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We perform a linear stability analysis of a finite-amplitude plane inertial wave (of
frequency ω in the range 0 ≤ ω ≤ f , where f is the Coriolis frequency) by considering
the inviscid evolution of three-dimensional (3-D), small-amplitude, short-wavelength
perturbations. Characterizing the base flow plane inertial wave by its non-dimensional
amplitude A and the angle Φ that its wavevector makes with the horizontal axis, the local
stability equations are solved over the entire range of perturbation wavevector orientations.
At sufficiently small A, 3-D parametric subharmonic instability (PSI) is the only instability
mechanism, with the most unstable perturbation wavevector making an angle close to 60◦
with the inertial wave plane. In addition, the most unstable perturbation is shear-aligned
with the inertial wave in the inertial wave plane. Further, at large Φ, i.e. ω ≈ f , there
exists a wide range of perturbation wavevectors whose growth rate is comparable to the
maximum growth rate. As A is increased, theoretical PSI estimates become less relevant
in describing the instability characteristics, and the dominant instability transitions to a
two-dimensional (2-D) shear-aligned instability, which is shown to be driven by third-order
resonance. The transition from 3-D PSI to a 2-D shear-aligned instability is shown to be
reasonably captured by two different criteria, one based on the nonlinear time scale in the
inertial wave and the other being a Rossby-number-based one.

Key words: rotating flows, waves in rotating fluids

1. Introduction

Inertial waves are propagating disturbances in rotating flows, where the Coriolis force
provides the restoring mechanism (Greenspan 1968; Pedlosky et al. 1987). They occur at
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frequencies ranging from zero to the Coriolis frequency, and are of dynamical significance
in several natural systems where the background rotation is important, such as the Earth’s
core (Aldridge & Lumb 1987), ocean (Fu 1981) and atmosphere (Zhang & Yi 2007),
as well as astrophysical flows (Ogilvie & Lin 2007; Favier et al. 2014; Ouazzani et al.
2020). Owing to their ability to transport significant momentum and energy across large
distances, inertial waves are of importance in overall energy budgets and dynamical studies
of the aforementioned natural systems. As a result, inertial wave generation and dissipation
have been topics of several studies in the literature. One of the pathways for inertial wave
dissipation is linear instability, which represents the focus of the current study.

Inertial wave dynamics has been studied both theoretically and experimentally in
the last few decades. Early experimental studies were performed in finite-sized, closed
rotating cylindrical tanks, where linear and nonlinear regimes of inertial wave modes were
investigated (Greenspan 1969; McEwan 1970; Manasseh 1992; Kobine 1995). In these
studies, nonlinear wave interactions, along with viscous boundary layer dynamics, were
shown to play an important role in the associated mean circulation and breakdown of
inertial waves into small-scale disorder. To understand these experimental observations,
Kerswell (1999) performed a linear stability analysis of two representative inertial wave
modes in confined cylindrical geometry to conclude that triadic resonances constitute
the generic mechanism for secondary instability in rapidly rotating fluids. Motivated by
applications in the Earth’s core and tidally excited astrophysical bodies, inertial wave
instabilities and associated mean flow dynamics have also been studied in spherical shells
with precession and differential rotation (Lorenzani & Tilgner 2003; Wicht 2014; Hoff,
Harlander & Egbers 2016a; Hoff, Harlander & Triana 2016b).

Our current study is motivated by inertial wave dynamics in the ocean, where a Cartesian
geometry is suitable for describing processes that do not span several degrees in latitude
or longitude. The primary source of inertial waves in the ocean is the winds, and it is
now recognized that the energy input into wind-driven inertial waves with frequencies
close to the local Coriolis frequency is comparable to the energy input into internal
tides (Alford et al. 2016). Specifically, wind stress changes excite motions at frequencies
close to the Coriolis frequency in the upper ocean, which could subsequently propagate
as inertial waves. In addition, internal gravity waves excited by other mechanisms, such
as tide–topography (Garrett & Kunze 2007) and flow–topography (Nikurashin & Ferrari
2010; Zemskova & Grisouard 2021) interactions, can also be significantly influenced by
the background rotation and hence inertial wave dynamics (MacKinnon & Winters 2005).

One of the often-studied instability mechanisms in internal waves is the triadic
resonance instability (TRI), where secondary waves with frequencies ω1 and ω2 and
wavevectors k1 and k2 are excited, following ω1 + ω2 = nω and k1 + k2 = nk (Drazin
1977). Here, ω and k are the primary wave frequency and wavevector, respectively,
and n + 1 is the order of resonance (in the primary wave amplitude). A special case
of TRI is the parametric subharmonic instability (PSI), where n = 1, ω1 = ω2 = ω/2
and k1 = −k2 with |k1| � |k| (Staquet & Sommeria 2002). Recognizing that PSI is not
well-understood in inertial waves, Bordes et al. (2012) studied the evolution of secondary
subharmonic waves in inertial waves excited by a wave generator at laboratory scale. While
triadic resonance was found to be the relevant mechanism of instability, viscous effects
were shown to be important in the selection of secondary waves at the laboratory scale. In
a more recent study, Mora et al. (2021) showed that the subharmonic waves produced by
TRI do not propagate in the same vertical plane as the base inertial wave, thus establishing
the three-dimensional (3-D) nature of TRI even at small primary wave amplitudes. Using
classical triadic resonance equations for small primary wave amplitudes, Mora et al. (2021)
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elucidated the 3-D nature of TRI in inertial waves. In this study, we perform a linear
stability analysis of plane inertial waves using the local stability approach.

