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Abstract

Increasingly, laws are being proposed and passed by governments around the world to regulate artificial
intelligence (AI) systems implemented into the public and private sectors. Many of these regulations address
the transparency of AI systems, and related citizen-aware issues like allowing individuals to have the right to an
explanation about how an AI systemmakes a decision that impacts them. Yet, almost all AI governance documents
to date have a significant drawback: they have focused on what to do (or what not to do) with respect to making AI
systems transparent, but have left the brunt of the work to technologists to figure out how to build transparent
systems. We fill this gap by proposing a stakeholder-first approach that assists technologists in designing
transparent, regulatory-compliant systems. We also describe a real-world case study that illustrates how this
approach can be used in practice.

Policy Significance Statement

In recent years, policymakers around the world have begun taking important steps in the governance of artificial
intelligence (AI). This article provides a survey of existing and emerging legislation in the EU and US related to
the transparency ofAI systems. Yet, all AI legislation to date shares one commonweaknesses: laws focus onwhat
to do (or what not to do) with respect to making AI systems transparent, but they have left the brunt of the work to
AI practitioners to figure out how to build transparent systems. We fill this gap by proposing a stakeholder-first
approach to assist AI practitioners in designing transparent, regulatory-compliant systems.

1. Introduction

In the past decade, there has been widespread proliferation of artificial intelligence (AI) systems into the
private and public sectors. These systems have been implemented in a broad range of contexts, including
employment, healthcare, lending, criminal justice, and more. The rapid development and implementation
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of AI technologies have greatly outpaced public oversight, creating a “wild-west”-style regulatory
environment. As policymakers struggle to catch up, the issues of unregulated AI have become glaringly
obvious, especially for underprivileged and marginalized communities. Famously, ProPublica revealed
that the AI-driven system COMPAS used to assess the likelihood of a prisoner recidivating was highly
discriminatory against black individuals (Angwin et al., 2016). In another example, Amazon built and
implemented an automated resume screening and hiring AI system—only to later find out that the system
was biased against hiring women (Peng et al., 2019). In an effort to address these issues, countries around
the world have begun regulating the use of AI systems. Over 50 nations and intergovernmental
organizations have published AI strategies, actions plans, policy papers, or directives (UNICRI, 2020).
A survey of existing and proposed regulation around AI transparency is given in Section 2.

Unfortunately, most strategies, directives, and laws to date lack specificity on how AI regulation
should be carried out in practice by technologists.Where there is specificity, there is a lack ofmechanisms
for enforcing laws and holding institutions using AI accountable. Documents on AI governance have
focused onwhat to do (or what not to do) with respect to AI, but leave the brunt of thework to practitioners
to figure out how things should be done (Jobin et al., 2019). This tension plays out heavily in regulations
governing the transparency of AI systems (called “explainability” by AI practitioners). The most
prominent example of this is the “right to explanation” of data use that is included in the EU’s General
Data Protection Regulation (GDPR). Despite being passed into law in 2016, the meaning and scope of the
right are still being debated by legal scholars, with little of the discussion resulting in concrete benefits for
citizens (Selbst and Powles, 2018).

While regulation can help weigh the benefits of new technology against the risks, developing effective
regulation is difficult, as is establishing effective mechanisms to comply with existing regulation. By
writing directly to technologists and AI practitioners about how they can design systems that comply with
the existing regulation, we fill a gap in the current literature. We make a case for why AI practitioners
should be leading efforts to ensure the transparency of AI systems, and to this end, we propose a
framework for implementing regulatory-compliant explanations for stakeholders. We also consider an
instantiation of our stakeholder-first approach in the context of a real-world example usingwork done by a
national employment agency.

We make the following three contributions: (a) provide a survey of existing and proposed regulations
on the transparency and explainability of AI systems; (b) propose a framework for designing transparent
AI systems that uses a stakeholder-first approach; and (c) present a case study that illustrates how this
stakeholder-first approach can be applied in practice.

2. Existing and Emerging Regulations

In recent years, countries around the world have increasingly been drafting strategies, action plans, and
policy directives to govern the use of AI systems. To some extent, regulatory approaches vary by country
and region. For example, policy strategies in the US and the EU reflect their respective strengths: free-
market ideas for the former, and citizen voice for the latter (Gill, 2020). Yet, despite country-level variation,
manyAI policies contain similar themes and ideas.Ameta-analysis of over 80AI ethics guidelines and soft
laws found that 87% mention transparency, and include an effort to increase the explainability of AI
systems (Jobin et al., 2019). Unfortunately, all documents to date have onemajor limitation: they are filled
with uncertainty on how transparency and explainability should actually be implemented in a way that is
compliant with the evolving regulatory landscape (Gasser and Almeida, 2017; Jobin et al., 2019; Loi and
Spielkamp, 2021). This limitation has threemain causes: (a) it is difficult to design transparency regulations
that can easily be standardized across different fields of AI, such as self-driving cars, robotics, and
predictivemodeling (Wachter et al., 2017a); (b)when it comes to transparency, there is a strong information
asymmetry between technologists and policymakers, and, ultimately, the individuals who are impacted by
AI systems (Kuziemski andMisuraca, 2020); (c) there is no normative consensus around AI transparency,
and most policy debates are focused on the risks of AI rather than the opportunities (Gasser and Almeida,
2017). For the purposes of scope, wewill focus on regulations in theUnited States andEurope. However, it
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is important noting that there is meaningful AI regulation emerging in Latin and South America, Asia,
Africa, and beyond, and summarizing those regulations is an avenue for futurework. For example, in 2021,
Chile presented its first national action plan on AI policy.1

