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Equations of motion in

Poincare-Cetaev variables

with constraint multipliers

Q.K. Ghori

Suslov's constraint multipliers are used to derive the equations

of motion of dynamical systems (holonomic or nonholonomic) in the

form of Poincare-Cetaev equations and in the canonical form. For

holonomic systems defined by redundant variables, the constraint

multipliers occuring in the canonical equations are determined

and a modification of the Hamilton-Jacobi Theorem for integrating

the canonical equations is presented.

1 . Introduction

The method of constraint multipliers going back to Suslov [7] allows

the reduction of Lagrange's equations of motion of a holonomic dynamical

system to the ordinary canonical equations which can be integrated by the

Hamilton-Jacobi Theorem. Employing such multipliers, 5uI'g i n [5],

SahaTdarova [4], and others have published equations of motion of holonomic

systems in redundant generalised coordinates. In his recent paper [6],

Sul'gin has extended these equations to the case of linear nonholonomic

systems.

We shall be concerned with the generalisations of these results in the

Poincare-Cetaev variables. We begin with a conservative dynamical system

whose position at any time t is specified by the variables

a;. , x~, ..., x . As in [2], let the set of operators Xn, X. , , X
± c n u x yi
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with commutators

define the infinitesimal displacements of the system; and let the

parameters rL> 12> •••> H
 and 1 i u) , , to characterize the real

and possible displacements, so that the variation of an arbitrary function

f[x, ..., x; t] in a real and possible displacement of the system is

determined by the relation

(2) df = [*n(/)+n Xlffidt , &f = uX(f) (p = 1, 2 n)

and the differential constraints (holonomic or linear nonholonomic) are

expressed by m (< n) equations

( 3 ) Fct = Aapnp + \ o = ° (« = !» 2' ..., m; p = 1, 2, .... n) ,

the w's satisfying the relations

g^j-w, = 0 (a = 1, 2, ..., m; p = 1, 2 n) .

Here COpq' °pqr' % ' and Aa0 &Te functions of *i« *2 V * '

and the convention of summing over a repeated suffix is adopted.

2. Equations of motion with constraint multipliers

It has been shown in [3] that the motion of the dynamical system under

consideration, for which the kinetic potential is

is determined by the differential equations

W dt*Tp-
COpq^q-

 Cqpr\ 3^ " X
P

{L) " \x 9np " °

(a = 1, 2, . . . , m; p, q, r = 1, 2 n) ,

where X , ..., \ are the Lagrange undetermined multipliers.

According to Suslov [7], we introduce the constraint multipliers M

by the relations
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dMa = -Xadt (a = 1, 2, ..., m)

We also note from (2) and (3) that

and

In view of the last relations, equations (U) assume the form

dt a 3n

( a = x - 2 > •••'m- p>q> •••'n )

where

The equations (5) are the Poincare-Cetaev equations of motion of the

nonholonomic system with constraint multipliers. The (n+m) equations (5)

and (3) are sufficient to determine the (n+m) unknown quantities

ar1. a 2 . •••» * n , M
x>

 M
2> '' •' Mm a s f u n c t i o n s o f * •

Let us assume the vanishing of the nonholonomy terms Q^ and SI ,

occuring in equations (5)- It follows that the constraint equations (3)

are integrable and the system is holonomic. In such a case the x's and

t are connected by relations in the finite form

(7) -fciK' X2' •••' v * ) = ° (a = lj 2> •••'m) '

and equations (3) may be taken to be equivalent to

-sir
Consequently we have

and, in view of (1), the following relations hold:
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(9)

na = [x x -x x )f = c x [f } = o .
qp v q p p q' a qpr r^ a'

The preceding analysis shows that, for a holonomic system defined by

redundant variables, the equations of motion with constraint multipliers

are

+ M a
a 3np

(a = 1 , 2 , ..., m; p, q, r = 1, 2, ..., n)