While Floquet theory has previously been used to study linear instabilities in spatially
and temporally periodic internal waves (Mied 1976; Drazin 1977; Klostermeyer 1982;
Sonmor & Klaassen 1997), the local stability approach is computationally efficient in
exploring a wider range of base flow and perturbation parameters, and thereby identifying
different instability mechanisms in various parameter regimes (Ghaemsaidi & Mathur
2019). The local stability analysis (Lifschitz & Hameiri 1991) considers the evolution of
short-wavelength perturbations, for which the linear stability equations reduce to a set of
ordinary differential equations that govern the evolution of the perturbation amplitude and
wavevector along fluid particle trajectories in the base flow. It has been extensively used to
investigate various instabilities in idealized models of vortices (Bayly 1986; Leblanc 1997;
Sipp & Jacquin 2000), including the effects of background rotation (Godeferd, Cambon &
Leblanc 2001) and stratification (Miyazaki & Fukumoto 1992; Aravind, Mathur & Dubos
2017).

The local stability approach has been used to study linear instabilities in waves too,
with examples including Gerstner’s waves (Leblanc 2004), equatorially trapped waves
(Constantin & Germain 2013) and edge waves on a sloping beach (Ionescu-Kruse 2014).
In the domain of internal waves in Cartesian geometry, it has been used to study standing
inertial waves (Lifschitz & Fabijonas 1996), plane internal gravity waves (Ghaemsaidi &
Mathur 2019), and standing and propagating inertia-gravity waves (Miyazaki & Adachi
1998). For standing inertial waves, Lifschitz & Fabijonas (1996) demonstrated that the
growth rate tends to infinity as the amplitude and spatial scale of the inertial wave
increases and decreases, respectively. In contrast to classical triadic resonance calculations,
a linear stability analysis based on the local stability approach does not assume any
specific instability mechanism; rather, instabilities such as TRI emerge as an outcome
of the analysis. Furthermore, the linear stability analysis makes no assumptions about
the amplitude of the base flow inertial wave, thus going beyond the small-amplitude
inertial wave regime. Unlike the classical triadic resonance calculations, however, the local
stability approach neglects the finite-wavenumber and viscous effects in the perturbations.

In the current study, we perform a local stability analysis of plane inertial waves
to investigate linear instabilities associated with 3-D, short-wavelength perturbations.
In addition to augmenting our understanding of previously observed characteristics
of TRI in inertial waves, our study also explores the entire four-dimensional space
occupied by inertial wave and perturbation parameters. Specifically, we obtain instability
characteristics as a function of inertial wave amplitude/orientation and the orientation
of the perturbation wavevector. The rest of the paper is organized as follows. Section 2
describes the base inertial wave and the local stability equations. Section 3 presents the
growth rate variation as a function of various base flow and perturbation parameters,
followed by an identification of various instability mechanisms in different regions of the
parameter space. Section 4 summarizes the results and concludes with a discussion of the
future scope of our study.

2. Theory

For an inviscid, incompressible flow with a uniform density ρ0, the governing equations
of motion in a rotating frame of reference are (Pedlosky et al. 1987)

∇ · U = 0, (2.1)

Ut + U · ∇U + 2Ω × U = −∇( p/ρ0)− gêz, (2.2)
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where U and p are the total velocity and pressure fields, respectively. Here Ω is the
constant background rotation, which we assume in this study to be Ω = ( f /2)êz. The
acceleration due to gravity is g, which acts along −êz. Decomposing the total flow into a
base flow and a perturbation field (denoted by a prime), we write

U = ū + u′, (2.3)

p = −ρ0gz + p̄ + p′, (2.4)

where the base flow is assumed to be a combination of quiescent flow with a hydrostatic
pressure distribution and a plane inertial wave. Specifically, the velocity and pressure fields
ū and p̄ are described by a plane inertial wave, as discussed in § 2.1.

2.1. Plane inertial wave
A plane inertial wave, whose instability characteristics we study, can be described by

ψ̄ = Ψ cos(kx + mz − ωt), (2.5)

p̄ = −ρ0ωΨ cotΦ sin(kx + mz − ωt), (2.6)

v̄ = − fΨm
ω

cos(kx + mz − ωt), (2.7)

where the stream function ψ̄ specifies the horizontal and vertical velocity components
as (ū, w̄) = (−∂ψ̄/∂z, ∂ψ̄/∂x), v̄ is the out-of-plane velocity component along the y-axis
and p̄ is the corresponding pressure field. Here Ψ is the stream function amplitude, and Φ
represents the angle that the wavevector k = kex + mez makes with the x-axis. Based on
the orthogonality between the phase and group velocities for a plane inertial wave, Φ can
also be thought of as the angle made by the energy propagation direction with the vertical
z-axis. We note here that the underlying mechanism that generates the plane inertial wave
in (2.5)–(2.7) is not considered in the base flow for the stability analysis.