2.1. United States

In 2019, the US took two major steps in the direction of AI regulation. First, Executive Order 13859 was
issued with the purpose of establishing federal principles for AI systems, and to promote AI research,
economic competitiveness, and national security. Importantly, the order mandates that AI algorithms
implemented for use by public bodies must be “understandable,” “transparent,” “responsible,” and
“accountable.” Second, the Algorithmic Accountability Act of 2019 was introduced to the House of
Representatives, andmore recently reintroduced under the nameAlgorithmicAccountability Act of 2022.
If passed into law, the Algorithmic Accountability Act would be a landmark legalization for AI regulation
in the US. The purpose of the bill is to create transparency and prevent disparate outcomes for AI systems,
and it would require companies to assess the impacts of theAI systems they use and sell. The bill describes
the impact assessment in detail—which must be submitted to an oversight committee—and states that the
assessment must address “the transparency and explainability of [an AI system] and the degree to which a
consumer may contest, correct, or appeal a decision or opt out of such system or process,” which speaks
directly to what AI practitioners refer to as “recourse,” or the ability of an individual to understand the
outcome of an AI system and what they could do to change that outcome (Wachter et al., 2017b; Ustun
et al., 2019).

In 2022, the White House Office of Science and Technology Policy (OSTP) issued a Blueprint for an
AIBill of Rights2 that specificallymentions requirements for transparency. The fourth principle of the Bill
of Rights is titled “Notice and Explanation” and is described in the following way: “You should know that
an automated system is being used and understand how and why it contributes to outcomes that impact
you.”

In 2019, the OPENGovernment Data Act was passed into law, requiring that federal agencies maintain
and publish their information online as open data. The data also must be cataloged on Data.gov, a public
data repository created by the US government. While this law only applies to public data, it demonstrates
how policy can address transparency within the whole pipeline of an AI system, from the data to the
algorithm to the system outcome.

There are also some industry-specific standards for transparency that could act as a model for future
cross-industry regulations. Under the Equal Credit Opportunity Act, creditors who deny loan applicants
must provide a specific reason for the denial. This includes denials made byAI systems. The explanations
for a denial come from a standardized list of numeric reason codes, such as: “U4: Too many recently
opened accounts with balances.”3

2.2. European Union

In 2019 the EU published a white paper titled “Ethics Guidelines for Trustworthy AI,” containing a
legal framework that outlines ethical principles and legal obligations for EU member states to follow
when deploying AI.4 While the white paper is nonbinding, it lays out expectations on how member-
states should regulate the transparency of AI systems: “… data, system and AI business models should
be transparent. Traceability mechanisms can help achieving this. Moreover, AI systems and their
decisions should be explained in a manner adapted to the stakeholder concerned. Humans need to be
aware that they are interacting with an AI system, and must be informed of the system’s capabilities and
limitations.”

1 https://www.gob.cl/en/news/chile-presents-first-national-policy-artificial-intelligence/.
2 https://www.whitehouse.gov/ostp/ai-bill-of-rights/.
3 https://www.fico.com/en/latest-thinking/solution-sheet/us-fico-score-reason-codes.
4 https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai.
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Currently, the European Commission is reviewing the Artificial Intelligence Act,5 which would
create a common legal framework for governing all types of AI used in all nonmilitary sectors in
Europe. The directive takes the position that AI systems pose a significant risk to the health, safety and
fundamental rights of persons, and governs from that perspective. With respect to transparency, the
directive delineates between nonhigh-risk and high-risk AI systems (neither of which are rigorously
defined at this time). It states that for “nonhigh-risk AI systems, only very limited transparency
obligations are imposed, for example in terms of the provision of information to flag the use of an
AI systemwhen interacting with humans.”Yet, for high-risk systems, “the requirements of high-quality
data, documentation and traceability, transparency, human oversight, accuracy, and robustness, are
strictly necessary to mitigate the risks to fundamental rights and safety posed by AI and that are not
covered by other existing legal frameworks.” Notably, as in the Algorithmic Accountability Act in the
United States, the document contains explicit text mentioning recourse (referred to as “redress”) for
persons affected by AI systems.

The EU has also passed Regulation (EU) 2019/1150 that sets guidelines for the transparency of
rankings for online search.6 In practice, this means that online stores and search engines should be
required to disclose the algorithmic parameters used to rank goods and services on their site. The
regulation also states that explanations about rankings should contain redress mechanisms for individuals
and businesses affected by the rankings.

2.2.1. Right to explanation
The Right to Explanation is a proposed fundamental human right that would guarantee individuals access
to an explanation for any AI system decision that affects them. The Right to Explanation was written into
the EU’s 2016 GDPR regulations, and reads as follows: “[the data subject should have] the right … to
obtain an explanation of the decision reached.”7 The legal meaning and obligation of the text have been
debated heavily by legal scholars, who are unsure under which circumstances it applies, what constitutes
an explanation (Selbst and Powles, 2018), and how the right is applicable to different AI systems (Doshi-
Velez et al., 2017). The Right to Explanation is an example of how emerging AI technologies may
“reveal” additional rights that need to be considered by lawmakers and legal experts (Parker and Danks,
2019).

The EU’s recently proposed Artificial Intelligence Act simultaneously reinforces the idea that
explanations about AI systems are a human right, while slightly rolling back the Right to Explanation
by acknowledging that there are both nonhigh-risk and high-risk AI systems. Discussions about the
Right are likely to continue, and will be a central part of debates on regulating AI transparency. In fact,
some local governing bodies have already taken steps to adopt the Right to Explanation. France passed
the Digital Republic Act in 2016, which gives the Right to Explanation for individuals affected by an
AI system in the public sector (Edwards and Veale, 2018). Hungary also has a similar law (Malgieri,
2019).

