CORRECTION AND COMMENT CONCERNING 'ON DERIVATIONS AND HOLOMORPHS OF NILPOTENT LIE ALGEBRAS"

G. LEGER AND E. LUKS

Nagoya Mathematical Journal
Vol. 44, December 1971
pp. 39-50

The examples on p. 44 of metabelian Lie algebras L_{1} and L_{2} are isomorphic over certain base fields contrary to the claim in the paper. More specifically, the error lies in the incorrect statement that the rank of ad x for any x in L_{1} is either zero or is at least 3 . This statement does hold over Q, but if τ is a scalar satisfying $\tau^{2}-\tau-1=0$ then $\operatorname{ad}\left(x_{1}+\tau x_{2}+\tau^{2} x_{3}+x_{4}+\tau^{2} x_{5}\right)$ has rank 2.

These examples with holomorphs isomorphic to $H\langle 5,4\rangle$ were important in that they were to demonstrate the existence over any field of characteristic 0 of non-isomorphic metabelian Lie algebras with isomorphic derivation algebras and holomorphs. Actually, we have since discovered that there is, up to isomorphism, only one Lie algebra over C whose holomorph is isomorphic to $H\langle 5,4\rangle$.

Thus, although Theorem 4.5 is technically still justified by the examples, we feel it important now to point out that there do exist metabelian Lie algebras with isomorphic derivation algebras and holomorphs which are nevertheless non-isomorphic even under extensions of the base field. We present the following metabelian Lie algebras M_{1}, M_{2}, over any field of characteristic 0 ; these algebras have isomorphic derivation algebras and have holomorphs isomorphic to $H\langle 6,4\rangle$:
M_{1} has basis x_{1}, \cdots, x_{10} with the multiplication table

$$
\begin{aligned}
& {\left[x_{1}, x_{3}\right]=x_{8}, \quad\left[x_{1}, x_{5}\right]=x_{7}, \quad\left[x_{1}, x_{6}\right]=x_{10},} \\
& {\left[x_{2}, x_{4}\right]=x_{10}, \quad\left[x_{2}, x_{5}\right]=x_{8}, \quad\left[x_{2}, x_{6}\right]=x_{7},} \\
& {\left[x_{3}, x_{4}\right]=x_{7}, \quad\left[x_{3}, x_{5}\right]=x_{9},\left[x_{4}, x_{6}\right]=x_{9}}
\end{aligned}
$$

[^0]with $\left[x_{i}, x_{j}\right]=0$ for $i<j$ if it is not in the above list.
M_{2} has basis y_{1}, \cdots, y_{10} with the multiplication table
\[

$$
\begin{aligned}
& {\left[y_{1}, y_{2}\right]=y_{9},\left[y_{1}, y_{3}\right]=y_{8}, \quad\left[y_{1}, y_{4}\right]=y_{10}} \\
& {\left[y_{1}, y_{5}\right]=y_{7},\left[y_{2}, y_{3}\right]=y_{10},\left[y_{2}, y_{5}\right]=y_{8}} \\
& {\left[y_{2}, y_{6}\right]=y_{7},\left[y_{3}, y_{4}\right]=y_{7}, \quad\left[y_{3}, y_{6}\right]=y_{9}}
\end{aligned}
$$
\]

with $\left[y_{i}, y_{j}\right]=0$ for $i<j$ if it is not in the above list.
To see that M_{1} and M_{2} are non-isomorphic, one may verify that the rank of ad x for x in M_{1} is either 0 or at least 3 (and this is valid for all fields) while in M_{2} the derivations ad y_{4}, ad y_{5} and ad y_{6} each have rank 2.

Tufts University
Bucknell University

[^0]: Received November 11, 1974.