A schematic of the plane inertial wave is shown in figure 1. The wavenumbers (k,m)
and the frequency ω are related by the dispersion relation (Greenspan 1968)

sin2Φ = m2

k2 + m2 = ω2

f 2 . (2.8)

As ω increases from zero to f , Φ increases from 0◦ to 90◦. It is worth clarifying that
the ω = f limit is referred to as the inertial wave in oceanography (Kunze & Sanford
1984), whereas we refer to the entire range of 0 ≤ ω ≤ f as inertial waves. Choosing f −1

and |k|−1 as representative time and length scales, respectively, we define the following
dimensionless parameters to characterize the base flow:

A = |k|2Ψ
f

, Φ = tan−1
(m

k

)
, (2.9a,b)

where A and Φ are dimensionless parameters that characterize the inertial wave velocity
amplitude and orientation, respectively. It is noteworthy that A is a Rossby number that
represents the ratio between the internal wave shear in the x–z plane and the background
rotation. In terms of the energy propagation direction (aligned with the group velocity
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Figure 1. (a) Schematic depiction of the plane inertial wave with a wavevector k which is aligned at an angle
Φ with the x-axis. The background is Ω = f /2ez. The projections of a representative fluid particle trajectory
(not drawn to scale) on the y–z and x–z planes are shown in red and green, respectively. The initial perturbation
wavevector κ0 is aligned at an angle θ0 with the x–z plane. The projection of κ0 on the x–z plane makes an
angle φ0 with the x-axis. The projections of the representative fluid particle trajectory are also shown in panels
(b) and (c).

vector, cg, shown in figure 1), smaller values of Φ correspond to steeper inertial waves.
The corresponding non-dimensional velocity components in the x–z plane are

(ū, w̄) = A sin(x cosΦ + z sinΦ − t sinΦ)(sinΦ,− cosΦ). (2.10)

In the rest of this paper, all the variables are non-dimensional. It is worth noting that the
plane inertial wave in (2.5)–(2.7) is a solution of the fully nonlinear inviscid equations
of motion (Craik & Criminale 1986), thus rendering our stability analysis valid even for
finite-amplitude inertial waves.

2.2. Local stability equations
Following Lifschitz & Hameiri (1991), we write short-wavelength perturbations, which we
superimpose onto the base flow, in the Wentzel–Kramers–Brillouin–Jeffreys form

(u′, p′) = exp(iΘ/ε)[(a, p)+ ε(aε, pε)+ · · · ], (2.11)

where a(x, t) and p(x, t) are, respectively, the complex leading-order velocity and pressure
perturbation amplitudes. Here Θ(x, t) is a real-valued phase function and ε is a
small parameter representative of the ratio between the perturbation and the base flow
inertial wavelength scales. Here κ(x, t) = ∇Θ/ε is the perturbation wavevector, which
corresponds to short-wavelength perturbations owing to ε � 1. Substituting equation
(2.11) into (2.1) and (2.2) and gathering terms at O(ε−1) and O(ε0), we obtain the local
stability equations as (Godeferd et al. 2001; Nagarathinam, Sameen & Mathur 2015)

dκ

dt
= −(∇ū)T · κ, (2.12)

da
dt

= −∇ū · a − êz × a + κ

|κ |2 [2(∇ū · a) · κ + (êz × a) · κ], (2.13)

where d/dt = ∂/∂t + ū · ∇ is the material time derivative along fluid particle trajectories
in the base flow. Equations (2.12) and (2.13) represent the evolution of the perturbation
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wavevector and leading-order velocity perturbation amplitude along fluid particle
trajectories in the base flow ū.

2.2.1. Solution along an inertial wave trajectory
In this subsection, we present analytical expressions for fluid particle trajectories in a plane
inertial wave and discuss how to obtain solutions of (2.12) and (2.13) along specific fluid
particle trajectories.

Defining β = z0 sinΦ + x0 cosΦ, where (x0, z0) is the initial position, the fluid particle
trajectory x̄(t) = (x̄(t), ȳ(t), z̄(t)) in the plane inertial wave (2.10) is

[x̄(t), z̄(t)] = [x0, z0] + A[cos(β − t sinΦ)− cosβ,− cotΦ(cos(β − t sinΦ)− cosβ)],
(2.14a)

ȳ(t) = A
sinΦ

(sin(β − t sinΦ)− sinβ). (2.14b)

Along the specific fluid particle trajectories represented by (2.14a,b), (2.12) and
(2.13) reduce to ordinary differential equations with the dependent variables κ and a
parameterized in terms of the only independent variable t.

Substituting equations (2.14a,b) and defining α = κx0 sinΦ − κz0 cosΦ, the solution of
(2.12) is

κ(x̄(t), t) = κ0 + A{α(sin(β − t sinΦ)− sinβ)

+ κy0(cosβ − cos(β − t sinΦ))}[cotΦ, 0, 1], (2.15)

where

κ0 = [κx0, κy0, κz0] = [cos θ0 cosφ0, sin θ0, cos θ0 sinφ0], (2.16)

is the initial perturbation wavevector. Here, θ0 is the angle made by κ0 with its projection
on the (x, z) plane, and φ0 is the angle that the projection of κ0 on the (x, z) plane
makes with the x-axis. These angles are geometrically depicted in figure 1. Owing to the
invariance of (2.12) and (2.13) with respect to a scaling of κ with any scalar, it suffices to
consider initial perturbation wavevectors of unit magnitude (see (2.16)).