2.3. Local

There has been significant movement on the regulation of specific forms of AI systems at local levels of
government. In response to the well-documented biases of facial recognition software when identifying
people of different races and ethnicities (Buolamwini and Gebru, 2018), Washington State signed Senate
Bill 6820 into law in 2020, which prohibits the use of facial recognition software in surveillance and limits
its use in criminal investigation.8 Detroit has also reacted to concerns about facial recognition, and its City
Council approved legislation that mandates transparency and accountability for the procurement process

5 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206.
6 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1150.
7 https://www.privacy-regulation.eu/en/r71.htm.
8 https://app.leg.wa.gov/billsummary?BillNumber=6280&Initiative=false&Year=2019.
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of video and camera surveillance contracts used in the city.9 The New York City Council recently
regulated the use of AI systems in relation to employment decisions (Local Law 144 of 2021).10 The bill
requires that AI tools for hiring employees be subject to yearly bias audits. An additional requirement is to
notify job seekers that they were screened by a tool, and to disclose to them what “qualifications or
characteristics”were used by the tool as basis of decisions. Finally, in the Netherlands, the municipality of
Rotterdam has created a Data-Driven Working program which has been critical of transparency sur-
rounding the algorithms used for fraud detection.11

3. The Role of Technologists

The continuously evolving regulatory landscape of AI, combined with the limitations of existing
regulation in providing clarity on how transparency should be implemented into AI systems, has left
an “accountability void” concerning responsibilities for AI design and implementation.We believe that, at
least until meaningful, concrete legislation is passed, the bulk of this responsibility should fall to
technologists, including AI practitioners, researchers, designers, programmers, and developers—that
is, those who are directly building and shaping AI. We also argue that it is in the best interest of
technologists to assume this responsibility, and provide justification for why they should remain a
responsible party even once meaningful legislation is passed.

3.1. Why technologists?

3.1.1. Technologists have the right technical expertise
Transparency has been a central topic of AI research for the past decade, and is motivated beyond just
regulatory compliance by ideas like making systems more efficient, debugging systems, and giving
decision-making agency to the decision subjects (i.e., those affected by AI-assisted decisions) or to the
users of AI systems (i.e., those making decisions with the help of AI). New technologies in transparent AI
are being created at a fast pace, and there is no indication that the rapid innovation of explainable AI will
slow any time soon (Datta et al., 2016; Ribeiro et al., 2016; Lundberg and Lee, 2017; Covert et al., 2020),
meaning that of all the stakeholders involved in the socio-technical environment of AI systems,
technologists are the most likely to be aware of available tools for creating transparent AI systems.
Assuming any reasonable rate of advancement in AI technology, the knowledge of technologists will
always outpace legislator’s ability to draft meaningful legislation. This means they are the stakeholder
best positioned to mitigate the potential risks of opaque AI systems as new knowledge comes to light.
Furthermore, there are currently no objective measures for the quality or transparency in AI systems
(Gunning et al., 2019; Lu et al., 2019; Yang et al., 2019; Abdul et al., 2020; Holzinger et al., 2020). In lieu
of legislative and regulatorymechanisms, numerous best (andworst) practices are emerging, and these are
most easily understood by technologists.

3.1.2. Technologists are the least-cost avoiders
This idea is based on the principle of the least-cost avoider, which states that obligations and liabilities
should be allocated entirely to the party with the lowest cost of care (Stoyanovich and Goodman, 2016).
AI practitioners are the least-cost avoiders because they are already equipped with the technical know-
how for building and implementing transparency tools into AI systems, especially when compared to
policymakers and the individuals affected by the outcome of the system. Notably, given the wide range of
existing transparency tools, implementing the “bare minimum” is trivially easy for most technologists.

9 https://www.detroitnews.com/story/news/local/detroit-city/2021/05/25/detroit-council-approves-ordinance-boost-transpar
ency-surveillance-camera-contracts/7433185002/.

10 https://legistar.council.nyc.gov/LegislationDetail.aspx?ID=4344524GUID=B051915D-A9AC-451E-81F8-
6596032FA3F9&Options=Advanced Search.

11 https://nos.nl/artikel/2376810-rekenkamer-rotterdam-risico-op-vooringenomen-uitkomsten-door-gebruik-algoritmes.
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One argument practitioners give against building transparent systems is that they may be less accurate
than highly complex, black-box systems (Huysmans et al., 2006). However, there has been a growing
amount of evidence suggesting that building transparent systems actually results into little to no trade-off
in the accuracy of AI systems (Stiglic et al., 2015; de Troya et al., 2018; Bell et al., 2019, 2022; Rudin,
2019). In other words, building transparent systems is not a Pareto-reducing constraint for practitioners.

3.1.3. Technologists already bear the responsibility for implementing transparency into AI systems
A study interviewing AI technologists found that using AI responsibly in their work is viewed as the
practitioner’s burden, not the institutions for which they work. Practitioners noted that existing structures
within institutions are often antithetical to the goals of responsible AI, and that it is up to them to push for
structural change within that institution (Rakova et al., 2020). Section 2 shows that AI regulation is
converging on requiring transparent AI systems that offer meaningful explanations to stakeholders.
Therefore, it is in the best interest of practitioners to continue the bottom-up approach of building
transparent AI systems in the face of looming regulations.

