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Abstract. We introduce certain quotients of two-variable formal power series, called ‘Shintani Func-
tions’. They generalise the generating functions of [Sh] for special values of pgaftiattions over

real quadratic fields. A study of their formal properties leads to quick, non-analytic proofs of some
results on generalised Dedekind sums (Reciprocity Law, etc.). It also gives an algebraic construction
of certain 1-cocycles on the group P&()) similar to those constructed by R. Sczech and G. Stevens
using analytic methods.
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1. Introduction and notations

This paper seeks to make a new contribution to a circle of ideas linking spe-
cial values of zeta-functions with generalised Dedekind sums. The special values
in question are those taken at non-positive integers by the partial zeta-function
(k (s,a) associated to a ray-clas®f a real quadratic field(. Siegel was the first

to obtain explicit general formulae for these values in [Sil] and [Si2]. His formulae
involve sums of products of values of Bernoulli polynomials, sums which can be
recognised as generalisations of the suss,'k)’ of Dedekind appearing in the
transformation law for the logarithm of thefunction. Siegel’s formulae show

in particular that these special values aational, a result extended by Klingen

and Siegel to an arbitrary totally-real number figldof degreed over@Q. In his

paper [Sh], Shintani gave a new proof of this fact by means of some remarkable
explicit formulae for(r(—k,a), k = 0,1,2,.... His method is entirely different
from Siegel’s. It involves the construction of coneskihto which one associates
certain quotients od-variable power-series. Shintani proved by complex-analytic
methods that, roughly speaking, these quotients act as generating functions for the
above-mentioned special values. Whiesgquals 1 they are the generating functions

of the Bernoulli polynomials themselves. These polynomials are well known to
give the special values of Hurwitz’ zeta-functions (the casel, F = Q). In the

cased = 2, Shintani showed how Siegel’s explicit formulae faf(—k, «) could

be recovered from his and the Dedekind-type sums reappear.
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A new and unifying element enters the circle in the work of Glenn Stevens [St]
and Robert Sczech [Sc1]. Both of these authors constmistersal’ 1-cocycleon
the group PGL(Q). On the one hand their cocycles can be written out explicitly
in terms of generalised Dedekind sums. On the other, by specialising them at the
appropriate matrix (representing the action of a certain unit), they can be used to
calculate the partial zeta-values famyreal quadratic field<. Both constructions
are analytic in nature. (Stevens uses certain ‘periods’ of Eisenstein series and
his theory of ‘modular caps’ and modular symbols, making the connection with
zeta-values by means of Siegel's work. Sczech constructs his cocycles by real-
analytic methods). The importance of the cocycle interpretation can be seen from
its applications both to the calculation of zeta-values — where it gives rise to highly
efficient continued-fraction algorithms — and to generalised Dedekind sums, where
it produces very general versions of Dedekind’s ‘Reciprocity Law’ for the sums
s(h, k). These applications are explained in [St] and in [Sc1] (see also [Hay] for
the zeta-values at= 0) although the generalised reciprocity laws are ‘predicted’
rather than written out precisely.

The aim of this paper is to present 1-cocycles on P@). of a similar nature
to those of Sczech and Stevens but with two significant differences. Firstly, our
‘Shintani Cocycles’ argarabolic’: they vanish when evaluated at (the images of)

0d

parabolic; but then the spaces in which they take values, though similar, are not the
same either. Secondly, our construction is completely elementary and essentially
algebro-combinatorial. The fundamental tool is a modification of the formal gen-
erating functions which were introduced by Shintani and can be attached to certain
geometrical data involving cones and latticeskt The object of Section 2 is to
define these ‘Shintani functions’ and then to elucidate their fundamental properties,
not as generators of zeta-values but rather as formal algebraic objects in their own
right. A precise connection with Dedekind sums is established in Section 3. It tran-
spires that the coefficients of the Shintani functions are, essentially, the elements
of a doubly-infinite sequence of highly general sums which were defined explicitly
by Halbritter in [Hal], although they were already present in Siegel’s formulae. The
functional properties of Section 3 consequently lead to new and elementary proofs
of certain identitites for these sums, not only Halbritter's generalisation of the
Reciprocity Law but also the so-called ‘Generalised Petersson—Knopp Identities’
(see e.g. [A-V]). One could probably devise further applications of a similar nature.
The final section of this paper deals with the construction of cocycles by means of
Shintani functions. Thanks to the results of Section 2, very little actually needs to
be done once the appropriate framework of B@&l)-modules of distributions on
R? /72 has been set up.