To obtain the growth rates for perturbations in a plane inertial wave of given (A, Φ),
(2.13) is solved numerically for different values of (θ0, φ0) in the range of θ0 ∈ [−90◦, 90◦]
and φ0 ∈ [0◦, 180◦]. Integrating equation (2.13) for three different initial conditions,
namely a01 = [1, 0, 0], a02 = [0, 1, 0] and a03 = [0, 0, 1], Floquet theory is invoked to
estimate the growth rate as

σ = max(Re(log(eigenvalues of M)))

2π/ sinΦ
, (2.17)

where M = [a1; a2; a3]. Here, a1, a2 and a3 are the amplitude vectors obtained upon
integrating equation (2.13) for one inertial wave time period T = 2π/ sinΦ, using the
initial conditions a01, a02 and a03, respectively. For the numerical integration of (2.13), the
Runge–Kutta fourth-order scheme was used with a time step of δt = T/1000. This choice
for δt ensured that the growth rates changed by less than 1 % when δt is halved. Finally, for
a given (A, Φ), growth rates were calculated on an equispaced grid of 500 by 500 points
on the (φ0, θ0) plane. The maximum growth rate on the (φ0, θ0) plane is denoted by σ ∗,
and the corresponding location is referred to as (φ∗

0 , θ
∗
0 ).
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3. Results

We begin this section with results on the growth rate distributions in the parameter space
of perturbation characteristics (§ 3.1). The growth rates at low and moderate inertial wave
amplitudes are discussed within the context of PSI in § 3.2. Finally, in § 3.3, the dominant
instability characteristics are presented and discussed.

3.1. Growth rate distribution
In figure 2, we present the growth rate σ on the (φ0, θ0) plane for nine different pairs of
base flow parameters (A, Φ). The growth rate is periodic in φ0 upon a flip in θ0 such
that σ(φ0, θ0) = σ(180◦ + φ0,−θ0). Interestingly, unlike for an internal wave with no
background rotation (Ghaemsaidi & Mathur 2019), σ is not symmetric about θ0 = 0 for an
inertial wave. The loss in symmetry can be understood as a consequence of the background
rotation, as a result of which (2.12) and (2.13) are not invariant when θ0 is replaced with
−θ0. Specifically, it is already evident in the analytical solution for κ (see (2.15)) that
replacing κy0 with −κy0 non-trivially changes the evolution of κx and κy, and hence that of
the perturbation wavevector orientation also. In figure 2, while the inertial wave amplitude
varies from A = 0.1 to 1 to 10 from figure 2(a–c) to figure 2(d–f ) to figure 2(g–i),
the inertial wave orientation Φ varies from 15◦ to 45◦ to 75◦ from figure 2(a,d,g) to
figure 2(b,e,h) to figure 2(c, f,i).

For (A, Φ) = (0.1, 15◦), clear instability band(s) are observed on the (φ0, θ0) plane
(figure 2a). Asymmetry with respect to θ0 = 0 is noticeable, with the instability region
in θ0 > 0 being thicker and stronger (in terms of the growth rate) overall. To investigate
the relevance of PSI in describing the instability regions, we plot red dashed curves
corresponding to

φ0 = sin−1
(

sinΦ
2 cos θ0

)
for |θ0| ≤ cos−1

(
sinΦ

2

)
. (3.1)

We note that the red dashed curves contain both the φ0 in (3.1) and 180 − φ0. Specifically,
(3.1) identifies daughter inertial waves at frequency ω/2 and with wavevector aligned
with the perturbation wavevector (cos θ0 cosφ0, sin θ0, cos θ0 sinφ0). It is worth noting
that (3.1) has made use of the 3-D inertial wave dispersion relation for the daughter wave,

sin2 φ0 cos2 θ0 = κ2
z0

|κ0|2 = ω2

4f 2 . (3.2)

In other words, the inertial waves with wavevectors κ(φ0, θ0) and κ(180 + φ0,−θ0), and
both at frequenciesω/2, are in triadic resonance with the primary inertial wave. The spatial
triadic resonance condition is automatically satisfied up to leading order in ε since the two
short-wavelength daughter waves are antiparallel to each other. We also recall from the
beginning of this section that the growth rates corresponding to κ(φ0, θ0) and κ(180 +
φ0,−θ0) are the same and can be considered as the corresponding PSI growth rate on the
red dashed curves.

As seen in figure 2(a), the PSI curves are in a close neighbourhood of the instability
regions and are strongly suggestive that the observed instabilities originate from PSI. To
investigate this aspect further, we ran growth rate calculations at (A, Φ) = (0.01, 15◦),
which showed that the PSI curves fall almost exactly on top of the instability regions,
which have weaker growth rates compared with (A, Φ) = (0.1, 15◦). A quantitative
comparison between growth rates from the local stability approach and PSI growth rates
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Figure 2. Growth rate (σ ) as a function of φ0 (deg.) and θ0 (deg.) for A = 0.1, 1, 10 (a–c, d–f, g–i) and
Φ = 15◦, 45◦, 75◦ (a,d,g, b,e,h, c, f,i). White regions correspond to σ < 10−6. The red and black dashed curves
represent the loci of the daughter waves corresponding to PSI of order two and three, respectively. The colour
bar is common for all the figures in a given row.

based on classical triadic resonance calculations is presented later in this section (§ 3.2).
In addition, growth rate calculations at different amplitudes in the local stability approach
reveal that symmetry with respect to θ0 = 0 is progressively broken as we increase the
amplitude from A = 0. As mentioned earlier, this could be attributed to the background
rotation, which causes an out-of-plane velocity v̄ that is proportional to A (see (2.7)).