3.2. Accountability in practice

While it is not the main focus of our work, we would like to offer an example of how accountability
could work in practice by presenting the Australian actuarial profession model. Like doctors who must
take the Hippocratic Oath and lawyers who must be certified under a review that includes ethics,
actuaries in Australia are subject to a Code of Conduct created by the Actuaries Institute Australia
(AIA).12 The Code of Conduct includes minimum standards of professional conduct, legal require-
ments, and best practice professional standards for actuaries. It is worth noting that there is skepticism
about relying exclusively on codes of conduct in the style of the Hippocratic Oath in the data
science profession, one reason being that such codes defer responsibility to individuals, rather than
building responsibility into all levels of the systems surrounding data science problems (Mannell et al.,
2022).

Nevertheless, there are interesting lessons of accountability that could be adapted from the actuarial
professional model. Actuaries are forbidden from giving actuarial advice in such a way that it can be
easily misused or abused by the recipient. All members of the AIAmust strictly adhere by their Code of
Conduct to practice as an actuary; this requirement even extends to actuarial students studying at the
University of New South Wales in Sydney, Australia. The AIA also has a strict disciplinary schema in
which members of the institute are responsible for holding each other accountable, and, if necessary,
referring other members to the AIA for disciplinary investigation. There is an internal review board at
the AIA that sees and resolves disciplinary cases. For severe cases, the AIA can go so far as to revoke
membership, which is professionally akin to disbarring a lawyer or revoking a doctor’s medical
license.

A similar code of conduct and review board could be created for the AI field. In some respects, it is a
failure of the profession that no such code exists today, especially considering that AI technologies can
cause significant societal risks and harms, and, further, that AI systems are being deliberately created for
use as weapons (de Ágreda, 2020). An organization such as the Association for Computing Machinery
(ACM) or the Institute of Electrical and Electronics Engineers (IEEE), two leading professional organ-
izations of engineering and computing professionals, could take on the creation of a certification for
technologists who build AI. The ACM Code of Ethics and Professional Conduct13 already speaks to the
salient aspects of ethical conduct and of professional responsibilities, including “Treat[ing] violations of
the Code as inconsistent with membership in the ACM.” This document can serve as a starting point for
such a process.

12 https://actuaries.asn.au/Library/Council/2020/CCMar2020.pdf.
13 https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-booklet.pdf.
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4. A Stakeholder-First Approach to Designing Transparent Automated Decision Systems

4.1. Definitions

Technologists and AI researchers have not agreed on a definition of transparency for AI systems. Instead,
a number of terms have been used, including explainability, interpretability, intelligibility, understand-
ability, and comprehensibility (Marcinkevics and Vogt, 2020). There is no consensus on the meaning of
these terms and they are often defined differently by different authors or used interchangeably. Further-
more, transparency and its related terms cannot trivially be quantified or measured, and transparency for
one stakeholder does not automatically imply the same for different stakeholders (Lipton, 2018; Hind,
2019; Larsson and Heintz, 2020).

While having multiple definitions of transparency has been useful for distinguishing nuance in a
research setting, it also poses a challenge for policymaking. In contrast to technologists, policymakers
favor definitions of transparency that are about human thought and behavior such as accountability or
legibility (Krafft et al., 2020). Table 1 outlines terms related to transparency commonly used by
policymakers versus those used by technologists.

4.1.1. Transparency
In this article, we will use the term “transparency” in a broad sense, and define it as “the degree to which a
human can understand an AI system.” This is an adaptation of Christoph Molnar’s definition of
“explainability” (Molnar, 2019), and it is appropriate here because it centers on the role of a human—
rather than ascribing the property of being “transparent” to an algorithm or a system—and so takes a step
in the direction of including stakeholders. This definition is general, and so it necessarily lacks
concreteness and nuance. We use it as a starting point, and will expand on it in the remainder of this
section, where we discuss different stakeholders, goals, and purposes for AI transparency.

4.1.2. Explanation
We use the term “explanation” to refer to an instantiation of transparency. For example, to ensure
transparency for a system, a technologist may create an explanation about the data it uses.

4.1.3. Automated decision systems
The approach described in this article applies to all automated decision systems (ADS), which is any
system that processes data to make decisions about people. This means that AI systems are a subset of
ADS, but there are two key distinctions: (a) an ADS is underpinned by any algorithm and not just AI or
machine learning, and (b) an ADS implies a context of use and some kind of impact. For a formal
definition of ADS, see Stoyanovich et al. (2020). Henceforth, we will use the term ADS.

Notably, while many regulations are written to specifically mention “AI systems,” all the ideas they
contain about transparency could be applied to all ADS. It is likely that future regulations will focus
broadly on ADS, as seen in NYC Local Law 144 of 2021 and France’s Digital Republic Act.

Table 1. Discrepancies in the way policymakers and AI practitioners communicate about the
transparency of AI systems

Terms used by policymakers Terms used by technologists

Transparency Explainability
Accountability Transparency
Understandable Interpretability
Legibility Intelligibility
Traceability Understandability
Redress Comprehensibility

Recourse
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4.2. Running example: Predicting unemployment in Portugal

Tomake the discussion concrete, we use a running example of anADS implemented in Portugal to try and
prevent long-term unemployment (being unemployed for 12 months or more) (de Troya et al., 2018;
Zejnilović et al., 2020, 2021). The long-term unemployed are particularly vulnerable persons, and tend to
earn less once they find new jobs, have poorer health and have children with worse academic performance
as compared to those who had continuous employment (Nichols et al., 2013). The Portuguese national
employment agency, the Institute for Employment and Vocational Training (IEFP), uses an ADS to
allocate unemployment resources to at-risk unemployed persons. The system is based on demographic
data about the individual, including their age, unemployment length, and profession, alongwith other data
on macroeconomic trends in Portugal.

