NEW INTERPOLATION THEOREMS RELATED TO THE SPACE BMO_A ON SPACES OF HOMOGENEOUS TYPE

QI-HUI ZHANG AND DA-PING NI

Let (\mathcal{X}, d, μ) be a space of homogeneous type in the sense of Coifman and Weiss, and $BMO_A(\mathcal{X})$ be the space of BMO type associated with an "approximation to the identity" $\{A_t\}_{t>0}$ and introduced by Duong and Yan. In this paper, we establish new interpolation theorems of operators related to the space $BMO_A(\mathcal{X})$.

1. INTRODUCTION

We shall work on the space of homogeneous type. Let \mathcal{X} be a set and d be a quasimetric, that is, d is a function defined from $\mathcal{X} \times \mathcal{X}$ to $[0, \infty)$ satisfying the following conditions:

- (i) $d(x,y) \ge 0$ for all $x, y \in \mathcal{X}$, and d(x,y) = 0 if and only if x = y;
- (ii) d(x,y) = d(y,x) for all $x, y \in \mathcal{X}$;
- (iii) there exists a constant $\kappa \ge 1$ such that for any $x, y, z \in \mathcal{X}$,

(1)
$$d(x,y) \leqslant \kappa [d(x,z) + d(y,z)].$$

Let μ be a positive Borel regular measure on \mathcal{X} . We say that (\mathcal{X}, d, μ) is a space of homogeneous type in the sense of Coifman and Weiss [2], if μ satisfies the doubling condition that for all $x \in \mathcal{X}$ and r > 0,

(2)
$$\mu(B(x,2r)) \leq C\mu(B(x,r)) < \infty,$$

where $B(x,r) = \{y \in \mathcal{X} : d(x,y) < r\}$. Besides, the balls B(x,r) are not necessarily open, but by a theorem of Macias and Segovia [7], there is a continuous quasi-metric d', which is equivalent to d in the sense that there exists a constant C > 0 such that for all $x, y \in \mathcal{X}$, $C^{-1}d(x,y) \leq d'(x,y) \leq Cd(x,y)$, and that the balls with respect to d' are open. Thus, throughout this paper, we always assume that the quasi-metric d is continuous and all balls in \mathcal{X} are open. On the other hand, the above doubling property

Received 11th April, 2006

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

347

Q. Zhang and D. Ni

[2]

implies the strong homogeneity property: there exist positive constants C and n such that for all $\lambda \ge 1$, r > 0 and $x \in \mathcal{X}$,

(3)
$$\mu(B(x,\lambda r)) \leq C\lambda^n \mu(B(x,r)).$$

There also exist C and N, $0 \leq N \leq n$, such that for all $x, y \in \mathcal{X}$ and r > 0,

(4)
$$\mu(B(y,r)) \leq C\left(1+\frac{d(x,y)}{r}\right)^{N}\mu(B(x,r)).$$

In [4], to obtain weak (1,1) estimates for certain Riesz transforms, and L^{p} boundedness $(p \in (1,\infty))$ of holomorphic functional calculi of linear elliptic operators on irregular domains, Duong and McIntosh introduced singular integral operators with non-smooth kernel on irregular domains via the following generalised approximations to the identity.

DEFINITION 1: A family of operators $\{A_t\}_{t>0}$ is said to be an "approximation to the identity", if for every t > 0, A_t can be represented by the kernel $a_t(x, y)$ which is a measurable function defined on $\mathcal{X} \times \mathcal{X}$, in the following sense: for every function $f \in L^p(\mathcal{X})$ with $p \ge 1$ and almost everywhere $x \in \mathcal{X}$,

$$A_t f(x) = \int_{\mathcal{X}} a_t(x, y) f(y) \, \mathrm{d} \mu(y),$$

and the kernel $a_t(x, y)$ satisfies that for all $x, y \in \mathcal{X}$ and t > 0,

$$|a_t(x, y)| \leq h_t(x, y) = \frac{1}{\mu(B(x, t^{1/m}))} s(d(x, y)^m t^{-1}),$$

where m is a positive constant and s is a positive, bounded, decreasing function satisfying

$$\lim_{r \to \infty} r^{n+\delta} s(r^m) = 0$$

for some $\delta > N$ appearing in (4).

During the last several years, considerable attention has been paid to the operators and function spaces associated with the "approximation to the identity". To established the weighted $L^p(\mathcal{X})$ estimate with A_p weights (the weight function class of Muckenhoupt) for singular integral operators with non-smooth kernel, Martell [8] introduced the following sharp maximal operator $M_A^{\#}$.

DEFINITION 2: Let $f \in L^p(\mathcal{X})$ for some $p \in [1, \infty)$. The sharp maximal function $M_A^{\#}f$ associated with the "approximation to the identity" $\{A_t\}_{t>0}$ is defined as

$$M_A^{\#}f(x) = \sup_{x \in B} \frac{1}{\mu(B)} \int_B |f(y) - A_{t_B}f(y)| \, \mathrm{d}\mu(y),$$

where the supremum is taken over all balls containing x and $t_B = r_B^m$, r_B is the radius of the ball B.

349

Duong and Yan [5] introduced the following new function space of BMO type, $BMO_A(\mathcal{X})$, via the sharp maximal operator $M_A^{\#}$.