The fact that the Shintani Cocycles also calculate partial zeta-values is guaran-
teed by their origins in Shintani’s generating functions and follows therefrom with
no further analytic work. We have chosen nevertheless to postpone details of this

matrices of the forn{ " b) in PGL2(Q). Those of Sczech and Stevens are not

https://doi.org/10.1023/A:1000493903703 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000493903703

ALGEBRAIC PROPERTIES OF SHINTANI'S GENERATING FUNCTIONS 335

connection to a sequel to this paper in which we shall have room to discuss several
further aspects of the two-way relationship between the cocycle formulation and
properties of zeta-values. In one direction, there are continued fraction algorithms
of the type mentioned above. In the other, the non-vanishing of cdrthinctions
implies non-triviality results for the Shintani cocycles. The cocycle interpretation
also suggests further modifications of Shintani’s functions which can be applied,
for instance, to give a new variant of the construction of gkedic partial zeta-
functions byp-adic interpolation. (For anotheradic application related to the
cocycle property, see [So0]).

Two natural questions concerning the cocycle formulation‘Bi@w, precisely,
areits three variants (Stevens’, Sczech’s and ours) rela@at?Do they generalise
to dimensions! greater than2?’ No precise comparison between Sczech’s and
Stevens’ cocycles seems to have been carried out and, apart from above remark
concerning parabolicity, we shall not compare our cocycle directly with either of
the other two versions in the present paper. However, Stevens’ cocycle is believed
to be essentially the same as a certain cohomologous variant of ours which will
be introduced in a sequel, [So2] As regards higher dimensions, Sczech has already
generalised his analytic construction to arbitrdrip a later paper [Sc2] to [Scl].

If the construction of the present paper is to be generalised, the main (or at least the
first) task must be to gain a proper understanding of the combinatorics of lattices,
configurations of cones and their degenerations in higher dimensidtded in

proof. See [Hu] for the casé = 3 and a partial generalisation for d).

The symbolsy, Z,Q, R andC will have their usual meanings in this paper (note
that 0 N). R* will denote the multiplicative group of the nonzero real numbers
and sgnR* — {£1} the sign homomorphism whose kernel we shall deiigte
The multiplicative group®* andQ} are defined analogously. The function ‘sgn’
will also be extended t® by setting sgf0) = 0. Bold face upper-case letters
A, Q etc. will be used to denote matrices (usually elements of the general linear
group GLy(R)). These act on the left on (column) vectors which will be notated in
bold lower-cased, x, 0 etc.) and will usually represent elementsgdfor of some
associated quotient or subgroup. The synzhbbwever, will be reserved for a pair
of formal variables(z1, z7) to be regarded as @w vector. By sticking to these
conventions, expressions suchzi4, Ma andz.a should be quite unambiguous.

We shall use the symbolgz) andRR((z)) to denote the fraction-fields of the rings
R[z] andR[[z]] of polynomials and formal power-series respectively, all naturally
included inR((z)). The (total) degree function ‘deg’ defined Bfz]\ {0} provides
agrading on th&-algebrar[z]. For eachi € Z we shall writeR(z), for theR-vector
subspace dk(z) consisting of the homogeneous rational functions of delgrdas

0. Thatis

R(z); == {0} U{F/G € R(z) : F,G € R[z]\{0},
F, G homogeneousleq F') — deq G) = [}.
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We shall also employ the special notatigf(z))" for the R-subalgebra oR((z))
consisting of those elements which have a homogeneous denominator

R((2))":= {F/G e R((2)) : F € R[[z]], G € R[z]\{0}, G homogeneous

For any power-series' in R[[z]] andl € N we write F; € R[z] for its ith homo-
geneous part, the formal sum (possibly 0) of its component monomials of degree
1. This notation has an obvious extensiorki(@z))": the ‘Ith homogeneous part’

H; of H € R((z))" is unambiguously defined to kg, /G whereF/G is any
representation ol with G a homogeneous polynomial of degreél'he mapping

H — H, thus defines am-linear surjectionr; from R((z))" onto its R-vector
subspac®&(z), in such a way that the product map

[[m: k()" — [[R@)

lez leZ

is injective. The fact that it is obviously not surjective won't prevent us from
referring tor(z); as the Ith homogeneous component'®f(z))".