Figure 2(b) shows the growth rate distribution for a shallower inertial wave
corresponding to (A, Φ) = (0.1, 45◦). In figure 2(b), σ is more symmetric with respect
to θ0 = 0 than in figure 2(a). More interestingly, the PSI curves are nearly on top of the
instability regions, thus reaffirming the relevance of PSI at small inertial wave amplitudes.
This conclusion is further strengthened by the growth rate plot for the even shallower
inertial wave corresponding to (A, Φ) = (0.1, 75◦) shown in figure 2(c). In addition, the
growth rate seems to vary only a little over the instability region for (A, Φ) = (0.1, 75◦),
whereas noticeable variations within the instability regions are observed for (A, Φ) =
(0.1, 15◦) and (0.1, 45◦). This aspect is further discussed in § 3.1. With respect to the
location of maximum growth rate, the most unstable perturbations are clearly 3-D (θ0 /= 0)
for (A, Φ) = (0.1, 15◦) and (0.1, 45◦), while two-dimensional (2-D) perturbations are
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not far behind the most unstable 3-D perturbations for (A, Φ) = (0.1, 75◦). These
observations for small-amplitude inertial waves are in contrast to small-amplitude internal
waves, for which the most unstable perturbations are 2-D (Ghaemsaidi & Mathur 2019).
The PSI in small-amplitude inertial waves is discussed in more detail in § 3.2. We now
proceed to discuss the growth rate distribution on the (φ0, θ0) plane at larger inertial wave
amplitudes.

Figure 2(d–f ) show the growth rate distribution on the (φ0, θ0) plane for (A, Φ) =
(1, 15◦), (1, 45◦) and (1, 75◦), respectively. As shown in figure 2(d), the unstable region
in θ0 < 0 associated with PSI at A = 0.1 moves upwards and becomes thicker when A is
increased to 1 (the region to which the ‘red’ arrow points). Interestingly, the theoretical PSI
curve based on (3.1) is far from the aforementioned finite-amplitude extension of PSI. In
addition, a seemingly new instability region that is attached to the θ0 = −90◦ axis appears
at A = 1. Upon closer investigation, we found that this instability region is a continuous
extension of the PSI region close to θ0 = 90◦. It is worth pointing out that θ0 = −90◦
and θ0 = 90◦ correspond to the same perturbation evolution equations since (2.12) and
(2.13) are invariant under a scalar multiplication of κ . Interestingly, if we assume the
perturbations to follow the inertial dispersion relation in (3.2), θ0 = ±90◦ corresponds
to zero frequency, i.e. a mean flow. The maximum growth rate occurs in this instability
region that is attached to θ0 = −90◦, and the growth rate is close to its maximum over an
extended region. For θ0 > 0, the unstable region associated with PSI is not too different
between A = 0.1 and A = 1. Finally, it is also worthwhile to point out the appearance
of a new, relatively thin unstable region (to which the ‘green’ arrow points) at A = 1,
though the corresponding growth rates are small. In summary, for the finite-amplitude
case of (A, Φ) = (1, 15◦), the PSI regions from small amplitude get significantly modified,
and the most unstable perturbations occur in the θ0 < 0 finite-amplitude extension of
PSI that occurs close to θ0 = 90◦ at smaller A. For larger Φ at A = 1 (figure 2e, f ), the
modifications to small-amplitude PSI are qualitatively similar to that for Φ = 15◦. With
respect to the most unstable perturbation wavevector, while it is possible to identify a
location on the (φ0, θ0) plane where σ is maximum, a wide range of other wavevectors
have similar growth rates as well, an aspect that was noted for A = 0.1 as well.

Increasing the inertial wave amplitude to A = 10, we plot the growth rate for Φ =
15◦, 45◦ and 75◦ in figure 2(g–i), respectively. A significant portion of the (φ0, θ0) plane is
now unstable. In the θ0 < 0 region, which is almost entirely unstable, extended regions
correspond to relatively large growth rates. The theoretical PSI curve based on (3.1),
shown in red, does not seem to be relevant in describing the unstable regions anymore.
Interestingly, the maximum growth rate σ ∗ on the (φ0, θ0) plane seems to occur on
the θ0 = 0 axis (2-D perturbations) for each of Φ = 15◦, 45◦, 75◦. Furthermore, the
corresponding φ0 = φ∗

0 is not far from Φ for all three values of Φ. Physically, φ0 = Φ

represents perturbations whose shear on the x–z plane aligns with the shear of the base
flow inertial wave.

Motivated by the dominant instability being nearly 2-D and associated with
shear-aligned perturbations at large A, we explored the relevance of third-order triadic
resonance (Drazin 1977) in describing the dominant instability at large inertial wave
amplitudes. In figure 2(g–i), the black dashed curves correspond to

φ∗
0 = sin−1

(
sinΦ
cos θ0

)
for |θ0| ≤ cos−1(sinΦ), (3.3)

which states that perturbations are at frequency ω and satisfy the 3-D inertial wave
dispersion relation. Specifically, the secondary wave frequencies add up to 2ω for
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third-order triadic resonance, thus satisfying the classical triadic resonance criteria (§ 1) at
n = 2. The black dashed curves nearly pass through the maximum growth rate location in
each of figure 2(g–i) and confirm that nearly 2-D, shear-aligned dominant instabilities at
large A could indeed be a result of third-order triadic resonance. In § 3.2, we proceed
to perform quantitative growth rate comparisons between local stability and classical
triadic resonance calculations at small inertial wave amplitudes, and further explore the
finite-amplitude extension of PSI based on the local stability analysis.

3.2. Parametric subharmonic instability
To quantify the relevance of PSI at small A, we perform comparisons with the growth rate
of PSI as known from classical triadic resonance calculations. Based on triadic interaction
equations in the inviscid limit, Mora et al. (2021) showed that the growth rate associated
with short-wavelength daughter waves at half the primary wave frequency is given by

σPSI = A
4

sinα2(1 + cosα2), (3.4)

where α2 is the angle between the primary wavevector and one of the daughter waves.
It is noteworthy that (3.4) assumes the primary wave amplitude to be sufficiently small,
while the local stability approach makes no assumptions on A. Here σPSI/A is maximized
for α2 = 60◦, thus allowing Mora et al. (2021) to conclude that PSI is strongest for 3-D
daughter waves.

