BULL. AUSTRAL. MATH. SOC. 70F20, 70F25
VOL. 14 (1976), 359-369.

Equations of motion in
Poincaré-Cetaev variables
with constraint multipliers

Q.K. Ghori

Suslov's constraint multipliers are used to derive the equations
of motion of dynamical systems (holonomic or nonholonomic) in the
form of Poincaré-Cetaev equations and in the canonical form. For
holonomic systems defined by redundant variables, the constraint
multipliers occuring in the canonical equations are determined
and a modification of the Hamilton-Jacobi Theorem for integrating

the canonical equations is presented.

1. Introduction

The method of constraint multipliers going back to Suslov [7] allows
the reduction of Lagrange's equations of motion of a holonomic dynamical
system to the ordinary canonical equations which can be integrated by the
Hamilton-Jacobi Theorem. Employing such multipliers, Sul'gin [5],
SahaYdarova [4], and others have published equations of motion of holonomic
systems in redundant generalised coordinates. In his recent paper [6],
§u|'gin has extended these equations to the case of linear nonholonomic

systems.

We shall be concerned with the generalisations of these results in the
Poincaré-Cetaev variables. We begin with a conservative dynamical system
whose position at any time ¢ 1is specified by the variables

X

10 Tps eees Ty oo As in [2], let the set of operators Xo, Xl, cees Xn
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with commutators

(1) (xo,x)—c x,x)=c X (p,q,r=1,2,...,n)

OPQQ’ P’ q pqr'r

define the infinitesimal displacements of the system; and let the

parameters nl, n2, ey nn and wl’ me, ey wn characterize the real

and possible displacements, so that the variation of an arbitrary function

f(x s eees T3 t] in a real and possible displacement of the system is
determined by the relation

(2) df = [Xo(f)+anp(f)]dt » 6f = prp(f) (p=1,2, ..., n)

and the differential constraints (holonomic or linear nonholonomic) are

expressed by m (< n) equations

(3) Fa=Aapnp+A0tO=o (U.=l, 2, ceey My p =1, 2; ...,VL) s

the w's satisfying the relations
BFE
=0 (a=1,2, ...,myp=1,2, ..., n)

Here cOpq’ Cpqr’ Aap , and Aao are functions of Tys Xy voes & t,

and the convention of summing over a repeated suffix is adopted.
2. Equations of motion with constraint multipliers

It has been shown in [3] that the motion of the dynamical system under

consideration, for which the kinetic potential is
L(xl, seey xn§ ﬂl, ey ﬂn; t] ’

is determined by the differential equations

oF
d 2L 3L _ AL -
() = _anp copq ——anq Coprq B n, - X, (L) - A, 3np 0

(a=1,2, ...,mp,q,r=1,2, ..., n)

where ) ey Am are the Lagrange undetermined multipliers.

l,
According to Suslov [7], we introduce the constraint multipliers Mh

by the relations
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dMﬁ = -Aadt (o=1,2, ..., m

We also note from (2) and (3) that

Xp(Fa) = anp(Aaq] + Xp(AaO) ,
and

d aFa

dt o, - Xolgp) *+ gk, ()

In view of the last relations, equations (4) assume the form

oF
d |3L_ o 3L oL
(5) dt an Ma an - COpq an_ pqrnq 3"] X () - M Xp[ )
p 14 q
= (03 _ . _
M[Qop nqﬂqp] (0=1,2, ooy My p, g, P=1,2, o.., n)

where
6 Qa =X (4 -x (a4 s Qa =x (2 _x (4

The equations (5) are the Poincaré—Eetaev equations of motion of the
nonholonomic system with constraint multipliers. The (n+m) equations (5)
and (3) are sufficient to determine the (n+m) unknown quantities

> & M, M

Tys Tps eee Yy 0 s Moo e M_ as functions of ¢ .

m

Let us assume the vanishing of the nonholonomy terms Qgp and Q:p N

occuring in equations (5). It follows that the constraint equations (3)
are integrable and the system is holonomic. In such a case the x's and

t are connected by relations in the finite form

(1) f&(xl, Zps wves T3 t) =0 (a=1,2, ..., m

and equations (3) may be taken to be equivalent to

df,

Fo=a = Xo(fh) + () =0

ppra

Consequently we have

(8) Aop = %, () 5 Ag = ()

and, in view of (1), the following relations hold:
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o = =

(9) Qp = (xoxp-xpxoj fa = Copg*a (f) =0,
o _ = -
U = (qup-xpxq) fy=C X fy) =0

The preceding analysis shows that, for a holonomic system defined by

redundant variables, the equations of motion with constraint multipliers

are
oF
©d | 3L o oL oL _
(10) 2 on, ~ T Bn, " “opq an, " “gpr'q B ~ (L) - M (F) =0

(a=1,2, ..., myp, g, 2=1, 2, ..., 1)

3. Canonical equations

In order to pass from equations (5) for the motion of a nonholonomic

system to the canonical equations, we introduce new variables yp by the
relations

oL th
(11) ypz—ﬁ;*.MaE (p=1,2, ..., n) .