2. Shintani functions
2.1. DEFINITIONS AND BASIC PROPERTIES

The basic objects under study are certain elementg((x))"® which we call
‘Shintani functions’ and denot®(A, x,t,s) = P(A, X, t,s;z). We first explain
how they are defined. The datax, r ands are as followsA is any (rank-2) lattice
in k2 andx € R?/A is any equivalence class modulo(sox is a subset ok?).
The symbols: ands denote A-rational’ rays emanating from the origin ik?.
More precisely, they are equivalence classes for the multiplicative actign oh
QA\{0}. We shall denote the set of such raystyQA ). Given such a quadruple
(A, X, t,5) with ¢ # +s, we first define an element & (z))"? by

Zaeme(r,s) e-d
(1—er")(1—e*s)’

P(A, X, t,8) = P(A, X, 1,8, 2) = (1)

Here, we have chosen amy=c ANt ands € A N s (these sets are clearly
non-empty) and’(r, s) denotes the half-open parallelogram (see Figure 1)

P(r,s):={pur+vs: p,reR 0<p<l0<r <1}

whose intersection witR is of cardinality equal to the (finite) indéA: Zr + Zs.
The expressions“@ etc. of course represent formal exponential series. Thus we
can takg(z1r1 + 2z2r2) (2151 + 2252) as a degree 2, homogeneous denominator for

P(A, X, t,s). Note that the setd Nt andA Ns consist of positive integral multiples
of ‘minimal’ elementg g andsy respectively. Nevertheless, to have specifiedrg
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2)

Figure 1 P(r,s) andC(t,s).

ands = sp would have been pointlessly restrictive since the right-hand side of (1) is
independent of the choicesoéands: Replacing by a positive integral multipler
simply multiplies both the numerator and denominato[l‘;go1 ", and similarly

for a change irs.

REMARK 1. The reader should keep in mind the following meaningless identity
obtained by the wholly illegitimate procedure of ‘expanding the denominators’
in (1)

PN X, 1,52 = Y € 2)

aexnNCx,s)

Here,C(x,s) denotegC (v, s) := (R}t + R} s) U R}, the half-open, positive, real
cone one ands. It is the disjoint union of the translates Bfr, s) by the elements

of Nr + Ns. The sum on the right of (2) is of course infinite and does not converge
as a power series iR[[z]]. The idea should nevertheless be helpful.

Fort = +s we setﬁ(A, X,t,5;2) = 0 for all A andx. Next given two vectors

ur vi1

u andv in R? we defines(u, v) to be sg .

and for rays, s € P, (QA), we

shall write&(x, s) for the common value a&(r, s) for anyr € v ands € s. Using
the traditional picture ok? in the planes(t, s) is equal to+1 or —1 (for ¢ # +s),
according as one turns anticlockwise or clockwise in passing fréons within
C(r,s). Itis zero ift = +s. We can now make the

DEFINITION 2.1. Foreach quadrup{d, x, t, s) as above, we define corresponding
the Shintani function irR((z))" to be
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P(A,X,t,8) = 26(x,8)(P(A, X, t,5,2) + P(A, X, 5,7, 2))

Z;EXQP r,s) e (3)

(1—e2")(1—es)’

= 6(t,9)

for anyr € v ands € s. Here P(r, s) denotes the common closure Bfr, s) and
P(s,r) and the symbaL’ will indicate by convention that any terms corresponding
to pointsa which lie on theboundaryof this parallelogram should be included in
the sum with a coefficient o% exceptthose (if any) corresponding to the two
verticesO andr + s, which are always to be excluded from the sum.

We now investigate the behaviourBfA, x, r, s) as a function of its four arguments.
First we consider the dependence on the faysTheDirac functions (x) onR? /A
is defined to be 1 or 0 according &ss or is not the zero class.

PROPOSITION 2.1For all quadruples(A, x, ¢, s) we have
(I) P(Av X, t, 5) = _P(Av X,S,'C),

(i) P(A,X,v,8) + P(A,X, —5,t) = —36(r,5)d5(X),

(i) P(A,X,—t,—s) = (A X,t,s) and

(V) P(A, X, v, —s) = P(A,X, —t,8) = P(A, X, t,8) + 36(, 8)dA (X).

Proof. Part (i) is ObVIOUS, (iii) follows from (ii) by iteration and (iv) follows
from (i), (i) and (iii). It remains to prove part (ii) of which only the casé +s is
non-trivial. For this, we selecte « ands € s and apply the second formula in (3)
using the pairgr,s) and(—s, r). This gives

E/ eza eZSE ez.a

acxnP(r,s) acxNP(—sr)
(1—e*")(1—e?9)

P(A, X, t,8) + P(A, X, —s,t) = &(t,5)

A simple argument using the definition &f implies that there is complete can-
cellation in the numerator except for any possible ‘vertex terms These latter arise
only if x is the zero class and then give a numeratgebf+ &S —e#(+9 1) /2 =
—(1-¢e*")(1-¢e9)/2. O

Next, we consider the effects of changingandx. LetM = (Z Z) be a

matrix in GLy(R). For eachF' € R[[z]], we write F' o M for the power series

F(zM) = F(az1 + cz2,bz1 + dz2). The ‘change-of-variable-mag’ — F o M

is clearly anR-algebra automorphism d[[z]] and so extends to an automor-
phism of the quotient field which preserv§(z))" and which we also denote
by ‘oM’. We define ari-linear, left action,+, of GL»(R) onR((z))" by setting
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M x F := sgr(detM)F o M, for all M € GL(R) andF € R((z))". Any matrix

M € GLy(R) also acts naturally on the left ok, taking a latticeA to a lattice
MA, a clasx € R?/A to a classM (x) € R?/MA and each ray € P, (QA) to
arayMr € P (QM A). With these notations, the following proposition should be
evident from Definition 2.1.