DEFINITION 3: Let $\{A_t\}_{t>0}$ be an "approximation to the identity" as in Definition 1. A function $f \in L^p(\mathcal{X})$ with $p \in [1, \infty)$ is said to belong to the space $BMO_A(\mathcal{X})$, if $M_A^{\#}f$ is bounded. Moreover, the norm of f in the space $BMO_A(\mathcal{X})$ is defined by

$$||f||_{BMO_A(\mathcal{X})} = ||M_A^{\#}f||_{L^{\infty}(\mathcal{X})}$$

REMARK 1. Let M be the standard Hardy-Littlewood maximal operator, and $L^{p,\infty}(\mathcal{X})$ be the weak $L^{p}(\mathcal{X})$ space with $p \in (0, \infty)$ (recall that $f \in L^{p,\infty}(\mathcal{X})$ if

$$\|f\|_{L^{p,\infty}(\mathcal{X})} = \sup_{\lambda>0} \lambda \mu \Big(\big\{ x \in \mathcal{X} : \big| f(x) \big| > \lambda \big\} \Big)^{1/p} < \infty,$$

and $\|\cdot\|_{L^{p,\infty}(\mathcal{X})}$ is not a norm). It is well known that M is bounded from $L^{1}(\mathcal{X})$ to $L^{1,\infty}(\mathcal{X})$, and is bounded from $L^{p,\infty}(\mathcal{X})$ to $L^{p,\infty}(\mathcal{X})$ for any $p \in (1,\infty)$ by a result of [9]. Note that $|A_tf(x)| \leq CMf(x)$ (constant C is independent of t) and then if $f \in L^{p,\infty}(\mathcal{X})$ for some $p \in (1,\infty)$, A_tf is meaningful. Thus in Definition 1, Definition 2 and Definition 3, we may replace the condition $f \in L^p(\mathcal{X})$ by $f \in L^{p,\infty}(\mathcal{X})$ with $p \in (1,\infty)$.

As it was pointed out by [8, 5], in some sense, $BMO_A(\mathcal{X})$ is larger than $BMO(\mathcal{X})$. Duong and Yan [5] have established an interpolation theorem related to $BMO_A(\mathcal{X})$. They showed that if a sublinear operator T is bounded on $L^q(\mathcal{X})$ $(q \in [1, \infty))$ and is bounded from $L^{\infty}(\mathcal{X})$ to $BMO_A(\mathcal{X})$, then T is bounded on $L^p(\mathcal{X})$ for all $p \in (q, \infty)$. The main purpose of this paper is to improve the Duong-Yan's interpolation theorem related to the space $BMO_A(\mathcal{X})$. To formulate our results, we first recall some definitions and notation.

DEFINITION 4: Let $1 \leq q \leq \infty$. A function h is called to be a (1, q)-atom if

(a) $\sup h \subset B(x, r)$ for some $x \in \mathcal{X}$ and r > 0; (b) $||h||_{L^q(\mathcal{X})} \leq \left[\mu(B(x, r))\right]^{1/q-1}$; (c) $\int_{\mathcal{X}} h(x) d\mu(x) = 0.$

The atomic Hardy space $H^{1,q}(\mathcal{X}, d, \mu)$ is defined to be the set of functions $f \in L^1(\mathcal{X})$ satisfying that there exist $\{\lambda_j\}_{j=1}^{\infty} \subset \mathbb{C}$, $\sum_{j=1}^{\infty} |\lambda_j| < \infty$ and a sequence of (1, q)-atoms $\{h_j\}_{j=1}^{\infty}$ such that

$$f = \sum_{j=1}^{\infty} \lambda_j h_j$$

converges in $L^1(\mathcal{X})$. Moreover, the norm of f in $H^{1,q}(\mathcal{X}, d, \mu)$ is defined by

$$\|f\|_{H^{1,q}(\mathcal{X},d,\mu)} = \inf \bigg\{ \sum_{j=1}^{\infty} |\lambda_j| \bigg\},\$$

where the infimum is taken over all the possible decompositions of f in (1, q)-atoms.

It was proved by Coifman and Weiss in [3] that $H^{1,q}(\mathcal{X}, d, \mu) = H^{1,\infty}(\mathcal{X}, d, \mu)$ for $1 \leq q \leq \infty$. Therefore, in what follows, we denote $H^{1,q}(\mathcal{X}, d, \mu)$ simply by $H^1(\mathcal{X}, d, \mu)$. The main results of this paper can be stated as follows.

THEOREM 1. Let $1 < p_0 < \infty$, T and \tilde{T} be two operators. Suppose that

- (a₁) $|Tf_1(x) Tf_2(x)| \leq |T(f_1 f_2)(x)|$, for functions f_1 , f_2 defined on \mathcal{X} ;
- (a₂) T is bounded from $H^1(\mathcal{X}, d, \mu)$ to $L^1(\mathcal{X})$, and \tilde{T} is bounded from $L^{p_0}(\mathcal{X})$ to $L^{p_0,\infty}(\mathcal{X})$;
- (a₃) There is a positive constant C_0 such that for any function $f \in L^{\infty}(\mathcal{X})$ $\cap L^{p_0}(\mathcal{X})$,

$$M_A^{\#}(Tf)(x) \leqslant \widetilde{T}f(x) + C_0 \|f\|_{L^{\infty}(\mathcal{X})}$$

Then T is bounded on $L^{p}(\mathcal{X})$ for any 1 .