The ADS is used by job counselors who work at the IEFP unemployment centers spread across
Portugal. This interaction model, where anML systemmakes a prediction and a human ultimately makes
a final determination informed by the system’s predictions, is referred to as having a “human-in-the-loop”
(HITL). Having a HITL is an increasingly common practice for implementing ADS (Raso, 2017;
Gillingham, 2019; Wagner, 2019). The ADS assigns unemployed persons as low, medium, or high risk
for remaining unemployed, and then job counselors have the responsibility of assigning them to
interventions such as reskilling, resume building, or job search training (Zejnilović et al., 2020).

This is a useful case study for three reasons: (a) people’s access to economic opportunity is at stake, and
as a result, systems for predicting long-term unemployment are used widely around the world (Caswell
et al., 2010; Riipinen, 2011; Matty, 2013; Loxha and Morgandi, 2014; Scoppetta and Buckenleib, 2018;
Sztandar-Sztanderska and Zielenska, 2018); (b) the ADS exists in a dynamic setting which includes
several stakeholders, like unemployed persons, job counselors who act as the human-in-the-loop,
policymakers who oversee the implementation of the tool, and the technologists who developed the tool;
(c) lessons from this case about designing stakeholder-first transparent systems generalize well to other
real-world uses cases of ADS.

4.3. The approach

There are many purposes, goals, use cases, and methods for the transparency of ADS, which have been
categorized in a number of taxonomies and frameworks (Ventocilla et al., 2018;Molnar, 2019; Arya et al.,
2020; Liao et al., 2020; Marcinkevics and Vogt, 2020; Meske et al., 2020; Rodolfa et al., 2020; Sokol and
Flach, 2020; Richards et al., 2021). The approach we propose here has three subtle—yet important—
differences frommuch of the existing work in this area: (a) our approach is stakeholder-first, furthering an
emerging trend among researchers in this field to reject existing method-driven or use-case-driven
approaches (Fukuda-Parr and Gibbons, 2021); (b) our approach is focused on improving the design of
transparent ADS, rather than attempting to categorize the entire field of transparency; (c) our approach is
aimed at designing ADS that comply with transparency regulations.

Our approach can be seen in Figure 1 and is made up of the following components: stakeholders, goals,
purpose, andmethods.We describe each component in the remainder of this section, and explain how they
apply to the running example.

4.3.1. Stakeholders
Much of ADS transparency research is focused on creating novel and innovative transparency methods
for algorithms, and then later trying to understand how these methods can be used to meet stakeholders
needs (Preece et al., 2018; Bhatt et al., 2020). Counter to this rationale, we propose a starting point that
focuses on ADS stakeholders: assuming algorithmic transparency is intended to improve the understand-
ing of a human stakeholder, technologists designing transparent ADSmust first consider the stakeholders
of the system, before thinking about the system’s goals or the technical methods for creating transparency.

The existing literature and taxonomies on ADS transparency have identified a number of important
stakeholders, which include technologists, policymakers, auditors, regulators, humans-in-the-loop, and
those individuals affected by the output of the ADS (Meyers et al., 2007; Amarasinghe et al., 2020;Meske
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et al., 2020). While there is some overlap in how these stakeholders may think about transparency, in
general, there is no single approach to designing transparent systems for these disparate stakeholder
groups, and each of them has their own goals and purposes for wanting to understand an ADS (Sokol and
Flach, 2020). In fact, even within a stakeholder group, there may be variations on how they define
meaningful transparency (Hohman et al., 2019).

There are two additional considerations we would like to surface for designers of ADS when thinking
about stakeholders. First, it may be worthwhile to weigh the needs of different stakeholders differently.
For example, it may be more meaningful to prioritize meeting the transparency needs of affected
individuals over those of AI managers or auditors. Second, in certain contexts, stakeholders may want
to be thought of as “groups,” rather than as individuals, because of a single, unified transparency goal.
This can be important for issues related to fairness and accessibility. For instance, one stakeholder group
that has a unified transparency need may be members of the Blind and Low Vision community, or of the
Deaf community (Wolf and Ringland, 2020).

Importantly, by staking transparency on the needs of stakeholders, technologists will be better
positioned to meet criteria for proposed and existing citizen-aware AI transparency regulations like the

Figure 1. A stakeholder-first approach for creating transparent ADS. The framework is made up of four
components: stakeholders, goals, purpose, and methods. We recommend that transparency be thought of

first by stakeholders, second by goals, before thirdly defining the purpose, and lastly choosing an
appropriate method to serve said purpose. Using the framework is simple: starting at the top, one should

consider each bubble in a component before moving onto the next component.
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Right to Explanation, and those that require audits of ADS. This is also relevant for stakeholder groups,
which may be those groups protected under legislation. For example, although there only exists proposed
legislation mandating recourse for AI systems, technologists can get ahead of these mandates by
following the approaches we lay out in this article.

Running example. In the ADS used by IEFP in Portugal, there are four main stakeholders: the
technologists who developed the ADS, the policymakers who reviewed the ADS and passed laws for
its implementation, the job counselors who use the system, and the affected individuals who are assessed
for long-term unemployment. In the development of theAI, explanations were created tomeet the varying
goals of many of these stakeholders including practitioners, policymakers, and the job counselors.
Unfortunately, and significantly, affected individuals were not considered. Had the practitioners adopted
a robust stakeholder-first approach to designing transparent systems they could have better considered
how to meet the goals of this key stakeholder group. For example, a person may want to appeal being
predicted low risk because they feel they are high risk for long-term unemployment and need access to
better interventions.