PROPOSITION 2.2For any quadruple(A,x,t,s) and anyM € GL(R) we
have the identitie® (M A, M (x), Mt,Ms) = P(A,X,t,s) o M andP(MA, M (x),

Mt,Ms) =M x P(A, X, t,5). O
EXAMPLE 1. Suppose thafw,w'} is a base for the latticA. ThenA = Q72
where
w1 W
Q= < }) € GLa(R).
w2 Wy

Proposition 2.2 tells us that for amye QA/A ande,s € P (QA) we can write
P(A, X, t,5) asQ*P (22, Q71(x), 271, Q1) with Q71(x) € (R/Z)? andQ 1,
Qs € P, (Q?). Thus, for many purposes it is sufficient to study the Shintani
functions associated to the lattizé C R?. In this case we shall often abbreviate
P(Z2% X,¢,5) t0 P(X,t,5) = P(X,t,5,2). Indeed, by insisting (as we may) that

be the ‘minimal’ elementg of t N A, this linear change of variable reduces us to
the consideration of functions of type

P (Zz,x, Q} <é> ,5) fors € P, (Q?).

Now, for each sublattica’ of A, we haveQA = QA’ and we denote by, 5 the
natural,[A : A’]-to-1 surjection fronk? /A’ ontoR? /A.

PROPOSITION 2.3Given any latticeA with sublattice\’, a classx € R? /A and
two raysr,s € P, (QA) = P, (QA’), we have
P(A,X,t8) = Y. P(A,X,1,s).
XIERZ/A/
s, A (X)=X

Proof. It suffices to prove the corresponding equality R\, X, ¢, s) in the case
v # +s: User € tn A/, s€ sN A’ on both sides and note that, as a subs@fok
is the disjoint union of the’ in the sum on the right. O

EXAMPLE 2. Letn be a nonzero integer. Applying the Proposition with= nA
we find

P(A, X, t,8) = Z P(nA, X v 5) = Z P(nA, X ne,ns), (4)
X' €ER?/nA X' €ER?/nA
WnA‘A(X,):X WnA‘A(X,):X
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by Proposition 2.1, part (iii), sincéwr,ns) = £(t,s). We shall frequently write

: 0 : : .
n for the matrix (g n) € GL»(Q) whose action ork? induces an isomor-

phismn:y — n(y) from R? /A ontoR? /nA such that the resulting composite map
R2/A 5 R?/nA o R?/A is multiplication byn in the Abelian groupk?/A.
Thus the right-hand side of (4) can be rewritten as

> P(nA,n(y),ne, ns)
yER?/A
ny=x

and Proposition 2.2 gives the distribution relation

P(A, X, r,8) =Nk Z P(A,y,t,s), Vn € z\{0}. (5)

yERZ/A
ny=x

EXAMPLE 3. In the casel = 72 we can generalise the previous Example,
replacingn by an arbitrary matrixA in My(Z) N GL2(Q). The action ofA on

R? induces the isomorphisiA:y — A(y) from R?/z? onto R?/AZ? and the
composite magra 2,2 0 A is the natural endomorphisyn— Ay of R? /72, (Note
the distinction betweeA (y) andAy in this context). Replacing the raysinds by

Ar andAs and arguing exactly as before, we obtain

P(x,Ar,As) = > P(AZ%A(Y),Ar,As) =Ax Y P(y,r,5). (6)

yER?/2? yER?/7?
Ay =X Ay =X

2.2. AFORMAL ANALOGUE OF CAUCHY'S THEOREM

Throughout this subsection we fix a lattiteC R?. We need some terminology to
describe triples of-rational) rays ink?.

DEFINITION 2.2 (Dichotomy). A triple(x, t1, t2) of rays inP, (QA)3 will be
called ‘degenerate’ if and only ifxo,t1,v2}| < 3. (That is, if and only if there
exist: andj with ¢ # j andr; = ;). Otherwise it will be called ‘non-degenerate’.

DEFINITION 2.3 (Trichotomy). A triple(to, t1, t2) of rays inP., (QA)3 will be

called ‘critical’ if and only if |[{Q* g, Q% t1, Q" v2}| < |{ro,r1,t2}|. (That is, if
and only if there exist and;j with v; = —¢;). A non-critical triple will be called
‘splayed’ if O € vg + v1 + t2, Otherwise it will be called ‘folded’. (See Figure 2).