Let us assume that in the (n+m) equations (11) and (3) the Jacobian of

the (n+m) functions

oF
gf * M& Bna 2 Fa
14 14

with respect to the n's and M's 1is different from zero. We can then

solve these equations to obtain

np:np(xl, ceey a:n; yl, eves yn; t) s
(12)
Ma = Ma(a:l, cees Ty Yy ocens Yl t)

Varying the function L in accordance with (2) and using (3) and
(11), we get
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6L

wX(L)+ én
p p

=, [Wtz = M (FodCopg (g Mofog) NoCopr Vel (gol’mngp] ] ’

oF
-M —
Yp~™a an, Sn,

which reduces to
&
(13) &L + MEGFA = ub Jt " copqu'cqprnqyr+

+M A 4 C Q S .
[ ope’*oq* e qpriarTop g qp]jl M
Let us introduce the function

H(x, , ..., T3 Yy wees Yy t) = YNy - L.

In the functions Fa , we replace the n's by their values obtained from
(12) and denote the resulting function by Haﬂrl, rees T3 Yps oeeen Uy t),

so that GFa = GHQ and the constraint equations (3) become

(14) HaLx

13 s L3 Ypa eees Uy t)=0 (a=1,2, ..., m) .

Varying the function # and using (13), we find that
i)
8H - M&GHG = anyp - mp Tt COpqu‘c&prnqyr+

M 4 0% 0
* (Opq ag "qCqprariop™q qpﬂ

On the other hand, we have

oH

= o
88 - M SH, = w, (XP(H M X, (@) + [ - M, Byp] Gyp .

It follows that
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9H aHa
Ty, My
p p

dy
P - _ -
(15) —f Xp(H) + MaXp(Ha] + copqu + qurnqyr

o (¢
Mlc a4 snc_a % _ng
a[ opgog g qpr-or " op Mg qp]
(a=1,2, ..., m;yp,q, 2r=1,2, ..., n) .

In case the dynamical system is holonomic satisfying conditions (8)

and (9), the equations (15) reduce to the form

oH
Ny = E%?‘ - My ETJE >
P % Yp

dy
P - _
(16) —= Xp(H) + Maxp (Ha) + copqu + cqprnqyr

(o=1,2, ..., myp,q,r=1,2, ..., n)
Finally we define a function X by the relation
K=H-MH .
oo
To transform equations (15) we note that along a trajectory the constraint
equations (1k) hold, so that we may write
aHa 3
(17) M, === (MH) , MX (8)=x (MH)

a ayp ayp o a'p pLa

Consequently the equations (15) for a nonholonomic system assume the form

n = oK
P ayp

?

dy
18) =& =-x (x) +¢ +C -M(C A c A-sz“-sz"]
(18) = P () Copg * Coprgr ™ Ma\Copgtag M aqpriarfop gy
(0.:1, 2’ ---,m;p,q:I':ls 23 ---sn)-

In the case of a holonomic system, the canonical equations (16) take

the form
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_ K
Yy,
dy
(19) -gte'= —XP(K) + Copqu + qurnqyr (p, g, r=1,2, ..., n)
If the &'s are assumed to be generalised coordinates and np = ip H
then all the COpq’ C&pr vanish. In this special case equations (19)

reduce to the equations obtained by Jahafdarova [4] and equations (18) are
identical with those published bY 3ul'gin [6].

In the rest of this work we limit ourselves to a holonomic system
whose motion in the presence of integrable constraints of the form (3) or

(14) is governed by the equations (16) or (18).

4. Determination of the constraint multipliers

Consider the motion of a holonomic system which is subjected to
constraints of the form (14), the equations governing the motion being

given by (16). We shall determine the constraint multipliers Ma as the
solution of a system of m linear equations.

For the sake of simplicity, let us assume the constraints to be

stationary. Then equations (14) have the form

(20) Ha[x e Ty Ypa v yn) =0 (a=1,2, ..., m ,

l’
and the canonical equations (16) reduce to the form

oH

oH o
n,o=a— =M, =,
9 o 3
P %, Y
&y
(1) —& = -xp(a) + Maxp(ya) + qurnqyr

(@=1,2, ..., m;p,q- 2=1,2, ..., n)
Differentiating (20) with respect to the time, we obtain

3 dy
o _P_
npxp(ya) + %, 7 =0 .