THEOREM 2. Let $1 < p_1 < p_2 < \infty$, T and \tilde{T} be two operators. Suppose that

- (b₁) $|Tf_1(x) Tf_2(x)| \leq |T(f_1 f_2)(x)|$, for functions f_1 , f_2 defined on \mathcal{X} ;
- (b₂) T is bounded from $L^{p_1}(\mathcal{X})$ to $L^{p_1,\infty}(\mathcal{X})$, and \tilde{T} is bounded from $L^{p_2}(\mathcal{X})$ to $L^{p_2,\infty}(\mathcal{X})$;
- (b₃) There is a positive constant C_1 such that for any function $f \in L^{\infty}(\mathcal{X})$ $\cap L^{p_2}(\mathcal{X})$,

$$M_A^{\#}(Tf)(x) \leqslant \widetilde{T}f(x) + C_1 \|f\|_{L^{\infty}(\mathcal{X})}.$$

Then T is bounded on $L^{p}(\mathcal{X})$ for any $p_{1} .$

REMARK 2. If we choose $\tilde{T} = 0$, Theorem 1 states that an operator satisfying the condition (a_1) and bounded from $H^1(\mathcal{X}, d, \mu)$ to $L^1(\mathcal{X})$ and from $L^{\infty}(\mathcal{X})$ to $BMO_A(\mathcal{X})$, is bounded on $L^p(\mathcal{X})$ for any $1 . Similarly, Theorem 2 implies that an operator satisfying the condition <math>(b_1)$ and bounded from $L^{p_1}(\mathcal{X})$ to $L^{p_1,\infty}(\mathcal{X})$ and from $L^{\infty}(\mathcal{X})$ to $BMO_A(\mathcal{X})$, is bounded on $L^p(\mathcal{X})$ for any $p_1 .$

REMARK 3. One of the main difficulties in the proof of our theorems is that the composite operator $M_A^{\#}T$ may not be a sublinear operator or a quasilinear operator, and the Marcinkiewicz interpolation theorem can not apply directly.

As an application of Theorem 2, we shall consider the $L^{p}(\mathcal{X})$ boundedness for the following singular integral operator with non-smooth kernel introduced by Duong and McIntosh [4].

Let T be a linear operator with kernel K such that for any bounded function f with bounded support and almost all $x \notin \sup f$,

$$Tf(x) = \int_{\mathcal{X}} K(x, y) f(y) \, \mathrm{d}\mu(y),$$

where K is a measurable function on $\mathcal{X} \times \mathcal{X} \setminus \{(x, y) : x = y\}$. Assume that there exists an "approximation to the identity" $\{A_t\}_{t>0}$ such that the composite operator A_tT with t > 0 has an associated kernel $K^t(x, y)$, and there are positive constants C_2 and C such that for all $y \in \mathcal{X}$ and t > 0,

(5)
$$\int_{d(x,y) \ge C_2 t^{1/m}} \left| K(x,y) - K^t(x,y) \right| \mathrm{d}\mu(x) \le C.$$

THEOREM 3. Let T be the operator defined as above with kernel K satisfying (5). Suppose that for some fixed q with $1 < q < \infty$, T is bounded from $L^q(\mathcal{X})$ to $L^{q,\infty}(\mathcal{X})$. Then T is bounded on $L^p(\mathcal{X})$ provided that q .

REMARK 4. Employing some ideas used in the proof of [8, Proposition 5.4], we can show that $M_A^{\#}(Tf)(x) \leq C ||f||_{L^{\infty}(\mathcal{X})}$ for $f \in L^{\infty}(\mathcal{X})$. Thus Theorem 3 follows from Theorem 2 directly.

Throughout this paper, C denotes the constants that are independent of the main parameters involved but whose values may differ from line to line. Constants with subscript such as C_1 , do not change in different occurrences. For a measurable set E, χ_E denotes the characteristic function of E.

2. PROOFS OF THEOREMS

We begin with some preliminary lemmas. We first recall the following Calderón-Zygmund decomposition theorem in [2] and a basic covering lemma on spaces of homogeneous type in [1].

LEMMA 1. Let $f \in L^1(\mathcal{X})$ and $\lambda > ||f||_{L^1(\mathcal{X})} [\mu(\mathcal{X})]^{-1}$. Then there exist a family of balls $\{B_j\}_{j \in \Lambda}$ with almost disjoint interiors (that is, with a bounded overlap) and constants C > 0, such that

$$\begin{aligned} (\mathbf{c}_{1}) & \frac{1}{\mu(B_{j})} \int_{B_{j}} |f(y)| \, \mathrm{d}\mu(y) \leq C\lambda \,; \\ (\mathbf{c}_{2}) & \sum_{j \in \Lambda} \mu(B_{j}) \leq C\lambda^{-1} \|f\|_{L^{1}(\mathcal{X})} \,; \\ (\mathbf{c}_{3}) & f = g + b \text{ with } b = \sum_{j \in \Lambda} b_{j} \,; \\ (\mathbf{c}_{4}) & |g(x)| \leq C\lambda \text{ for almost all } x \in \mathcal{X} \,; \\ (\mathbf{c}_{5}) & \sup b_{j} \subset B_{j}, \, \int_{B_{j}} b_{j}(x) \, \mathrm{d}\mu(x) = 0, \text{ and } \|b_{j}\|_{L^{1}(\mathcal{X})} \leq C\lambda\mu(B_{j}). \end{aligned}$$