A consequence of these definitions is that critical and folded triples can be either
degenerate or non-degenerate but a splayed triple is automatically non-degenerate.
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\
\

‘Folded’ ‘Critical’ ‘Splayed’

‘Central Ray’

Figure 2 Non-degenerate triples.

In fact:

LEMMA 2.1. A triple (xo,t1,t2) € P, (QA3 is splayed if and only if it is non-
critical, non-degenerate and satisfi€$ro, t1) = &(r1,t2) = &(r2,0).

Proof. ‘If’: Chooser; € v; fori = 0, 1, 2 then there exist; € Q, not all zero,
such thap0r0+u1r1+u2r2 = 0, which impliesﬁ(uoro, ,u,]_rl) = 6(,[1,1!’1, ,u,zl’z) =
S (p2r 2, 1ol o). Since (vo,t1,t2) IS Non-degenerate and non-critical, everyis
necessarily nonzero as is eadl;, r;), SO comparison with the equality of the
cyclically ordereds(v;, v;)’s yields: sgiiuou1) = sQMp1p2) = SQM ko). The
u; are therefore all of the same sign, w.l.0.g. positive, so that3 + t1 + to.
Details of the (similar) converse argument are left to the reader. O

COROLLARY 2.1.1If (rg,t1,t2) is splayed then—ro,t1,t2), (vo, —t1,t2) and
(vo, v1, —t2) are all non-degenerate and folded O

COROLLARY 2.2.1f (rp,t1,t2) is non-degenerate and folded then there is a
uniquei. € {0, 1,2} such that replacing;, by —t;, makes the triple splayed. If
{0, 1, 2} = {’ic,’il,’iz} thenG(til,tic) = G(tic,tiz) = _G(tizytil)- |

In the situation of Corollary 2.2;_ will be called the tentral ray of the non-
degenerate, folded triple. Geometrically, it is the unique ray which is contained
in the (open) positive cone on the other two, as follows from the definition of
splayedness.

LEMMA 2.2 (The Juxtaposition Lemmal.et (xg, t1,t2) € P, (QA)® be a non-
degenerate, folded triple withy as the central ray. Then, for at € R?/A, we
have

?E(Avxvt()vtl) + ?E(AvxvtlytZ) = fﬁ(A,X,to,tz). (7)
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Proof. Sincer; is contained in interior of the half-open cofiér, t2), we clearly
have

C(vp,t2) = C(vo,t1) U C(v1,t2). (8)

This lemma is therefore a natural and intuitive consequence of the regrettably
meaninglessidentity (2). A ‘proper’ (i.e. rigorous) proof can be obtained by dressing
this idea in respectable clothes: First consider the case witisra torsion or A-
rational’ class, sothat € (1/N)A for someN € N. Choose any, Vv € A, linearly
independent ove and such thaty, r» (and hence;) are contained in the closed
positive cone o andv (e.g. takeu € tgN A, v € r, N A). Set

ui v1

-1
A = N[A:Zu+ ZV] < ) € GL2(R).

uz2 2
If we can prove that
P(AA, A(X), Ato, At1) + P(AA, A(X), Aty, Atz) = P(AA,A(X), Atg, Atz),  (9)

then (7) will follow on applyingeA~1, by Proposition 2.2. Now, the definition of
A implies thatAA is contained inNZ2, A(X) in z2 and C(Av;, At;) in the set
{(p,v) € R? : pu,v > 0}, for each(s, j). Hence, by choosinig®) in At; N AA, for

i =0,1,2 and setting;, = €%, T, = %2, we can rewrite Equation (9) as

EaEA(X)ﬁP(b(O) ,b(l)) Tfszaz ZaEA(X)ﬂP(b(l) 7b(2)) TflTZGZ
RONINO RERNEY RORREY NORENG)
(1_T11 T22 )(1_T11 T22 ) (1_Tll T22 )(1_T11 T22 )

L Xacamnpp© p@) 1 T5° 10
= NONINC NOEENORE (10)
1-T" T )1-T1" T* )

Since all the exponents lie i (and theb; in particular are not equal {®, 0)), this

last equation can be viewed as taking place inltvalisationQ[77, T%]sy of the
formal polynomial ringQ[71, T»] at the maximal idean := (741, 7%). Going one
stage further, we can embed this local ring in its completion, canonically identified
with Q[[T1,T>]]. This manipulation amounts to ‘expanding denominators’, and
so, using the geometrically obvious decompositiol¢hr;, Ac;) as the disjoint
union{J, ;o (P (b, b9 A) + sb(®) + b)) and the fact that thie; lie in AA, itis

easy to see that the target Equation (10) becomes the following equality of formal
power-series

> THTy? + > THTy? = > THTy?.
aEA(X)ﬂC(Ato,Atl) aEA(X)ﬂC(Atl,Atz) aEA(X)ﬂC(Ato,Atz)
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To complete the proof in the case whens torsion, one simply observes that
C(Aro, Arp) is the disjoint union of the juxtaposed half-open cof&#, Aty)
andC'(Ar1, Arp), (applyA to Equation (8)) so that the last equation is obviously
satisfied.