4.3.2. Goals
There has been little consensus in the literature on how ADS transparency goals should be classified.
Some researchers have focused broadly, classifying the goals of ADS as evaluating, justifying, managing,
improving, or learning about the outcome of anADS (Meske et al., 2020). Others have defined goals more
closely to what can be accomplished by known transparency methods, including building trust, estab-
lishing causality, and achieving reliability, fairness, and privacy (Marcinkevics and Vogt, 2020). Amar-
asinghe et al. identified five main goals (designated as use-cases) of transparency specifically in a policy
setting: model debugging, trust and adoption, whether or not to intervene, improving intervention
assignments, and for recourse. In this context, the term intervention refers to a policy action associated
with the outcome of an ADS.

Notably, the goals of transparency are distinct from the purpose. The purpose addresses a context-
specific aim of the ADS. For example, if an explanation is created for an ADS with the purpose of
explaining to an individual why their loan was rejected, the goal may be to offer individual recourse
against the rejection. This distinction is made clear in Section 4.3.3.

For our stakeholder-first approach, we make two changes to the existing body of research work. First,
we require that the goal of transparent design must start with a stakeholder. Since all transparency
elements of an ADS are intended for a human audience, defining a stakeholder is implicit in defining
goals. Second, we have established six goal categories, which encompass those found in literature. These
categories are validity, trust, learning and support, recourse, fairness, and privacy, and are defined in
Table 2 alongside concrete examples of how these goals may be implemented.

An important discussion surrounding goals are the justifications for pursuing them. For example,
fairness and privacy goals may be justified for humanitarian reasons (they are perceived by the
stakeholders as the “right thing to do”). Other justifications may be to prevent harm, like offering recourse
to stakeholders against an outcome of an ADS, or for a reward, like an explanation that supports a doctor’s
correct diagnosis. For reasons of scope, we will not delve into the issue of goal justification in this article.

Running example. In our case study, transparency is built into the ADS with the goal of offering
learning and support to job counselors. The ADS generates explanations about what factors contribute to
an individual being classified as low, medium, or high risk for long-term unemployment, which job
counselors use to help make better treatment decision. Furthermore, the job counselor may also use the
explanation to offer recommendations for recourse against a high-risk score.

4.3.3. Purpose
Miller proposed that the purpose of transparency is to answer a “why” question (Miller, 2017), and gives
the following example: In the context where a system is predicting if a credit loan is accepted or rejected,
one may ask, “whywas a particular loan rejected?” Liao et al. expanded on this significantly by creating a
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“question bank”which is a mapping from a taxonomy of technical transparency methodology to different
types of user questions. Instead of just answering why questions, the works show that transparency can be
used to answer 10 categories of questions: questions about the input, output, and performance of the
system, how,why, why not, what if, how to be that, how to still be this, and others (Liao et al., 2020). These
questions have two important characteristics. First, they are context-specific and should address a direct
transparency goal of the stakeholder. Second, and importantly for technologists, these questions can be
mapped onto known methods for creating explanations, meaning that a well-defined purpose for
transparency acts as a bridge between the goals and methods.

Thoughtfully defining the goals and purpose of transparency in ADS is critical for technologists to be
compliant with regulators. It is not sufficient to try and apply general, one-size-fits-all design like simply
showing the features that were used by an ADS. For instance, both the proposed Algorithmic Account-
ability Act in the United States and the Artificial Intelligence Act in the European Union specifically
mention that ADS should have transparencymechanisms that allow individuals to have recourse against a
system outcome. Researchers have noted that feature-highlighting transparency lacks utility when there is
a disconnect between the explanation and real-world actions (Barocas et al., 2020). For instance, if

Table 2. Definitions and examples of stakeholder goals for the six categories of ADS transparency goals

Goal Definition Example

Validity Making sure that an ADS is constructed
correctly and is reasonable;
encompasses ideas like making sure
the ADS is reliable and robust
(Doshi-Velez and Kim, 2017)

An practitioner may use a transparency
method to debug an ADS; An auditor
may gain intuition about how an
ADS is making decisions through
transparency

Trust Knowing “how often an ADS is right”
and “for which examples it is right”
(Lipton, 2018); influences the
adoption of an ADS (Rodolfa et al.,
2020)

A policymaker may use transparency to
gain trust in the ADS; an affected
individual may find through
transparency that they do not trust a
particular ADS (Schmidt et al., 2020)

Fairness Ensuring that an ADS is fair An auditor may use an explanation
about anADS tomake sure it is fair to
all groups of individuals; a
practitioner may use transparency
tools to find bias in their modeling
pipeline

Privacy Ensuring that an ADS respects the data
privacy of an individual

An auditor individual may use an
explanation of the data used in an
ADS to evaluate privacy concerns

Learning and Support To satisfy human curiosity, or increase
understanding about how an ADS is
supporting a real-world
recommendation (Molnar, 2019;
Rodolfa et al., 2020)

A doctor may use an explanation to
understand an ADS recommendation
of a certain treatment

Recourse Allowing a stakeholder to take some
action against the outcome of anADS
(Bhatt et al., 2020; Rodolfa et al.,
2020)

An individual may use an explanation
to appeal a loan rejection; An
individual may request to see an
explanation of an ADS output to
understand why it was made

Data & Policy e12-11

https://doi.org/10.1017/dap.2023.8 Published online by Cambridge University Press

https://doi.org/10.1017/dap.2023.8


someone is rejected for a loan and the reason for that decision is the person’s age, there is no action that
they can effectively take for recourse against that decision.

Running example. In the long-term unemployment use case, there were two main purposes of
transparency: to understand why an individual was assigned to a particular risk category, and to
understand what could be done to help high-risk individuals lower their chances of remaining long-
term unemployed.

