(p=1,2, \ldots, n) \tag{26}
\end{align*}
$$

where the A_{p} define the set of infinitesimal operators for the $a^{\prime} s$, and b_{p} are new arbitrary constants.

Let us suppose that the complete integral
$S\left(x_{1}, \ldots, x_{n} ; a_{1}, \ldots, a_{n} ; t\right)$ is substituted in (24). Then, applying the operator A_{p} to (24) and using (25), we get

$$
A_{p} X_{0}(S)+\frac{\partial H}{\partial y_{p}} A_{p} X_{q}(S)+\frac{\partial \phi}{\partial y_{p}} A_{p} X_{q}(S)=0 \quad(q=1,2, \ldots, n)
$$

which, in view of the first set of equations (16), becomes

$$
\begin{equation*}
A_{p} X_{0}(S)+n_{q} A_{p} X_{q}(S)+M_{\alpha} \frac{\partial H_{\alpha}}{\partial y_{q}} A_{p} X_{q}(S)+\frac{\partial \phi}{\partial y_{q}} A_{p} X_{q}(S)=0 . \tag{27}
\end{equation*}
$$

Again, differentiating (26) with respect to the time, we have

$$
\begin{equation*}
X_{d_{p}}(S)+\eta_{q} X_{q} A_{p}(S)=0 . \tag{28}
\end{equation*}
$$

Since S is a complete integral, we have

$$
X_{0_{p}}{ }_{p}(S)=A_{p} X_{0}(S), A_{p} X_{q}(S)=X_{q} A_{p}(S)
$$

and the determinant $\left|x_{q} A_{p}(S)\right| \neq 0$. It follows from (27) and (28) that

$$
\left(M_{\alpha} \frac{\partial H_{\alpha}}{\partial y_{q}}+\frac{\partial \phi}{\partial y_{q}}\right) X_{q} A_{p}(S)=0
$$

which, in view of (17), is equivalent to

$$
\frac{\partial}{\partial y_{q}}\left(M_{\alpha} H_{\alpha}+\phi\right) X_{q} A_{p}(S)=0 .
$$

As the determinant of the coefficients is non-vanishing, the only solution of the last equations is the trivial solution. This implies that

$$
\begin{equation*}
\phi=-M_{\alpha} H_{\alpha}+\psi\left(x_{1}, \ldots, x_{n} ; t\right) \tag{29}
\end{equation*}
$$

Next we again apply the operator X_{p} to (24) with ϕ given by (29) and use (25). Then we obtain
$X_{p} X_{0}(S)+X_{p}(H)+\frac{\partial H}{\partial y_{q}} X_{p} X_{q}(S)-X_{p}\left(M_{\alpha} H_{\alpha}\right)-\frac{\partial}{\partial y_{q}}\left(M_{\alpha} H_{\alpha}\right) X_{p} X_{q}(S)+X_{p}(\psi)=0$,
which, by virtue of (17) and the first set of equations (16), becomes

$$
X_{p} X_{0}(S)+X_{p}(H)+\eta_{q} X_{p} X_{q}(S)-M_{\alpha} X_{p}\left(H_{\alpha}\right)+X_{p}(\psi)=0 .
$$

Finally, differentiating (25) with respect to the time, we get

$$
\frac{d y_{p}}{d t}=x_{0} X_{p}(S)+n_{q} X_{q} X_{p}(S)
$$

From the last two equations it follows that

$$
\frac{d y_{p}}{d t}=\left(x_{0}, x_{p}\right) S+\eta_{q}\left(x_{q}, x_{p}\right) S-X_{p}(H)+M_{\alpha} X_{p}\left(H_{\alpha}\right)-x_{p}(\psi)=0
$$

or, in view of (1) and (25),

$$
\begin{equation*}
\frac{d y_{p}}{d t}=-X_{p}(H)+M_{\alpha} X_{p}\left(H_{\alpha}\right)+C_{0 p q^{y} q}+C_{q p r^{\eta} q^{y} r}-X_{p}(\psi) . \tag{30}
\end{equation*}
$$

A comparison of (16) and (30) shows that $X_{p}(\psi)=0$ for $p=1,2, \ldots, n$. It follows that ψ is a function of t only and can be taken as zero by modifying S. Consequently

$$
\phi=-M_{\alpha} H_{\alpha} \quad(\alpha=1,2, \ldots, m)
$$

This leads to the theorem analogous to the Hamilton-Jacobi Theorem, which may be thus stated. If $s=s\left(x_{1}, \ldots, x_{n} ; a_{1}, \ldots, a_{n} ; t\right)$ is a complete integral of the partial differential equation

$$
\begin{aligned}
X_{0}(S)+H\left(x_{1}, \ldots, x_{n} ; X_{1}(S), \ldots, X_{n}(S) ; t\right)-M_{\alpha} H_{\alpha}=0 & \\
& (\alpha=1,2, \ldots, m),
\end{aligned}
$$

then the integrals of the canonical equations (16) are given by the equations (25) and (26).

It may be remarked that, in view of the definition of the function K, the partial differential equation in the theorem leads to

$$
x_{0}(S)+K\left(x_{1}, \ldots, x_{n} ; x_{1}(S), \ldots, x_{n}(S) ; t\right)=0,
$$

and its complete integral then provides through (25) and (26) the integrals of the equations of motion in the form (19). This result for the case of generalised coordinates and momenta has been stated in [4].

Thus, the modified Hamilton-Jacobi Theorem for integrating canonical
equations of motion of holonomic systems with constraint multipliers leads to the solution which contains more constants of integration than are necessary to determine the motion. In fact, of the $2 n$ constants of integration a_{p}, b_{p} only $2(n-m)$ will be arbitrary. The general solution will contain $2(n-m)$ arbitrary constants which are to be determined from the initial conditions of the problem.

References

[1] Q.K. Ghori, "Hamilton-Jacobi theorem for nonlinear nonholonomic dynamical systems", Z. Angew. Math. Mech. 50 (1970), 563-564.
[2] Q.K. Ghori, M. Hussain, "Poincaré's equations for nonholonomic dynamical systems", Z. Angew. Math. Mech. 53 (1973), 391-396.
[3] Q.K. Ghori and M. Hussain, "Generalisation of the Hamilton-Jacobi theorem", 2. Angew. Math. Phys. 25 (1974), 536-540.
[4] П.Ш. Шахайдарова [Р.S. Sahaĭdarova], "Об одной форме уравнений двинения механичесних снстем в нзбыточных ноординатах" [On a form of the equations of motion of mechanical systems in redundent coordinates], Taskent. Gos. Univ. Naučn. Trudy Vyp. 275 (1966), 22-25.
[5] M.Ф. Шульгнн [M.F. Sul'gin], "О неноторых дифференциальных уравнениях аналитической динамини и их ннтегрированни" [On various differential equations of analytical dynamics and their integration], Trudy Sredneaziat. Gos. Univ. 144 (1958).
[6] M.中. Шульгин [M.F. Sul'gin], "K теории уравнений динамини с импульсивными мнонителями связей" [Theory of equations of dynamics with impulse factors of constraints], Taskent. Gos. Univ. Naü̈n. Trudy Vyp. 397 (1971), 36-48.
[7] Г.K. Суслов [G.K. Suslov], Tеоретическая механнка [Theoretical mechonics] (Fizmatgiz, Moscow, 1946).

Department of Mathematics, University of Islamabad, Islamabad, Pakistan.