In figure 3(a), we plot σ/A as a function of α2 from the local stability calculations
for Φ = 15◦, 45◦ and 75◦. To enable comparisons with (3.4), which was derived for
sufficiently small primary wave amplitudes, the local stability calculations were run at
A = 0.01. Since the instability regions in the local stability approach need not coincide
exactly with the theoretical PSI curves (recall results in figure 2a–c), we calculated the
maximum σ in the vicinity of the theoretical PSI curves for the plot in figure 3(a).
There is excellent quantitative agreement between σ and σPSI for the entire range of
α2, thus establishing that the local stability approach does indeed recover PSI in the
small-amplitude limit. Interestingly, the range of α2 decreases withΦ in figure 3(a). While
α2 ranges from 8◦ to 157◦ for Φ = 15◦, it lies within the much smaller range of [46◦, 76◦]
for Φ = 75◦. Given that σPSI/A depends only on α2 at small A, it explains why the growth
rate is nearly uniform throughout the theoretical PSI curve for Φ = 75◦ in figure 2(c). In
fact, this feature seems to extend to larger amplitudes too, where larger extended regions
on the (φ0, θ0) plane have significant growth rates for larger Φ (see figure 2d–f and
figure 2g–i).

To investigate the range of α2 along the theoretical PSI curves for different Φ, we first
plotted

α2 = cos−1(cos θ0 cos(φ0 −Φ)) (3.5)

as a function of φ0 and θ0 (plot not shown here). Indeed, the range of α2 on the
entire (φ0, θ0) plane decreases with Φ. More importantly, contours of α2 approach the
theoretical PSI curve (see (3.1)) asΦ is increased. In the limit ofΦ = 90◦ (in other words,
ω = f ), α2 is uniformly 60◦ on the entire theoretical PSI curve. As a result, at Φ = 90◦,
σPSI is maximum for all the wavevectors along the PSI curve on the (φ0, θ0) plane.
In summary, the range of perturbation wavevectors that have growth rates comparable
to the maximum growth rate increases with Φ for small-amplitude inertial waves. In
addition, the classical triadic resonance calculations for small-amplitude inertial waves
predict that finite-wavenumber perturbations can have growth rates of the same order as
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Figure 3. (a) Growth rate σ (normalized by A) as a function of α2 for Φ = 15◦ (red), 45◦ (green) and 75◦
(blue) based on the local stability calculations. The black dashed curve is based on classical triadic interaction
equations (see (3.1)). (b) Plot of α∗

2 , the value of α2 at which σ is maximum, as a function of the inertial wave
amplitude A for Φ = 15◦ (red), 45◦ (green) and 75◦ (blue).

infinite-wavenumber perturbations (Mora et al. 2021). The local stability approach cannot
recover such a result owing to its assumption of short-wavelength perturbations.

While PSI is the dominant mechanism at sufficiently small A and can be described
well by classical triadic interaction equations, the instability characteristics get modified
significantly as A is increased. To evaluate the validity of σPSI (see (3.4)) as A is increased,
particularly its prediction that the maximum growth rate occurs at α2 = 60◦, we plot α∗

2 as
a function of A in figure 3(b). Here, α∗

2 is based on the location (φ∗
0 , θ

∗
0 ) at which σ attains

a maximum on the entire (φ0, θ0) plane for a given (A, Φ). Even at relatively small A, say
A ∼ 0.1, α∗

2 clearly deviates from 60◦, particularly for smallΦ. The deviation continues to
increase with A until we reach around A = 1, beyond which α∗

2 rapidly decreases towards
zero. While the rapid decrease towards zero is likely to be associated with a new instability
mode, the PSI does seem to get significantly modified even for A < 1. The dominant
instability characteristics are studied in more detail in § 3.3.

3.3. Dominant instability characteristics
For a given (A, Φ), the dominant instability is identified at the location (φ∗

0 , θ
∗
0 ) where σ

attains a maximum on the entire (φ0, θ0) plane. The corresponding maximum growth rate
is denoted by σ ∗. Figure 4(a) shows the distribution of σ ∗ as a function of Φ and A. For a
given Φ, σ ∗ monotonically increases with A, with σ ∗ being directly proportional to A for
small A. Upon a closer look, we find that the increase in σ ∗ with A becomes slower than the
small-amplitude regime at around A = 0.1, with the deviation from the small-amplitude
regime occurring earlier for smaller Φ. With respect to variation with Φ, σ ∗ is nearly
uniform for all Φ at small A, which is consistent with σPSI/A being dependent only on α2
(see (3.4)) for small-amplitude inertial waves. Above a threshold A ∼ 1, σ ∗ shows a clear
monotonic increase with Φ.

For large A, the growth rates in figure 4(a) are large, and it is interesting to investigate
their values relative to the base flow inertial wave frequency. With this motivation, we plot
a rescaled growth rate σ̄ ∗ = σ ∗/ sinΦ, which represents the ratio between the maximum
growth rate and the inertial wave frequency, in figure 5(a). At A ∼ 10 or larger, σ̄ ∗
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Figure 4. (a) Maximum growth rate σ ∗ as a function of Φ and A, and the corresponding (b) θ∗
0 and (c) φ∗

0
at which the maximum growth rate occurs. (d) Angle between the inertial wavevector and the most unstable
perturbation wavevector, |Φ − φ∗

0 |, as a function of Φ and A. The red dashed and solid lines in each plot
correspond to A/ sinΦ = 1 and Ro = 2, respectively, where Ro is defined in (3.6).

becomes greater than unity, indicating an instability that grows faster than the inertial
wave frequency. As a result, the instability does not strongly feel the base flow inertial
wave oscillations at sufficiently large A, and the dependence of σ̄ ∗ on Φ becomes weaker
than at small A. These results suggest that an asymptotic calculation at infinitesimally
small ω, while allowing Φ to still vary from 0◦ to 90◦, could be useful for understanding
the instabilities at very large A. It should also be noted that the ω = 0 limit (steady base
flow, as discussed by Leblanc & Cambon (1997)) restricts the inertial wave orientation to
Φ = 0 and hence is not useful for capturing the dependence of σ̄ ∗ on Φ at large A.

