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TOURNAMENTS WHOSE SUBTOURNAMENTS ARE 
IRREDUCIBLE OR TRANSITIVE 

BY 

J. W. M O O N 

ABSTRACT. Beineke and Harary gave an example of a family of 
tournaments Tn such that every subtournament of Tn is irreducible 
or transitive. We characterize all tournaments with this property. 

1. Introduction. A tournament Tn consists of a finite set of nodes 1, 2 , . . . , n 
such that each pair of distinct nodes i and / is joined by exactly one of the arcs 
ij or ji . If the arc ij is in Tn we say that i beats j or / loses to i and write i—>/. 
If each node of a subtournament A beats each node of a subtournament B, we 
write A—>B and let A + B denote the subtournament determined by the nodes 
of A and B. 

A tournament Tn is reducible if it can be expressed as Tn = A + B for some 
non-empty tournaments A and B ; otherwise it is irreducible. A tournament is 
transitive if there exists a linear ordering of its nodes such that i-*j if and only 
if i precedes j in the ordering. (Notice that the trivial tournament 7\ is the only 
tournament that is both transitive and irreducible.) A tournament Tn is 
highly-regular if n is odd and there exists a cyclic ordering of the nodes such 
that i-*j if and only if / is one of the first i ( n - l ) successors of i in the 
ordering; we remark that the ordering with this property is unique. (These 
tournaments were introduced by Kendall and Babington Smith [3]. For addi
tional material on tournaments in general, see [2] and [4].) 

We say a tournament Tn has property «S? if every subtournament of Tn is 
irreducible or transitive. Beineke and Harary [1] showed that highly-regular 
tournaments have property X. Our main object here is to establish a structural 
characterization of all tournaments with property SB. Before stating this charac
terization we need to introduce some additional terminology. 

2. Statement of characterization. We say the nodes in a subtournament A 
of Tn are equivalent if for any node q not in A either q-*A or A-*q. 
(Equivalent nodes are sometimes said to form a convex subset; see, e.g., [6]). 
Suppose the nodes of Tn are partitioned into disjoint subtournaments 
Eu ..., Em of equivalent nodes, where the subscripts 1 , . . . , m serve merely to 
distinguish between different subtournaments. Then Et->Ej or E^E{ for 
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l < i , / < m . If Rm denotes the tournament on m nodes in which i—>/ if and 
only if Ei-^Ej, then we write Tn = l ? m (E 1 , . . . ,E m ) . (If the sub tournaments 
El9..., Em are isomorphic, then Tn is the composition of Km with Et; see [4; 
p.78].) A tournament Tn is simple (see, e.g., [2] and [6]) if it has no non-trivial 
proper subtournaments of equivalent nodes, that is, if the equation Tn = 
Rm(El9..., Em) implies that m = 1 and Et - Tn or that m = n, Tn = Rm, and 
Et = 7\ for each L We can now state our main result. 

THEOREM 1. A tournament Tn has property X if and only if 

Tn = Rm(Eu . . . ,E m ) 

where Rm is a highly-regular tournament and the subtournaments Eu . . . ,Em all 
are transitive. 

3. Two preliminary results. For any node i in a tournament Tn, let T(i) and 
r_ 1( i) denote the subtournaments determined by the nodes of Tn that lose to i 
and the nodes that beat i, respectively. It may be that T(i) or r_ 1( i) is the 
empty tournament. We shall use the following lemmas in the proof of Theorem 
1. 

LEMMA 1. A tournament Tn has property ££ if and only if T(i) and T~1(i) are 
empty or transitive for all nodes i of Tn. 

Proof. If T(i) or r_ 1(i) is non-empty and non-transitive for some node i of 
Tn, then the corresponding subtournament i + T(0 or r - 1 ( i ) + i is neither 
irreducible nor transitive and, consequently, Tn does not have property S£. 
Conversely, if Tn does not have property «S?, then it contains a reducible 
non-transitive subtournament S = A + B where A and B are both non-empty 
and at least one of them is non-transitive. Let i and / denote any nodes in A 
and B, respectively. If B is non-transitive then T(i) is neither empty nor 
transitive, and if A is non-transitive then r_ 1( /) is neither empty nor transitive. 
This completes the proof of Lemma 1. 

LEMMA 2. A non-simple tournament Tn = Rm(E1,..., Em), where Km<n, 
has property ££ if and only if the tournament Rm has property X and the 
subtournaments Eu . . . , Em all are transitive. 

Proof. The sufficiency of the conditions follows readily from Lemma 1 and 
the necessity of the condition that Rm must have property SE is obvious. 
Suppose some subtournament Et is not transitive. If / is any node of Tn not in 
Eh and such a node exists since m > l , then either j->Et or Ef—>/. If j-^Et 

then T(j) is non-empty and non-transitive. Thus the conditions are also 
necessary, in view of Lemma 1. This completes the proof of Lemma 2. 

4. Proof of theorem 1. All highly-regular tournaments Tn have property 5£, 
as was shown in [1], since they clearly satisfy the condition of Lemma 1. Thus 
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the tournaments described in the statement of Theorem 1 certainly have 
property !£, by Lemma 2. 

Let TM denote any tournament with property J£ We may assume that Tn is 
non-transitive and simple, in view of Lemma 2, and we may also suppose that 
n > 3 . To complete the proof of Theorem 1 we must show that Tn is highly-
regular. 