The casex ¢ QA/A now follows by a simple continuity argument which we
shall only sketch. Clearing the denominators, Equation (7) is equivalent to the
following equality inRR[[Z]]

(1—-€2) ) (x) + (1 —0) Y (x) = (1-&) D (x), (11)
0,1 1,2 0,2

wherer; € v; N A andX; ;(x) denotes the finite SUMacxp(r, 1) e~2 for each
pair (i, 7). The present case will follow from the previous one If we can construct
a sequencéx,, }men Of A-rational classes such that, for ea¢hj), the power
seriesy; j(X) tends coefficientwise t&; ;(x) asm — oo. If X N R r; is empty
fori =0, 1, 2, then this construction is easy. Since the vec@ppearing in each
¥;,j(x) then all lie in thenterior of the half-open parallelogra(r;, r ;) and since
QA is dense ink?, we can takex,, to bec,, + A, where{c,, }..c iS any sequence
in QA tending to any givert € x. If, on the contrary, there exisig € {0, 1,2}
such thak N R v;, # 0 then such ary is unique (otherwise the pairwigelinear
independence of the rays would foree= QA). It follows that all the vectora
appearing in2; ;(x) lie eitherin the interior of P(r;,r;) or on an edge (but not
at a vertex) which is contained in a translatergf;,. In order to ensure the con-
vergence ot; ;(x,,) to X; ;(x) for each(i, 7) in this case, it therefore suffices to
choosec € x N R} r;, and insist that the,, tending toc all lie in r;,. Again, this is
possible by density. O

REMARK. 2. This is the only point at which anything resembling an analytic argu-
ment enters our proofs. Were we to insist systematicallyxtiatin QA /A, then
purely algebro-combinatorial methods would suffice and, in fact, such a restriction
is quite natural from a number of viewpoints. For example, it is obviously ‘stable’
under passage to a sublattice and the action o ®L(cf. Propostions 2.2 and 2.3).

It also ensures that the Shintani functiBiA, x, ¢, s) lies in Q(A)((z))", where,

Q(A) denotes the subfield af generated ove® by the co-ordinates of (a-base

for) the points ofA. What's more, many of the applications of Shintani functions
(e.g. to zeta-functions) take place within the context of torsion classes

With the aid of the Juxtaposition Lemma, we shall now establish an interesting and
fundamental property of Shintani functions with far-reaching consequences in the
applications.

THEOREM 2.1 Let(tg,t1,t2) € P, (QA)3 be any triple ofA-rational rays. Then,
for all x € R?/A, we have

P(A, X, v0,t1) + P(A, X, t1,v2) + P(A, X, v2,t0) = —0a (X)W (vo,t1,v2), (12)
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whereW: P (QA)® — {0,£3, +1} is the unique function invariant under cyclic
permutation of its arguments defined by

W (v, t1,t2)
0 if (x0, t1, v2) is folded,
= %G(to,tl) = %G(tz,to) if (vo,t1,t2) is critical, withty = —v,
S(vo,t1) = S(r1,t2) = S(r2,70) if (vo,r1,t2) is Splayed.

Proof. For a degenerate triple, we can assume by cyclic permutatioty thaiy
and the result follows from Proposition 2.1, part (i). In the folded, non-degenerate
case we can similarly assume thafs the central ray. The Juxtaposition Lemma
then gives

?E(Av X, to, tl) + ?E(Av X, t1, tZ) - ?E(Au X, vo, tZ) =0
and also (swapping with t2)
75(A7 X, 12, tl) + 75(A7 X, t1, t0) - 75(A7 X, t2, t0) =0.