In figure 4(b), we plot θ∗
0 , the initial angle made by the most unstable perturbation

wavevector with the x–z plane, as a function of Φ and A. For small A, θ∗
0 hovers around

±60◦ at all Φ, hence corresponding to strongly 3-D perturbations. We recall that σPSI (see
(3.4)) is the same for ±θ0, and this is at the origin of a noisy θ∗

0 field when σ ∗ is detected
numerically from the σ fields at small A. To circumvent this noise issue, we plot ||θ∗

0 | −
60◦| in figure 5(b), which shows explicitly that θ∗

0 hovers around ±60◦ for allΦ at small A.
The closeness of θ∗

0 to the optimum angle α2 = 60◦ (see (3.5) for the definition of α2) at
which σPSI is maximum indicates that the corresponding φ∗

0 is close toΦ, an aspect we will
examine further in figure 4(c,d). As A is increased beyond A ∼ 0.1, θ∗

0 increases towards
90◦, following which there is a sharp switch to θ∗

0 = −90◦. This is related to the PSI branch
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Figure 5. Plots of (a) σ̄ ∗ = σ ∗/ sinΦ on a log scale and (b) ||θ∗
0 | − 60◦| as a function of A and Φ. Here, θ∗

0
is associated with the maximum growth rate σ ∗, as plotted in figure 4(a,b), respectively. The red dashed and
solid lines in each plot correspond to A/ sinΦ = 1 and Ro = 2, respectively, where Ro is defined in (3.6). The
black curve corresponds to �σ ∗ = 1.

in the θ0 > 0 region moving towards θ0 = 90◦ and then appearing at θ0 = −90◦, as shown
in figure 2. Assuming the perturbations to follow the inertial wave dispersion relation (3.2),
θ0 = ±90◦ corresponds to zero frequency; in other words, at intermediate amplitudes,
the dominant instability seems to be associated with the generation of an out-of-plane
mean flow in the form of secondary perturbations. Following the switch to θ∗

0 = −90◦,
θ∗

0 continues to increase with A. At around A = 1, there is another sharp change in θ∗
0 ,

with its value rapidly going towards 0◦, which represents 2-D perturbations. For larger A,
θ∗

0 continues to hover around 0◦, suggesting that the dominant instability is nearly 2-D at
sufficiently large inertial wave amplitudes.

Figure 4(c) shows the distribution of φ∗
0 , the angle made by the projection of the most

unstable perturbation wavevector on the x–z plane with the x-axis, as a function of Φ and
A. Interestingly, φ∗

0 monotonically increases with Φ in a similar manner at both small and
large A. For intermediate values of A, φ∗

0 seems to span the entire range of 0◦ to 180◦
as Φ is varied from 0◦ to 90◦. Motivated by the variation of φ∗

0 at small and large A,
we plot the distribution of |Φ − φ∗

0 | in figure 4(d). Here Φ = φ0∗ represents alignment
between the wavevectors of the base flow inertial wave and the projection of the most
unstable perturbation on the inertial wave plane. Hence, small values of |Φ − φ∗

0 | represent
perturbations whose shear on the x–z plane is nearly aligned with the inertial wave shear.
At sufficiently small and large A, |Φ − φ∗

0 | becomes nearly zero for all Φ. In other words,
at sufficiently small A, the dominant instability is 3-D PSI (recall from figure 4b that
θ∗

0 is close to ±60◦ at small A) with daughter waves whose shear on the (x, z) plane is
nearly aligned with the inertial wave shear. At sufficiently large A, the dominant instability
corresponds to 2-D, shear-aligned perturbations, which was interpreted as being driven by
third-order triadic resonance in figure 2.

To develop an understanding of the observed transition from 3-D PSI to 2-D,
shear-aligned instability, we explore the relevance of a criterion that compares the
nonlinear time scale associated with an inertial wave with the inertial wave frequency.
Specifically, the non-dimensional inertial wave amplitude A can be considered as the
inverse of the nonlinear time scale (Yarom, Salhov & Sharon 2017), whereas sinΦ = ω/f
is the inverse of the inertial wave time period. Interestingly, the criterion A = sinΦ,
plotted as the red dashed curves in figure 4, seems to nearly capture the departure of
the dominant instability from 3-D PSI at all Φ. In other words, the beginning of the
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transition in the dominant instability mechanism as A is increased is driven by strongly
nonlinear interactions becoming relevant at large A. To capture the end of the transition
in the dominant instability mechanism, i.e. the dominant instability becoming 2-D and
shear-aligned, we define a Rossby number Ro as

Ro =
√

max(ū2 + v̄2)|k|
f

= A
√

1 + sin2Φ, (3.6)

where
√

max(ū2 + v̄2) is the maximum velocity in the horizontal (x, y) plane for the
inertial wave and |k|−1 is the chosen length scale. Interestingly, Ro = 2 (shown in red
in figure 4a–d) seems to reasonably capture the transition to 2-D, shear-aligned instability,
particularly at intermediate values of Φ. As a result, A/ sinΦ and Ro represent good
measures of the dominant instability, though growth rates can be comparable to that of
the dominant instability in extended portions of the (φ0, θ0) plane, as shown in figure 2.
It is also interesting to note that the sufficient condition for inviscid instability in a
steady, parallel shear flow with background rotation (Leblanc & Cambon 1997) reduces to
A cosΦ > 1 if it were to be satisfied at some time during the inertial wave period. Such a
criterion does not seem to be relevant in capturing the 3-D to 2-D instability transition in
figure 4.