LEMMA 2. Let (\mathcal{X}, d, μ) be a space of homogeneous type, $\mathcal{B} = \{\mathcal{B}_{\alpha} : \alpha \in \Lambda\}$ be a family of balls in \mathcal{X} such that $E = \bigcup_{\alpha \in \Lambda} \mathcal{B}_{\alpha}$ is measurable and $\mu(E) < \infty$. Then there exists a disjoint sequence $\{B(x_j, r_j)\}_{j \in \mathbb{N}} \subset \mathcal{B}$, such that $E \subset \bigcup_{j \in \mathbb{N}} B(x_j, C_3 r_j)$ with C_3 a positive constant depending only on κ (the constant appearing in the inequality (1)). Moreover, for any $\alpha \in \Lambda$, \mathcal{B}_{α} is contained in some $B(x_j, C_3 r_j)$.

For the proof of this lemma, see [1, Lemma 2.1].

LEMMA 3. Take $\lambda > 0$, $f \in L^1(\mathcal{X}) \cup L^{p,\infty}(\mathcal{X})$ with $p \in (1,\infty)$ and a ball B_0 such that there exists $x_0 \in B_0$ with $Mf(x_0) \leq \lambda$. Then, for every $0 < \eta < 1$, we can find $\gamma > 0$ (independent of λ , B_0 , f, x_0) in such a way that

$$\mu\Big(\big\{x\in B_0: Mf(x)>\beta\lambda, M_A^{\#}f(x)\leqslant\gamma\lambda\big\}\Big)\leqslant\eta\mu(B_0),$$

where $\beta > 1$ is a fixed constant which only depends on the space and the "approximation to the identity" $\{A_t\}_{t>0}$.

PROOF: If $f \in L^{p}(\mathcal{X})$ for some $p \in [1, \infty)$, this lemma was proved by Martell in [8]. Repeating the proof of [8, Proposition 4.1], we see that the conclusion of Lemma 3 is also true for $f \in L^{p,\infty}(\mathcal{X})$ with $p \in (1, \infty)$.

As the composite operator $M_A^{\#}T$ maybe not a quasilinear operator, this gives much trouble to our work. The next lemma is devoted to showing connections between the operators T and $M_A^{\#}T$ (if we replace f by Tf) and is the key point for the proof of our theorems.

LEMMA 4. Let $p \in (1, \infty)$ and $\{A_t\}_{t>0}$ be an "approximation to the identity" as in Definition 1. There is a positive constant C depending only on p, $\{A_t\}_{t>0}$ and the space \mathcal{X} such that for any function f,

(i) if $\mu(\mathcal{X}) = \infty$ and $\sup_{0 < \lambda < R} \lambda^p \mu \Big(\{ x \in \mathcal{X} : Mf(x) > \lambda \} \Big) < \infty$ for any R > 0, then

$$||Mf||_{L^{p,\infty}(\mathcal{X})}^{p} \leq C ||M_{A}^{\pi}f||_{L^{p,\infty}(\mathcal{X})}^{p};$$

(ii) if $\mu(\mathcal{X}) < \infty$ and $f \in L^1(\mathcal{X})$, then

$$\|Mf\|_{L^{p,\infty}(\mathcal{X})}^{p} \leq C \|f\|_{L^{1}(\mathcal{X})}^{p} [\mu(\mathcal{X})]^{1-p} + C \|M_{A}^{\#}f\|_{L^{p,\infty}(\mathcal{X})}^{p};$$

(iii) if $\mu(\mathcal{X}) < \infty$ and $f \in L^{q,\infty}(\mathcal{X})$ for some $q \in (1,\infty)$, then

$$\|Mf\|_{L^{p,\infty}(\mathcal{X})}^{p} \leq C \|f\|_{L^{q,\infty}(\mathcal{X})}^{p} [\mu(\mathcal{X})]^{1-p/q} + C \|M_{A}^{\#}f\|_{L^{p,\infty}(\mathcal{X})}^{p}.$$

PROOF: For the proof of the cases (i) and (ii), see [6, Theorem 2.2]. We only consider the case (iii). Recall that M is bounded from $L^{q,\infty}(\mathcal{X})$ to $L^{q,\infty}(\mathcal{X})$ for any $q \in (1,\infty)$, that is to say, there is a positive constant C_4 such that

$$\|Mf\|_{L^{q,\infty}(\mathcal{X})} \leqslant C_4 \|f\|_{L^{q,\infty}(\mathcal{X})}.$$