4.3.4. Methods
Once the stakeholders, goals, and purposes for algorithmic transparency have been established, it is time
for the technologist to pick the appropriate transparencymethod (sometimes called explainablitymethod).
Over the past decade, there has been significant work in transparent ADS research (sometimes called
“explainable AI” research or XAI) on developing newmethods for understanding opaqueADS. There are
several existing taxonomies of thesemethods, which show that explanations can be classified on a number
of attributes like the scope (local or global), intrinsic or post hoc, data or model, model-agnostic or model-
specific, surrogate or model behavior, and static or interactive (Molnar, 2019; Arya et al., 2020;
Marcinkevics and Vogt, 2020). Furthermore, researchers have created a number of different tools to
accomplish transparency in ADS (Datta et al., 2016; Ribeiro et al., 2016; Lundberg and Lee, 2017; Covert
et al., 2020).

In contrast to the complex classification of transparency methods by technologists, regulations have
focused on two elements of ADS: (a) what aspect of the ADS pipeline is being explained (the data,
algorithm, or outcome)?, and (b) what is the scope of the explanation (for one individual or the entire
system)? Table 3 shows how different regulations speak to different combinations of pipeline and scope.
In our stakeholder first approach to transparency, we focus on these two main attributes. We will not
discuss specific methods in detail, but for the convenience of technologists we have underlined them
throughout this discussion.

Data, algorithm, or outcome. Transparency methods have focused on generating explanations for
three different “points in time” in an ADS pipeline: the data (preprocessing), the model/algorithm (in-
processing, intrinsic), or the outcome (postprocessing, post hoc) (Ventocilla et al., 2018; Arya et al.,
2020). Importantly, transparency is relevant for each part of the machine learning pipeline because issues
likes bias can arise within each component (Yang et al., 2020).

Transparency techniques that focus on the preprocessing component of the pipeline, that is, on the data
used to create an ADS, typically include descriptive statistics or data visualizations.

Table 3. How different laws regulate the ADS pipeline (the data, algorithm, or outcome), and within
what scope (local or global)

Data Algorithm Outcome

Local GDPR (EU) gives
individuals the right to
request a copy of any of
their personal data

Right to Explanation gives
individuals the right to know
how an algorithm made a
decision about them

Both the proposed Algorithmic
Accountability Act (US) and
Artificial Intelligence Act
(AI) give individuals the
right to recourse

Global OPEN Government Data
Act (US) mandates the
government publishes
public data

EU Regulation 2019/115 requires
that online stores and search
engines to disclose the
algorithmic parameters used to
rank goods and services on
their site

NYC Int 1894–2020 requires
hiring algorithms be audited
for biased outcomes
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Data visualizations have proved useful for informing users and making complex information more
accessible and digestible, and have even been found to have a powerful persuasive effect (Pandey et al.,
2014; Tal and Wansink, 2016). Therefore, it is advisable to use data visualization if it can easily address
the purpose of an explanation. However, visualizations should be deployed thoughtfully, as they have the
ability to be abused and can successfully misrepresent a message through techniques like exaggeration or
understatement (Pandey et al., 2015).

Techniques for creating in-processing or postprocessing explanations call into question the important
consideration of using explainable versus black-box algorithmswhen designingAI. Themachine learning
community accepts two classifications of models: those that are intrinsically transparent by their nature
(sometimes called directly interpretable or white-box models), and those that are not (called black box
models) (Marcinkevics and Vogt, 2020). Interpretable models, like linear regression, decision trees, or
rules-based models, have intrinsic transparency mechanisms that offer algorithmic transparency, like the
linear formula, the tree diagram, and the set of rules, respectively. There are also methods like select-
regress-round that simplify black-box models into interpretable models that use a similar set of features
(Jung et al., 2017).

As an important design consideration for technologists, researchers have studied the effect of the
complexity of a model and how it impacts its ability to be understood by a stakeholder. A user study found
that the understanding of amachine learningmodel is negatively correlated with its complexity, and found
decision trees to be among the model types most understood by users (Allahyari and Lavesson, 2011). An
additional, lower-level design consideration is that model complexity is not fixed to a particular model
type, but rather to theway that themodel is constructed. For example, a decision treewith 1,000 nodeswill
be understood far less well than a tree with only three or five nodes.

In contrast to in-process transparency, which is intrinsically built into a model or algorithm, post hoc
transparency aims to answer questions about a model or algorithm after is has already been created. Some
of the most popular post hoc methods are LIME, SHAP, SAGE, and QII (Datta et al., 2016; Ribeiro et al.,
2016; Lundberg and Lee, 2017; Covert et al., 2020). These methods are considered model-agnostic
because they can be used to create explanations for any model, from linear models to random forests to
neural networks. Somemethods create a transparent surrogate model that mimics the behavior of a black-
boxmodel. For example, LIME creates a linear regression to approximate an underlying black-boxmodel
(Lundberg and Lee, 2017). More work needs to be done in this direction, but one promising study has
shown that post hoc explanations can actually improve the perceived trust in the outcome of an algorithm
(Bekri et al., 2019).

However, post hoc transparency methods have been shown to have two weaknesses that technologists
should be aware of: (a) in many cases, these methods are at-best approximations of the black box they are
trying to explain (Zhang et al., 2019), and (b) these methods may be vulnerable to adversarial attacks and
exploitation (Slack et al., 2020). Some researchers have also called into question the utility of black-box
models and posthoc explanation methods altogether, and have cautioned against their use in real-world
contexts like clinical settings (Rudin, 2019).