4. Conclusions

In this paper, a local stability analysis of plane inertial waves has been presented. Defining
A and Φ as the non-dimensional amplitude and orientation (the angle between the energy
propagation direction with the vertical) that characterize the base flow inertial wave, the
local stability equations were numerically solved along fluid particle trajectories in the
base flow. Specifically, the local stability framework was used to study the evolution of
3-D, small-amplitude perturbations on an inertial wave of arbitrary amplitude, thus going
beyond the small-amplitude inertial wave regime that is often considered in the literature.
Instability characteristics on the (φ0, θ0) plane were first plotted for representative small-
to large-amplitude and steep to shallow inertial waves. Here, θ0 is the angle made by the
initial perturbation wavevector with the plane of the inertial wave, and φ0 is the angle
made by the projection (on the inertial wave plane) of the initial perturbation wavevector
with the horizontal.

At small A, 3-D PSI is the dominant instability mechanism, and the local stability
analysis recovers the results of Mora et al. (2021) based on classical triadic resonance
equations for small-amplitude inertial waves. In addition, the local stability analysis
revealed that at small A, the most unstable perturbation wavevector corresponds to
θ0 = ±60◦, with its projection on the inertial wave plane being aligned with the
wavevector of the inertial wave, i.e. shear-aligned. Furthermore, larger Φ corresponds
to a larger proportion (of the theoretical PSI curve) of perturbation wavevectors whose
growth rate is comparable to the maximum growth rate. In the limit of Φ = 90◦, the
growth rate is uniform over the entire theoretical PSI curve on the (φ0, θ0) plane (see the
Appendix). As a result, the ω ≈ f regime, which is particularly relevant and referred to as
‘near-inertial’ in oceanography, a continuous range of secondary waves could be excited
as a result of PSI. These observations for small-amplitude inertial waves are in contrast
to small-amplitude internal waves, for which the most unstable perturbations are 2-D
(Ghaemsaidi & Mathur 2019). As A is increased, strong asymmetry about θ0 = 0 develops
in the instability characteristics, and the theoretical PSI curves lose their relevance in
describing the finite-amplitude extension of PSI. At large A, 2-D shear-aligned instabilities
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driven by third-order triadic resonance are dominant, though significant growth rates occur
over extended regions on the (φ0, θ0) plane. The transition from 3-D PSI at small A to
2-D shear-aligned instability at large A is captured reasonably well by A/ sinΦ = 1 and
Ro = 2. Here, A/ sinΦ is a measure of the smallness of the nonlinear time scale relative
to the inertial wave time period, and Ro (see (3.6)) is a Rossby number defined based on
the horizontal velocity and wavevector magnitude of the inertial wave. It is unclear why
Ro is the relevant Rossby number to capture the transition to 2-D, shear-aligned instability,
and an analytical calculation around 2-D, shear-aligned instability could be insightful.

In the future, it would be interesting to validate the results from our study using
direct numerical simulations (see Onuki, Joubaud & Dauxois (2021) for an example of
such a simulation in an internal gravity wave), which could also be used to explore
nonlinear regimes of the linear instabilities reported here. The overall instability diagram
that depicts the dominant instabilities over a wide range of inertial wave parameters is
also a useful tool for designing and interpreting experiments and numerical simulations,
especially those aimed at understanding how the driving instabilities influence the nature
of resulting turbulence and mixing. Depending on the specific values of A and Φ, our
results also highlight that a wide range of perturbation wavevectors could have similar
growth rates, potentially an important consideration from the wave turbulence perspective
on nonlinear regimes in inertial waves (Yarom & Sharon 2014; Monsalve et al. 2020).
For oceanic applications, such as inertial waves excited by winds (Moehlis & Llewellyn
Smith 2001; Mahadevan & Tandon 2006), the local stability analysis presents a useful tool
for evaluating the possibility of local instabilities being a pathway towards dissipation. To
increase the relevance to realistic oceanic settings, it would be insightful to extend the
local stability calculations to the case of inertia-gravity waves, where both rotation and
stratification are dynamically important. It is worthwhile to recall that the local stability
approach has previously been used in idealized vortex models with background rotation
and stratification (Miyazaki 1993; Nagarathinam et al. 2015). Finally, for astrophysical
applications, it would perhaps be useful to perform a local stability analysis on inertial
waves in spherical geometry.
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Appendix

In this appendix, we plot the growth rate distribution on the plane of perturbation
wavevector orientations (φ0, θ0) in the limit of ω = f , i.e. Φ = 90◦ (the so-called inertial
limit in the oceanography literature), and A = 0.1 (figure 6). As was observed forΦ = 75◦,
the theoretical PSI curve is in a close vicinity of the unstable region for Φ = 90◦ too.
Interestingly, the theoretical PSI curves for Φ = 75◦ and 90◦ are not too far from each
other. It is also noteworthy that the growth rate is nearly uniform all along the unstable
region for A = 0.1 and Φ = 90◦.
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