Let $\lambda_0 = C_4 ||f||_{L^{q,\infty}(\mathcal{X})} [\mu(\mathcal{X})]^{-1/q}$. For $\lambda > \lambda_0$, Set

$$\mathbf{E}_{\lambda} = \left\{ x \in \mathcal{X} : Mf(x) > \lambda \right\}$$

and

$$\mathbf{F}_{\lambda} = \big\{ x \in \mathcal{X} : Mf(x) > \beta\lambda, \ M_A^{\#}f(x) \leq \gamma\lambda \big\},$$

where β and γ appearing in Lemma 3. It is easy to see that

$$\mu(\mathbf{E}_{\lambda}) \leq C_4^q \lambda^{-q} \|f\|_{L^{q,\infty}(\mathcal{X})}^q < \mu(\mathcal{X}),$$

which in turn implies that

$$\mu(\mathcal{E}_{\lambda}) < \infty, \text{ and } \mathcal{X} \setminus \mathcal{E}_{\lambda} \neq \emptyset.$$

For each $x \in E_{\lambda}$, denote by r_x the distance of x and the set $\mathcal{X} \setminus E_{\lambda}$, namely,

$$r_x = \inf_{y \in \mathcal{X} \setminus \mathcal{E}_{\lambda}} d(x, y)$$

Then,

$$r_x > 0 ext{ and } ext{E}_{\lambda} = \bigcup_{x \in ext{E}_{\lambda}} B(x, C_3^{-1}r_x),$$

where $C_3 > 1$ is the same as in Lemma 2. We can apply Lemma 2 to obtain a disjoint sequence $\{B(x_j, C_3^{-1}r_j)\}_{j \in \mathbb{N}}$ such that

$$\mathbf{E}_{\lambda} = \bigcup_{j \in \mathbf{N}} B(x_j, r_j), \ B(x_j, C_5 r_j) \cap (\mathcal{X} \setminus \mathbf{E}_{\lambda}) \neq \emptyset,$$

where $C_5 > 1$ is a constant depending only on the space. Lemma 3 together with the inequality (3) states that

$$\mu(\mathbf{F}_{\lambda}) \leq \sum_{j \in \mathbf{N}} \mu\Big(\{ x \in B(x_j, C_5 r_j) : Mf(x) > \beta\lambda, \ M_A^{\#}f(x) \leq \gamma\lambda \} \Big)$$
$$\leq \eta \sum_{j \in \mathbf{N}} \mu\big(B(x_j, C_5 r_j)\big) \leq C \eta \mu(\mathbf{E}_{\lambda}).$$

It follows that for any $\lambda > \lambda_0$,

$$\mu\Big(\big\{x \in \mathcal{X} : Mf(x) > \beta\lambda\big\}\Big) \leq \mu(\mathbf{F}_{\lambda}) + \mu\Big(\big\{x \in \mathcal{X} : M_{A}^{\#}f(x) > \gamma\lambda\big\}\Big) \\ \leq C\eta\mu(\mathbf{E}_{\lambda}) + \mu\Big(\big\{x \in \mathcal{X} : M_{A}^{\#}f(x) > \gamma\lambda\big\}\Big).$$

Then,

$$\begin{split} (\beta\lambda)^p \mu\Big(\big\{x\in\mathcal{X}:Mf(x)>\beta\lambda\big\}\Big)&\leqslant C\eta(\beta\lambda)^p\mu(\mathbf{E}_\lambda)\\ &+(\beta\lambda)^p\mu\Big(\big\{x\in\mathcal{X}:M_A^\#f(x)>\gamma\lambda\big\}\Big). \end{split}$$

Thus, a straightforward computation shows that

$$\begin{split} \sup_{0<\lambda<\beta R} \lambda^{p} \mu(\mathbf{E}_{\lambda}) &\leq \sup_{0<\lambda\leqslant\beta\lambda_{0}} \lambda^{p} \mu(\mathbf{E}_{\lambda}) + \sup_{\beta\lambda_{0}<\lambda<\beta R} \lambda^{p} \mu(\mathbf{E}_{\lambda}) \\ &\leq (\beta\lambda_{0})^{p} \mu(\mathcal{X}) + C\eta\beta^{p} \sup_{\lambda_{0}<\lambda0} \lambda^{p} \mu\Big(\big\{x\in\mathcal{X}: M_{A}^{\#}f(x)>\lambda\big\}\Big) \\ &\leq C \|f\|_{L^{q,\infty}(\mathcal{X})}^{p} [\mu(\mathcal{X})]^{1-p/q} + C\eta\beta^{p} \sup_{0<\lambda<\beta R} \lambda^{p} \mu(\mathbf{E}_{\lambda}) \\ &+ (\beta\gamma^{-1})^{p} \sup_{\lambda>0} \lambda^{p} \mu\Big(\big\{x\in\mathcal{X}: M_{A}^{\#}f(x)>\lambda\big\}\Big). \end{split}$$

Choose η such that $\eta < (C\beta^p)^{-1}$, we obtain that

$$\sup_{0<\lambda<\beta R}\lambda^p\mu(\mathbf{E}_{\lambda})\leqslant C\|f\|_{L^{q,\infty}(\mathcal{X})}^p\left[\mu(\mathcal{X})\right]^{1-p/q}+C\sup_{\lambda>0}\lambda^p\mu\Big(\big\{x\in\mathcal{X}:M_A^{\#}f(x)>\lambda\big\}\Big)$$

and then completes the proof of the case (iii).