Taking the arithmetic mean of these two equations, multiplyingks, t1) and

using Corollary 2.2 gives (12) in this case. In the critical non-degenerate case there
is a unigue cyclic permutation of thewhich makes, = —r;, so thatg # +v1 and
P(A, X, r1,t2) = 0. This case therefore follows from Proposition 2.1 part (ii). In
the splayed case, Corollary 2.1 tells us tfrat—r1, t2) is folded, so that (dropping

A andx): P(rz,v0) = —P(ro, —r1) — P(—r1,r2) = P(—r1,v0) + Pr2, —r1) by
Proposition 2.1, part (i). Therefore

P(ro,r1) + P(r1,r2) + P(r2,t0)
= (P(vo,v1) + P(=r1,70)) + (P(r2, —v1) + P(r1,v2))
= —:—ZL(SA(X)(G(tQ, t1) + &(r2, —11)),
by Proposition 2.1, part (ii), and the result follows from Lemma 2.1. O

Notice thatW is really a winding-number! To be more precise, suppose that
we are given a finite sequence of poingsri,...,r,—1,r, = roin QA\{0} for
some integer. > 3 we shall denote by; the A-rational rayQyr; € P (QA)

and we assume that # +v;,1 for i = 0,1,...,n — 1. We can therefore

defineI'(ro,r1,...,r,—1) to be the ‘piecewise-linear, oriented, closed path in
QA\{0}" whoseith edge is the A-rational line segment’ going from; to r;,
fori=0,1,...,n —1. We letl'(ro,rs,...,r,—1) denote the closure of this path,

which is contained irk?\{0}. Up to homotopy ink?\{0}, it depends only on
the sequence of rayso, t1,...,t,—1). In the casen = 3 we are dealing with
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non-degenerate, non-critical triplés, v1, r2) and W (xo, t1,t2) as defined in the
theorem is then obviously equal to the standard (anticlockwise) winding-number
of the real pati’ = T'(xo, r1, t2) C R?\{0}. (Explicitly, for any pathy in ®?\{0},

we define this winding number to he(y) = (1/2m) [, (1/7) dz, whereR? is
identified withC in the conventional way). Using these notations, we can deduce
the following result from Theorem 2.1.

COROLLARY 2.3 (The Formal Cauchy Theorenbet n be an integer greater
than2and letrg,rq,...,r,—1,r, = robe any sequence A\ {0} which satisfies
v # 1 fori=0,1,...,n—1. Then

n—1

> PA X, v, tip1) = —0A(X)w(D(ro,f1, ..., Fro1)). (13)
i=0

Proof (Sketch). In order to ensure that # +v;,s = 1,...,n — 1, we can, if
necessary, insert an extra pairdf QA\ {0} ‘between’ two successive points of the
sequence and cyclically relabel to makegt This does not change the left-hand
side of (13) (by Theorem 2.1), or the right-hand side. Now break the path up into a
sum of triangled’(ro, r;,r;41) fori = 1,...,n — 2 and conclude by induction on
n, using Theorem 2.1 and an obvious ‘additivity’ property both sides of (18).

Of course, this process could be put into reverse. By takirgZ? one could give
apurely rational definitiorof the winding number of a piecewise-linear, oriented,
rational, closed pathi(ro,r1,...,r,—1) C Q?\{0} as being-X!" 0P (0, v;, t;+1),

(a priori an element of)((z))", but actually an integer).

2.3. AN EXPLICIT FORMULA

It is relatively easy to give an explicit expression for the Shintani functions in
terms of Bernoulli polynomials. These latter appear (almost by definition) as the
coefficients of certain 1-dimensional analogues of &, X, t,s). In order to
stress this analogy, we start by considering an arbitrary, rank-1 lateoebedded

in R. We identify the quotient s€tQ\\{0})/Q’ of A-rational rays with{+1} by
means of the ‘sign’ function and for eaete {+1} andz € R/\ we set

Eza@vﬂs(l) e
R

for anyl € A\{0} such that sgfi) = . (Here,s(l) denotes the half-open interval

(0,1] or [I,0) according as is positive or negative). Note that, as in the definition

of P, the choice of satisfying these conditions is immaterial and thigt, x, ¢; z)
liesin (1/2)R[[z]] C R((2)).

pAx,e) =p(A z,652) = (14)

PROPOSITION 2.4.
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e if z is the zero class
0 if z is nonzero.

(I) p(>‘7$7 _5) = p(>‘7$75) - {

(i) Forall @ € R* andz € R/ we havep(a, a(z),sgna)e; z) = sgna)p(A,
x,€; az), where «(z)’ indicates the classvx considered as an element of
R/aA.
(i) If X C Xis any sublattice anay/ \: R/\" — R/ denotes the quotient map,
thenp(Av z, 5) = E I’ER/)\’ p(>‘,7 xla E:)'
”A',A(l")zl’
These statements are analogous to Propositions 2.1 (part (ii)), and Propositions 2.2
and 2.3 respectively and have entirely analogous proofs. O

Part (i) above shows that we may as well reduce to the gase Z and we
shall writep(z, ¢; z) for p(Z, z,¢; z) for all z € R/Z. For such a class we shall
denote by(z) its unique representative (i, 1] and we writeB,,,(T") € Q[T'] for
the mth Bernoulli polynomial for eachn € N. By the very definition of these
polynomials, taking = 1 in (14) gives