The score of any node i is the number of nodes beaten by i. If s denotes the 
maximum of the scores of nodes of Tn, then l < ^ ( n - l ) < s ; furthermore, 
5 < n - 2 since if s = n-l then Tn would be reducible and not simple. Let x 
denote any node with score s. We may suppose, for convenience, that x has 
label n; that the nodes of T(n) are labelled 1, 2 , . . . , s; and that the nodes of 
r -1(n) are labelled 5 + 1 , . . . , n - 1 . Since Tn has property «2? it follows that 
T(n) and r_1(n) are both transitive, by Lemma 1. So we may further assume 
that if l < i < / < s , then i—»/ in T(n); and that if s + l < w < i ; < n - l , then 
u—»i? in r_1(n). This labelling defines a natural circular ordering of the nodes 
of Tn and, in what follows, when we refer to the successors or predecessors of a 
node, we mean the successors or predecessors with respect to this ordering. At 
this stage we may say that node n beats its first 5 successors (and loses to its 
n-l-s predecessors) and that each node in T(n) and r_1(n) beats its 
immediate successors in these subtournaments (and loses to its immediate 
predecessors in these subtournaments). We want to show that the same is true 
for each node i. 

Suppose for some node x in T(n) there exist two nodes u and v in r_1(n), 
where u<v, such that u—»x and x-»u. Then u—»n, n-*x, and x—>v; that is, 
the nodes v, n, and x form a 3-cycle, and all three of these nodes lose to u. If 
this were the case, then Y(u) would be neither empty nor transitive and Tn 

would not have property «3?. It follows, therefore, that if a node x in T(n) beats 
any nodes of r_1(n), then those nodes form a subset of consecutive nodes of 
r -1(n) starting with node 5 + 1. 

Node 1 beats the s -1 nodes 2 , . . . , 5 and, in addition to these nodes, it 
beats just one node of T_1(n). For, if node 1 beats more than one node of 
r_1(n), its score would exceed the maximum score s; and, if node 1 lost to all 
the nodes of r_1(n), nodes 1 and n would be equivalent, contradicting the 
assumption that Tn is simple. Therefore, node 1 beats one node of r_1(n), 
namely, node 5 + 1, and loses to the remaining nodes of T_1(n). 

We next observe that node 5 must beat node 5 + 1, for otherwise it would 
have score zero and Tn would be reducible and not simple. Finally, we assert 
that all remaining nodes of T(n) must also beat node 5 + 1. For, if there were 
some node x, where Kx<s, such that s + 1—»x, the nodes x, 5, and 5 + 1 
would form a 3-cycle in T(l); then T(l) would be neither empty nor transitive 
and Tn would not have property X. 

It follows form the preceding observations that node 1 beats its first s 
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successors (and loses to its n-l-s predecessors) and that each node of T(l) 
and r_ 1(l) beats its immediate successors in these subtournaments (and loses to 
its immediate predecessors in these subtournaments). By repeating this argu
ment we find that the same is true for every node i of Tn. In particular, each 
node of Tn beats its 5 immediate successors. This implies that s = | ( n - l ) and 
that n is odd. Hence, Tn is highly-regular by definition. This completes the 
proof of Theorem 1. 

5. Enumerating tournaments with property ££. Let f(n) denote the number 
of tournaments Tn with n labelled nodes that have property if, and let g(n) 
denote the corresponding number when the labels of the nodes are not taken 
into account. 

THEOREM 2. If n = 1,2,. . . , then 

f(n) = (n-l)\2n-1 

and 

g(») = £Ç*<k)2"* 

where <f)(k) denotes the Euler ̂ -function and the sum is over all odd divisors k of 
n. 

Proof. Let Tn = Rm(Eu..., Em) denote a tournament with property ££, 
where Rm is highly-regular. It follows from the definition of Rm that there 
exists a circular ordering of the subtournaments El9..., Em such that Ei-^E, 
if and only if E] is one of the first \(m - 1) successors of Ei with respect to this 
ordering (and the ordering with this property is unique). Furthermore, there is 
a unique linear ordering of the nodes in each transitive subtournament Et such 
that each node u in Et beats its successors with respect to the ordering in Et. 
These orderings, that is, the circular ordering of the subtournaments Et and the 
linear orderings of the nodes in the individual subtournaments Eh induce a 
circular ordering of the n nodes of Tn such that each node u beats its 
immediate successors that belong to the same or one of the next \(m-\) 
subtournaments Et. 

It follows, therefore, that there is a one-to-one correspondence between the 
labelled tournaments Tn with property 5£ and the circular arrangements of m 
O's and the n numbers 1,2,. . . , n such that no two O's are next to each other. 
The numbers 1, 2 , . . . ,n correspond to the nodes of Tn and i—>/ in Tn if and 
only if there are at most \{m -1) O's between i and j in the circular arrange
ment. There are (n-1)! circular arrangements of the numbers 1, 2 , . . . , n and 
for each such arrangement there are (£) ways to insert m O's. Since m can be 
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any odd number not exceeding n, it follows that 

/(n) = ( n - l ) ! { ^ + Q+---J = (n-l)!2-1, 

as required. 
Now suppose the labels of the nodes are not taken into account. It is not 

difficult to see that there is a one-to-one correspondence between the unlabel
ed tournaments Tn = Rm(Eu... ,Em) with property «S? and the circular ar
rangements of n l's and m O's such that no two O's are next to each other. 
(Two such arrangements are considered the same if the differ only by a 
rotation.) If no two O's are next to each other, then each 0 is followed by a 1; 
thus, the circular arrangements of n l's and m O's with no two O's next to each 
other are equinumerous with the circular arrangements of (n-m) l's and m 
O's. It is well-known (see, e.g., [5; p. 162]) that the number of such arrange
ments is 

where the sum is over all divisors k of m and n. When we sum this expression 
over all odd numbers m not exceeding n we obtain the required formula for 
g(n). (Since m is odd it follows that k is odd.) 

Notice that when n is a power of 2, then 

g(n) = - 2 - 1 ; 
n 

and when n is an odd prime p, then 

g(p) = ̂ (2P-1 + p - l ) . 
P 
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