PROOF OF THEOREM 1: We first claim that for any $1 , <math>M_A^{\#}T$ is of weak type (p, p), that is, there is a positive constant C such that for any $f \in L^p(\mathcal{X})$,

(6)
$$\sup_{\lambda>0} \lambda^p \mu\Big(\big\{x \in \mathcal{X} : M_A^{\#}Tf(x) > \lambda\big\}\Big) \leq C \|f\|_{L^p(\mathcal{X})}^p$$

In fact, let $\lambda_1 = 0$ if $\mu(\mathcal{X}) = \infty$ and $\lambda_1 = ||f||_{L^p(\mathcal{X})}^p [\mu(\mathcal{X})]^{-1}$ if $\mu(\mathcal{X}) < \infty$. Note that if $\lambda^p \leq \lambda_1$, the inequality (6) holds obviously. For each fixed $f \in L^p(\mathcal{X})$ and $\lambda^p > \lambda_1$, by Lemma 1, we can perform the Calderón-Zygmund decomposition to $|f|^p$ at level λ^p and there exist a family of balls $\{B_j\}_{j\in\Lambda}$ and positive constants C, C_6 such that

(d₁)
$$\sum_{j \in \Lambda} \mu(B_j) \leq C\lambda^{-p} ||f||_{L^p(\mathcal{X})}^p;$$

(d₂)
$$f = g + b$$
 with $b = \sum_{j \in \Lambda} b_j$;

(d₃)
$$|g(x)| \leq C\lambda$$
 for almost all $x \in \mathcal{X}$;

(d₄) for any
$$j \in \Lambda$$
, sup $b_j \subset B_j$, $\int_{B_j} b_j(x) d\mu(x) = 0$ and $||b_j||_{L^p(\mathcal{X})}^p \leq C_6 \lambda^p \mu(B_j)$.

It is obvious that $g \in L^p(\mathcal{X})$ and

$$\|g\|_{L^p(\mathcal{X})}^p \leqslant C \|f\|_{L^p(\mathcal{X})}^p + C \sum_{j \in \Lambda} \|b_j\|_{L^p(\mathcal{X})}^p \leqslant C \|f\|_{L^p(\mathcal{X})}^p.$$

For 1 , it is easy to see that

$$\|g\|_{L^{p_0}(\mathcal{X})}^{p_0} \leqslant C\lambda^{p_0-p} \|g\|_{L^p(\mathcal{X})}^p \leqslant C\lambda^{p_0-p} \|f\|_{L^p(\mathcal{X})}^p$$

It follows from (d₄) that $(C_6^{1/p}\lambda\mu(B_j))^{-1}b_j(x)$ is a (1,p)-atom. We know from (d₁) that

$$\sum_{j\in\Lambda}C_6^{1/p}\lambda\mu(B_j)\leqslant C\lambda^{1-p}\|f\|_{L^p(\mathcal{X})}^p<\infty,$$

which in turn implies that

$$b(x) = \sum_{j \in \Lambda} b_j(x) = \sum_{j \in \Lambda} C_6^{1/p} \lambda \mu(B_j) \left(C_6^{1/p} \lambda \mu(B_j) \right)^{-1} b_j(x) \in H^1(\mathcal{X}, d, \mu)$$

and

$$\|b\|_{H^1(\mathcal{X},d,\mu)} \leq \sum_{j \in \Lambda} C_6^{1/p} \lambda \mu(B_j) \leq C \lambda^{1-p} \|f\|_{L^p(\mathcal{X})}^p$$

0

[8]

On the other hand, a trivial computation along with the condition (a_1) leads to that

$$\begin{split} M_A^{\#}Tf(x) &= \sup_{x \in B} \frac{1}{\mu(B)} \int_B \left| T(g+b)(y) - A_{t_B} \big(T(g+b) \big)(y) \right| d\mu(y) \\ &\leq \sup_{x \in B} \frac{1}{\mu(B)} \Big(\int_B \left| T(g+b)(y) - Tg(y) \right| d\mu(y) + \int_B \left| Tg(y) - A_{t_B}(Tg)(y) \right| d\mu(y) \\ &+ \int_B \left| A_{t_B} \big(T(g+b) \big)(y) - A_{t_B}(Tg)(y) \right| d\mu(y) \Big) \\ &\leq MTb(x) + M_A^{\#}Tg(x) + \sup_{x \in B} \frac{1}{\mu(B)} \int_B \left| A_{t_B} \big(T(g+b) \big)(y) - A_{t_B}(Tg)(y) \right| d\mu(y) \end{split}$$

Since $Tb \in L^1(\mathcal{X})$, an argument similar to that used in the proof of [8, Lemma 3.5] tells us that

$$\begin{split} \sup_{x \in B} \frac{1}{\mu(B)} \int_{B} \left| A_{t_{B}} \big(T(g+b) \big)(y) - A_{t_{B}} \big(Tg \big)(y) \right| d\mu(y) \\ & \leq \sup_{x \in B} \frac{1}{\mu(B)} \int_{B} \int_{\mathcal{X}} h_{t_{B}}(y,z) |Tb(z)| d\mu(z) d\mu(y) \\ & \leq CMTb(x). \end{split}$$