#p
Substituting for np and Tt from (21), we have
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(22) aH X[H) —“ -X (H)+MX(H)+ - M 3’3 =0
B ay B ryr ay B ayq N
(a, =1,2, ..., m3yp,q, r=1,2, ..., n) .
Let us define the Poisson bracket (f, g) by the relation
(23) (£29) = [RLxg - 2L xg] + o, AR
P p q vp
(p, g, »r=1,2, ..., n)
In view of (23), the equations (22) are equivalent to
(z, Ha) —MB(HB, Ha) =0 (a, B=1, 2, «..,m .
These equations are a set of m linear equations to find Ml, Mé, cees qw'

Substituting their values in (21), we have 2n equations to find the n's

and Y's .

5. Hamilton-Jacobi Theorem

We again consider holonomic systems whose motion in the presence of
constraint equations (3) or (14) is described with redundant variables by
canonical equations of the form {19) or with comstraint multipliers by
equations of the form (16). For such systems, the integration of the
equations of motion can be effected by a method analogous to the well-known

Hamilton-Jacobi method.

In order to formulate the Hamilton-Jacobi Theorem for the canonical
equations (16), we consider, as in [1, 3], the partial differential
equation
(24) X(8) + Hlzys -ves mys X(S), o, X (S)5 ¢) +0=0.

The function ¢ is to be determined in such a way that if
S(x 2 woes xh; al, cees an; t) , containing =»n arbitrary constants
@ys sees @ s is a complete integral of (24), then the integrals of

equations (16) are given by

(25) Yp = Xp(S)
(26) bp = AP(S) (P =1, 2, ...y n)
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where the Ap define the set of infinitesimal operators for the a's , and

bp are new arbitrary constants.

Let us suppose that the complete integral

S(zys o005 x5 a

s Gys wees @3 t} is substituted in (24). Then, applying the

operator Ap to (24) and using (25), we get
A X (5) +

po By

A% () + 2 4 x(8)=0 (g=1,2, -..hn),
, ., “pq

P4 p

which, in view of the first set of equations (16), becomes

(27) () (s) To 4y (5) + 24 x (5)

27 A X \S5) + AX(S)+M —AX (S) + AX (8)~=
p"0 "¢'p’q 3 _“pq

o 9
yq pq q

Again, differentiating (26) with respect to the time, we have

(28) onp(s) + nqqup(s) =

Since § 1is a complete integral, we have

onp(s) = Apxo(s) s Aqu(S) = Xqu(S) s

and the determinant IXdAp(S)| # 0 . It follows from (27) and (28) that

3H
M=%+ 2y (5) =0,
aayq Wl qp

which, in view of (17), is equivalent to

9

5 (M *0)x A (5) =

q qp
As the determinant of the coefficients is non-vanishing, the only

solution of the last equations is the trivial solution. This implies that

(29) ¢=-MA, Ylays -oes z,5 t)

Next we again apply the operator Xb to (2h) with ¢ given by (29)

and use (25). Then we obtain

2 =
xpxo(s) X, () + 8yq XX, (s) - Xp(MaHa] - B, (MaHa]Xqu(S) + xp(w)
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which, by virtue of (17) and the first set of equations (16), becomes

pro(s) + Xp(H) + nqxpxq(S) X, (7 Wt %, (p) =

Finally, differentiating (25) with respect to the time, we get

dy
b _
3 = XK (8) + N X X,(5)

From the last two equations it follows that

= (x, x)s+n(x )S-X(H)+MX(a]—X(w)=0,

“p
dt 9 q’ p a’p P

or, in view of (1) and (25),

dy
(30) dt = —X (B) + M x [H } + copqu qprnqyr - xp(w)

A comparison of (16) and (30) shows that X () = 0 for
p=1,2, ..., n. It follows that Y 1is a functlon of ¢t only and can
be taken as zero by modifying § . Consequently

¢ = _MﬁHa (a=1,2, ..., m)
This leads to the theorem analogous to the Hamilton-Jacobi Theorem,
wvhich may be thus stated. If § = S(xl, cees T3 Qs eees 43 t) i a
complete integral of the partial differential equation

x,(8) + Hlz, s «vus @ X(5), ..., X (8); t) - MA, =

then the integrals of the eanonical equations (16) are given by the
equations (25) and (26).

It may be remarked that, in view of the definition of the function

K , the partial differential equation in the theorem leads to
X,(8) + Kz «ons 25 X X (S), vevs X,(8)5 t) =
and its complete integral then provides through (25) and (26) the integrals

of the equations of motion in the form (19). This result for the case of

generalised coordinates and momenta has been stated in [4].

Thus, the modified Hamilton-Jacobi Theorem for integrating canonical
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equations of motion of holonomic systems with constraint multipliers leads
to the solution which contains more constants of integration than are
necessary to determine the motion. In fact, of the 2n constants of
integration ap, bp only 2(m-m) will be arbitrary. The general solution
will contain 2(n-m) arbitrary constants which are to be determined from

the initial conditions of the problem.
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