3. Canonical equations

In order to pass from equations (5) for the motion of a nonholonomic

system to the canonical equations, we introduce new variables y by the

relations

(11)

Let us assume that in the (n+m) equations (11) and (3) the Jacobian of

the (n+m) functions

P P

with respect to the n's and M's is different from zero. We can then

solve these equations to obtain

(12)
•• xn>

xn'

Varying the function L in accordance with (2) and using (3) and

(11), we get
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&L =

dy.
•a*- - V P ^ - W V J A V ^ - V ^ - ^

which reduces to

(13) [̂-:oPqyq ~ q

Let us introduce the function

H(x x u • t\ = u n L

I
In the functions F , we replace the n's by their values obtained from

(12) and denote the resulting function by H (a^, ..., xn\ y , ..., yn; t) ,

so that &F = 8H and the constraint equations (3) become

(lit) Sa(x1 xn; j/1, ..., yn; t] = o (a = 1, 2, ..., m) .

Varying the function H and using (13), we find that

6H -

On the other hand, we have

6H - "piXpW-WpKV + - M

It follows that
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dy
(15) -jf- = -X (H) + M X [H ) + Cn u + C r\u' dt p a p*> aJ Qpcfq qpr*<fr

a[ Opq aq q qpr or Op 'q qp

(a = 1 , 2, . . . . m; p, q, r = 1, 2 , . . . , n)

In case the dynamical system is holonomic satisfying conditions (8)

and (9)> the equations (15) reduce to the form

y^
(16) -jf- = -X (H) + M X [H ) + Cn u + C T\JJdt p a. pK aJ Opq"q qpr'q^r

(a = 1, 2, . . . , m; p, q, r = 1, 2, ..., n)

Finally we define a function K by the relation

To transform equations (15) we note that along a trajectory the constraint

equations (lU) hold, so that we may write

<"> Ma !Tp = Wp K
HJ ' MaXpK) = X

PKHc) •

Consequently the equations (15) for a nonholonomic system assume the form

(a = 1, 2, ..., m; p, q, r = 1, 2, . . . , n ) .

In the case of a holonomic system, the canonical equations (16) take

the form
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7t = 1, 2, .... n) .

If the x's axe assumed to be generalised coordinates and n = x »

then all the C. , C vanish. In this special case equations (19)

reduce to the equations obtained by §ahaTdarova [4] and equations (18) are

identical with those published t>y Sul'gin [6].

In the rest of this work we limit ourselves to a holonomic system

whose motion in the presence of integrable constraints of the form (3) or

(lit) is governed by the equations (l6) or (18).

4. Determination of the constraint multipliers

Consider the motion of a holonomic system which is subjected to

constraints of the form (lit) , the equations governing the motion being

given by (l6). We shall determine the constraint multipliers M as the

solution of a system of m linear equations.

For the sake of simplicity, let us assume the constraints to be

stationary. Then equations (lit) have the form

(20) fl
a(

xi> •••' XM>
 yl y r ) = ° ( « = 1 > 2 » ••-, m) ,

and the canonical equations (16) reduce to the form

(21) -rf- = -X (H) + M X [H ) + C X]_y
at p a p*- a/ qpr cfr

(a = 1, 2, ..., m; p, q, r = 1, 2, .... n)

Differentiating (20) with respect to the time, we obtain

35 dy

dyv
Substituting for n and -rr- from (21), we have

p at
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(22) \-M--M.
P

= 0

(a, 8 = 1, 2, . . . , m; p, q, r = 1, 2 n) .

Let us define the Poisson bracket {f, g) by the relation

(23) V - V]
(p, q, r = 1, 2, ..., n) .

In view of (23), the equations (22) are equivalent to

[H, Ba) - M6{HQ, Ba) = 0 (a, 3 = 1, 2, ..., m) .

These equations are a set of m linear equations to find Af. , M , ..., M .

Substituting their values in (21), we have 2rt equations to find the n's

and y's .