Consequently, there exists a positive constant C_7 such that

$$M_A^{\#}Tf(x) \leqslant C_7 MTb(x) + M_A^{\#}Tg(x).$$

Applying the condition (a_3) and (d_3) , we get

$$\mu\Big(\big\{x \in \mathcal{X} : M_A^{\#}Tf(x) > 4C_0C_7\lambda\big\}\Big) \leqslant \mu\Big(\big\{x \in \mathcal{X} : M_A^{\#}Tg(x) > 2C_0C_7\lambda\big\}\Big) \\ + \mu\Big(\big\{x \in \mathcal{X} : MTb(x) > 2C_0\lambda\big\}\Big) \\ \leqslant \mu\Big(\big\{x \in \mathcal{X} : \widetilde{T}g(x) > C_0C_7\lambda\big\}\Big) \\ + \mu\Big(\big\{x \in \mathcal{X} : MTb(x) > 2C_0\lambda\big\}\Big).$$

The fact that \widetilde{T} is bounded from $L^{p_0}(\mathcal{X})$ to $L^{p_0,\infty}(\mathcal{X})$ gives that

$$\mu\Big(\big\{x\in\mathcal{X}:\widetilde{T}g(x)>C_0C_7\lambda\big\}\Big)\leqslant C\lambda^{-p_0}\|g\|_{L^{p_0}(\mathcal{X})}^{p_0}\leqslant C\lambda^{-p}\|f\|_{L^p(\mathcal{X})}^p$$

Note that M is of weak type (1,1) and T is bounded from $H^1(\mathcal{X}, d, \mu)$ to $L^1(\mathcal{X})$. Thus,

$$\mu\Big(\big\{x\in\mathcal{X}:MTb(x)>2C_0\lambda\big\}\Big)\leqslant C\lambda^{-1}\|b\|_{H^1(\mathcal{X},d,\mu)}\leqslant C\lambda^{-p}\|f\|_{L^p(\mathcal{X})}^p,$$

and the inequality (6) follows immediately.

We can now conclude the proof of Theorem 1. If $\mu(\mathcal{X}) = \infty$, for any bounded function f with bounded support and $\int_{\mathcal{X}} f(x) d\mu(x) = 0$, we see that $f \in H^1(\mathcal{X}, d, \mu)$

[10]

and $f \in L^{p}(\mathcal{X})$ for $1 . Then <math>Tf \in L^{1}(\mathcal{X})$. It follows from the case (i) of Lemma 4 and the inequality (6) that

(7)
$$\sup_{\lambda>0} \lambda^p \mu\left(\left\{x \in \mathcal{X} : |Tf(x)| > \lambda\right\}\right) \leq ||MTf||_{L^{p,\infty}(\mathcal{X})}^p \leq C||f||_{L^{p}(\mathcal{X})}^p$$

If $\mu(\mathcal{X}) < \infty$, for each bounded function f with bounded support and $\int_{\mathcal{X}} f(x) d\mu(x) = 0$, it is easy to verify that $[\mu(\mathcal{X})]^{1/p-1} ||f||_{L^p(\mathcal{X})}^{-1} f(x)$ is a (1, p)-atom and

$$\|f\|_{H^{1}(\mathcal{X},d,\mu)} \leq [\mu(\mathcal{X})]^{1-1/p} \|f\|_{L^{p}(\mathcal{X})}$$

By the case (ii) of Lemma 4 and the inequality (6), we obtain that

$$\sup_{\lambda>0} \lambda^{p} \mu\Big(\Big\{x \in \mathcal{X} : |Tf(x)| > \lambda\Big\}\Big) \leq C \|f\|_{H^{1}(\mathcal{X},d,\mu)}^{p} [\mu(\mathcal{X})]^{1-p} + C \|M_{A}^{\#}Tf\|_{L^{p,\infty}(\mathcal{X})}^{p}$$

$$\leq C \|f\|_{L^{p}(\mathcal{X})}^{p}.$$

The inequalities (7) and (8) via a standard density argument show that T is bounded from $L^p(\mathcal{X})$ to $L^{p,\infty}(\mathcal{X})$ for 1 . On the other hand, note that an operator satisfying the condition (a₁) is a subadditive operator. An application of the Marcinkiewiczinterpolation theorem gives us the desired result.

PROOF OF THEOREM 2: Given $f \in L^p(\mathcal{X})$ with $1 < p_1 < p < p_2 < \infty$. For each $\lambda > 0$, decompose f as

$$f(x) = f(x)\chi_{\{z \in \mathcal{X}: |f(z)| > C_{\mathfrak{g}}\lambda\}}(x) + f(x)\chi_{\{z \in \mathcal{X}: |f(z)| \leq C_{\mathfrak{g}}\lambda\}}(x) = f_1(x) + f_2(x),$$

where the constant C_8 will be fixed below. A straightforward computation shows that $f_1(x) \in L^{p_1}(\mathcal{X}), f_2(x) \in L^{p_2}(\mathcal{X})$ and

$$\|f_1\|_{L^{p_1}(\mathcal{X})}^{p_1} \leq (C_8\lambda)^{p_1-p} \|f\|_{L^{p}(\mathcal{X})}^{p}, \ \|f_2\|_{L^{p_2}(\mathcal{X})}^{p_2} \leq (C_8\lambda)^{p_2-p} \|f\|_{L^{p}(\mathcal{X})}^{p}.$$