Scope. There are two levels at which a transparent explanation about an ADS can operate: it either
explains its underlying algorithm fully, called a “global” explanation; or it explains how the algorithm
operates on one specific instance, called a “local” explanation. Molnar further subdivides each of these
levels into two sublevels: global explanations can either be holistic (applying to an entire algorithm, which
includes all of its features, and in the case of an ensemble algorithm, all of the component algorithms) or
modular, meaning they explain on part of the holistic explanation and local explanations can either be
applied to a single individual, or aggregated to provide local explanations for an entire group (Molnar,
2019).

The scope of an explanation is highly relevant to the stakeholder and goals of an explanation, and is
related to whether the stakeholder operates at a system or individual level. Researchers found that the
scope of explanation can influence whether or not an individual thinks a model is fair (Liao et al., 2020;
Islam et al., 2021). Policymakers andADS compliance officers are more apt to be concerned with system-
level goals, like ensuring that the ADS is fair, respects privacy, and is valid overall, while humans-in-the-
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loop and those individuals affected by the outcome of an ADS are likely more interested in seeing local
explanations to pertain to their specific cases. Technologists should consider both.

Naturally, there is considerable overlap between stakeholders’ scope needs (for example, an auditor
maywant to inspect amodel globally and look at local cases), but generally, it is importantwhich scope an
explanation has. Therefore designers of ADS explanations should be thoughtful of how they select the
scope of an explanation based on a stakeholder and their goals.

Running-example. In the IEFP use case, SHAP factors were given to job counselors to show the top
factors influencing the score of a candidate both positively and negatively (Zejnilović et al., 2020). The
transparency provided by SHAP provided a local explanation about the outcome of the model. A bias
audit was also conducted on the entire algorithm, and presented to policy officials within IEFP.

Overall, researchers found that the explanations improved the confidence of the decisions, but counter-
intuitively, had a somewhat negative effect on the quality of those decisions (Zejnilović et al., 2020).

4.4. Putting the approach into practice

The stakeholder-first approach described in Section 4.3 is meant to act as a guide for technologists
creating regulatory-compliant ADS. Putting this approach into practice is simple: starting at the first
component in Figure 1 (stakeholders), one should consider each bubble, before moving onto the next
component and again considering each bubble. By the time one has finishedworked their way through the
figure, they should have considered all the possible stakeholders, goals, purposes, and methods of an
ADS. An instantiation of the approach can be found throughout Section 4.3 in the running example of
building an ADS that predicts the risk of long-term unemployment in Portugal.

It is important to note that our proposed stakeholder-first approach is only a high-level tool for thinking
about ADS transparency through the perspective of stakeholders and their needs. Beyond this approach,
there are meaningful low-level steps that can be taken by technologists when it comes to actually
implement transparency into ADS. One such step is the use of participatory design, where stakeholders
are included directly in design conversations (Eiband et al., 2018; Aizenberg and Van Den Hoven, 2020;
Gupta andDe Gasperis, 2020; Cech, 2021).We expand on participatory design in Section 5 of this article.

5. Concluding Remarks

This article takes steps toward a transparency playbook that technologists can follow to build AI systems
that comply with legal and regulatory compliance, while meeting the needs of the system’s users.
Importantly, the approach described here is stakeholder-driven, meaning that it starts by considering
stakeholders and their needs first, before choosing a technical method for implementing AI transparency.

One idea about system design we would like to briefly expand upon is participatory design (which is
becoming increasingly popular in AI literature) and how it interfaces with our framework. Participatory
design, also called cooperative design or codesign, is an approach to design wherein stakeholders are
actively involved in the design process. Participatory design often takes the form of interviewing, holding
focus groups, or collaborating directly with the identified stakeholders. For example, in one case study
designers successfully created explanations for an ADS being used for communal energy accounting by
having conversations directly with the tool’s users (Cech, 2021). In another example, participatory design
was used to successfully embed positive data-related values in nonprofit organizations in Australia
(McCosker et al., 2022).

While researchers in the human–computer interaction (HCI) and explainable AI (XAI) communities
have not yet reached a consensus on best practices for involving stakeholders in design, some core ideas
are emerging. Primarily, it is the idea that “thinking about stakeholders” implies considering a range of
aspects about stakeholders like their socio-technical background, historically relevant information, and
the relative power structures inwhich they exist (Ehsan andRiedl, 2020; Delgado et al., 2021; Ehsan et al.,
2021; Kaur et al., 2022). Delgado et al. noted that it is not sufficient to simply add a diverse group of users
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(or diverse group of user feedback) and “stir.” Rather, they identified five dimensions containing critical
questions like “why is participation needed?,” “what is on the table?,” and “how is power distributed?”
that can be used to properly guide participatory design in XAI (Delgado et al., 2021). Others have
advocated for fully holistic views of stakeholders that include their values, interpersonal dynamics, and
the social context of the AI system (Ehsan and Riedl, 2020; Kaur et al., 2022).

Put another way, thinking about stakeholders first means to truly care about them and their goals. We
fully subscribe to this idea and believe that if there is to be a positive, ethical future for the use of AI
systems, there needs to be thoughtful, stakeholder-driven design for creating transparent algorithms—and
who better to lead this effort than technologists. Should this stakeholder-first approach is widely adopted,
therewill be important implications for the public and private sectors. Researchers have demonstrated that
system transparency can improve user-system performance, and can play a critical role in avoiding
harmful societal risks (Zhou et al., 2019; Burgt, 2020).

There are several important research steps that could be taken to extend this work. First, the
stakeholder-first approach described here lays the foundation for creating a complete playbook to
designing transparent systems. This playbook would be useful to a number of audiences including
technologists, humans-in-the-loop, and policymakers. Second, a repository of examples and use cases of
regulatory-compliant systems derived from this approach could be created, to act as a reference to
technologists. Nevertheless, this article exists as a step in the right direction.
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