5. Hamilton-Jacobi Theorem

We again consider holonomic systems whose motion in the presence of

constraint equations (3) or (lU) is described with redundant variables by

canonical equations of the form (19) or with constraint multipliers by

equations of the form (16). For such systems, the integration of the

equations of motion can be effected by a method analogous to the well-known

Hamilton-Jacobi method.

In order to formulate the Hamilton-Jacobi Theorem for the canonical

equations (l6), we consider, as in [/, 3], the partial differential

equation

(2U) XQ(S) + H[xx, . . . , xn; X^S), . . . , Xn(S); t) + <|> = 0 .

The function cj> is to be determined in such a way that if

5 fx, , ...,x;<z, , ..., a ; t] , containing n arbitrary constantsv J. n L n '

a, , .... a , is a complete integral of (2^), then the integrals of
J. n

equations (16) are given by

(25)

(26)

Vp = Yb> '

bp = Ap(S) (p = 1, 2, ..., n) ,
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where the A define the set of infinitesimal operators for the a's , and

b are new arbitrary constants.

Let us suppose that the complete integral

S(a;1> ..., x ; a , — , a ; t) is substituted in (2*0. Then, applying the

operator A to {2h) and using (25), we get

Vo{s) + 1 £ w s ) + ̂  w s ) - ° (? -1.2. -. »>.

which, in view of the first set of equations ( l 6 ) , becomes

3ff „
(27) A Xn(s) + r\ A X (s) + M T-^ A X (S) + f&- A X (S) = 0 .

p ° <7 p <? « a ^ p <? *yq p q

Again, differentiating (26) with respect to the time, we have

(28) Vp(5) • y^S) = 0 .

Since 5 is a complete integral, we have

=
 VP ( S )

and the determinant \x A (s)\ + 0 . It follows from (27) and (28) that

I,, 3. . 3d> „ . iQ\ _ n
a 3u 8u a v ~ '

which, in view of (17), is equivalent to

As the determinant of the coefficients is non-vanishing, the only

solution of the last equations is the trivial solution. This implies that

(29) 4, = -MaHa + $[Xl, ..., xni t) •

Next we again apply the operator X to (2k) with <j> given by (29)

and use (25)• Then we obtain
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which, by virtue of (17) and the first set of equations (l6), becomes

Vois) + VH) + \WS) - Vp^J + V*} = ° •
Finally, differentiating (25) with respect to the time, we get

From the last two equations it follows that

or, in view of (l) and (25),

MX[Ha) +

A comparison of (16) and (30) shows that X (40 = 0 for

p = 1 , 2, ..., n . I t follows that iji i s a function of t only and can

be taken as zero by modifying S . Consequently

(a = 1, 2, . . . , m) .

This leads to the theorem analogous to the Hamilton-Jacobi Theorem,

which may be thus s ta ted . If S = S[x~, ..., x ; a,, — , a ; t) is a

complete integral of the partial differential equation

XQ(S) + H(xlt . . . , xn; XX(S), . . . , Xn(S); t) - MaHa = 0

(a = 1, 2, . . . , m) ,

then the integrals of the canonical equations (l6) are given by the

equations (25) and (26).

It may be remarked that, in view of the definition of the function

K , the partial differential equation in the theorem leads to

XQ(S) + K[xx, ..., xn; XX(S), ..., XJS); t) = 0 ,

and i t s complete integral then provides through (25) and (26) the integrals

of the equations of motion in the form (19). This result for the case of

generalised coordinates and momenta has been stated in [4].

Thus, the modified Hamilton-Jacobi Theorem for integrating canonical
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equations of motion of holonomic systems with constraint multipliers leads

to the solution which contains more constants of integration than are

necessary to determine the motion. In fact, of the 2n constants of

integration a , b only 2(n-m) will be arbitrary. The general solution

will contain 2(n-m) arbitrary constants which are to be determined from

the initial conditions of the problem.
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