As in the proof of Theorem 1, we can obtain that there is a positive constant C_9 such that

$$M_A^{\#}Tf(x) \leq C_9 MTf_1(x) + M_A^{\#}Tf_2(x).$$

We shall choose C_8 such that $C_8 \leq C_9$. Then, the conditions (b₂), (b₃) together with the fact that M is bounded from $L^{p_1,\infty}(\mathcal{X})$ to $L^{p_1,\infty}(\mathcal{X})$ yield that

$$\mu\Big(\big\{x \in \mathcal{X} : M_A^{\#}Tf(x) > 4C_1C_9\lambda\big\}\Big) \leqslant \mu\big(\big\{x \in \mathcal{X} : MTf_1(x) > 2C_1\lambda\big\}\big)$$

$$+ \mu\Big(\big\{x \in \mathcal{X} : M_A^{\#}Tf_2(x) > 2C_1C_9\lambda\big\}\Big)$$

$$\leqslant \frac{C}{\lambda^{p_1}} \|Tf_1\|_{L^{p_1,\infty}(\mathcal{X})}^{p_1} + \mu\Big(\big\{x \in \mathcal{X} : \widetilde{T}f_2(x) > C_1C_9\lambda\big\}\Big)$$

$$\leqslant \frac{C}{\lambda^{p_1}} \|f_1\|_{L^{p_1}(\mathcal{X})}^{p_1} + \frac{C}{\lambda^{p_2}} \|f_2\|_{L^{p_2}(\mathcal{X})}^{p_2} \leqslant \frac{C}{\lambda^{p}} \|f\|_{L^{p}(\mathcal{X})}^{p}.$$

This states that $M_A^{\#}T$ is bounded from $L^p(\mathcal{X})$ to $L^{p,\infty}(\mathcal{X})$. We then consider the following two cases to prove that T is bounded from $L^p(\mathcal{X})$ to $L^{p,\infty}(\mathcal{X})$ for $p_1 .$

For the case $\mu(\mathcal{X}) = \infty$. For any bounded function f with bounded support, it is easy to see that $\sup_{0 < \lambda < R} \lambda^p \mu(\{x \in \mathcal{X} : MTf(x) > \lambda\}) < \infty$ for any R > 0. Applying the case (i) of Lemma 4 we can get that for $p_1 ,$

$$\|Tf\|_{L^{p,\infty}(\mathcal{X})} \leq \|MTf\|_{L^{p,\infty}(\mathcal{X})} \leq C \|M_A^{\#}Tf\|_{L^{p,\infty}(\mathcal{X})} \leq C \|f\|_{L^{p}(\mathcal{X})}.$$

For the case $\mu(\mathcal{X}) < \infty$. For each $f \in L^p(\mathcal{X})$ with $1 < p_1 < p < p_2$, note that $f \in L^{p_1}(\mathcal{X})$ and

$$||f||_{L^{p_1}(\mathcal{X})} \leq C [\mu(\mathcal{X})]^{1/p_1 - 1/p} ||f||_{L^p(\mathcal{X})}$$

Thus, $Tf \in L^{p_1,\infty}(\mathcal{X})$. It follows from the case (iii) of Lemma 4 that

$$\begin{aligned} \|Tf\|_{L^{p,\infty}(\mathcal{X})}^{p} &\leq C \|Tf\|_{L^{p_{1,\infty}}(\mathcal{X})}^{p} \left[\mu(\mathcal{X})\right]^{1-p/p_{1}} + C \|M_{A}^{\#}Tf\|_{L^{p,\infty}(\mathcal{X})}^{p} \\ &\leq C \|f\|_{L^{p}(\mathcal{X})}^{p}. \end{aligned}$$

Consequently, T is bounded from $L^{p}(\mathcal{X})$ to $L^{p,\infty}(\mathcal{X})$ for $p_{1} . Recall that T is a subadditive operator, by the Marcinkiewicz interpolation theorem again, we can obtain that T is bounded on <math>L^{p}(\mathcal{X})$ for $1 < p_{1} < p < p_{2} < \infty$.

References

- [1] H. Aimar, 'Singular integrals and approximate identities on spaces of homogeneous type', Trans. Amer. Math. Soc. 292 (1985), 135-153.
- [2] R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242 (Springer-Verlag, Berlin, 1971), pp. 72-74.
- [3] R. Coifman and G. Weiss, 'Extension of Hardy spaces and their use in analysis', Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [4] X.T. Duong and A. McIntosh, 'Singular integral operators with non-smooth kernel on irregular domains', Rev. Mat. Iberoamericana 15 (1999), 233-265.
- [5] X.T. Duong and L.X. Yan, 'New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications', Comm. Pure Appl. Math. 58 (2005), 1375-1420.
- [6] G.E. Hu and D.C. Yang, 'Weighted estimates for singular integral operators with non-smooth kernels and applications', (preprint).
- [7] R. Macias and C. Segovia, 'Lipschitz functions on spaces of homogeneous type', Adv. in Math. 33 (1979), 257-270.
- [8] J.M. Martell, 'Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications', *Studia Math.* 161 (2004), 113-145.
- [9] F. Nazarov, S. Treil and A. Volberg, 'Weak type estimates and Coltar's inequalities for Calderón-Zygmund operators on non-homogeneous spaces', *Internat. Math. Res. Notices* 9 (1998), 463-487.

[11]

Department of Applied Mathematics University of Information Engineering PO Box 1001-747 Zhengzhou 450002 People's Republic of China e-mail: z_qihui@yahoo.com.cn