(z)z oM
P, 1iz) = oz == 3 Bulle) o,

e - meN

for eachr € R/Z, and part (i) of Proposition 2.4 suggests the definition
p(z;2) = 3(p(x,1;2) + p(z, —1;2))

%(ezill+ﬁ):p(w,l;z)—% if () =1

(i.e.z is the zero class)

£ =plz.1;2) if (z) #1
| (i.e.z is nonzero).
1 A zm
= ;%Bm(@wm, (15)

whereB,, denotes the restriction d8,, to (0, 1] except that we defing,,(1) =
$(Bm(1) + B (0)). ThusB,,(1) = By,(0) = by,, (themth Bernoulli number) if
m # 1, while B1(1) = 0.

REMARK 3. We denote by3,, the periodic extension af,, to R. This is the

so-called inth periodified Bernoulli polynomial’ which, fom > 1 is given by the
Fourier series
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Bn(t) = B ((t + 2))

m! — 1 1] m o—27i)
:_(Zm)mzj—m(ez Ity (—nme ity YieR (16)
j=1

Finally, let» be any nonzero integer. Taking= r, A = Z and\’ = rZ in
Proposition 2.4 parts (ii) and (iii), arguing exactly as in Example 2 and using the
definition of p(x; z), we get the following parity/distribution relations for each
r € Z\{0} andx € R/Z

p(z;z) = sgnr) Z p(y;rz) or, equivalently:

YER/Z
TY=T

By((z)) = sg(r)r™ Y~ Bu((y)),  VmeN 17)

YER/Z
ry=x

We can now prove

THEOREM 2.2 LetA be a(rank-2) lattice in R andt,s € P, (QA), t # =+s two
A-rational rays. Then, for alk € R? /A we have the formula

P(A,X,t,H;Z)
(") | R Y (S B ) B - ta0] . a8
“\ro s a7 e\ mAt)En ) |y 4% ’

inR((z))M, foranyr € tNA ands € sNA, the integetN € N and the distinct pairs
(111, v¢) in (0, 1] being such that N {ur +vs: (u,v) € (0,12} = {ur +vsHY 4.

Proof. The formal sunkt,,, ,,cn representing an element®fiz]] in (18) will be
abbreviated t& in the following. We can rewrite Equation (3) as

oS1 ' el €2
A 1Z) = .
P(A,X,v,5:2) (Tz ; > Y (ez_l> (ezz_1>

pur+vsexnP(r,s)

The only delicate point is now to account for the precise summation procedure
for the terms in the surilt’ (see Definition 2.1). Firstly there are the terms corre-
sponding to pointxr + vsin theinterior of the parallelogran®(r,s), in other
words such thaty = p; # 1 andv = v, # 1 for some unique € {1,...,N}.
These appear in the su with a coefficient of 1 so that their contribution to it is
precisely the contribution tfil/z127)3 for this value oft, by Equation (15). Next,
each term i’ such that(u, v) = (u, ;) for somet € {1,..., N} with i, = 1
andy, € (0, 1) corresponds to a poimt+ ;s lying on an edge of’(r, s), but not
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at a vertex. Each such term can be paired with a terid’ aforresponding to the
pointy;s on the opposite edge. Both terms are counted with a coefﬁéiantj SO
make a combined contribution of

1/ en 1 e’

eite ) (em1)
to X', which again equals the contribution(tty z1 z2) X for this value oft, by (15).
The other edge term(s, v) = (u¢, v¢) (such thaj, € (0, 1) andy, = 1) are simi-
larly paired off with their corresponding terms and treated identicalby (k) = O
then there are no ‘vertex terms’ ¥f and no pair(y, 1) is equal to(1, 1), so we

are done. Otherwise,is the zero clasg (x) = 1 and the two remaining terms in
Y are

:(o1) (69) 2 (60) (59)
2\eax—1 ez —1 2\eax—-1 ez —1
e (et
C4\en—1 er—1)\e2—-1 e2-—1 4’

which accounts for the remaining contribution to (18) from the gaj;v;) =
(1,1). O

3. Dedekind sums

We shall be considering the following generalisation of the ‘classical’ Dedekind
sums.

DEFINITION 3.1. For allm,n € N, a,c € Z,c # 0 and

X = <x1> +72¢ (R/2)?
2

we set

Sm.n(a, ¢, X)

= ﬁ :Z;Bm <<361 - %(152 + €t)>> B, <<%(5E2 + §t)>> €R, (19)

where{{y, ..., §} is any complete set of representativesZanodulocz.

(Here, by a minor abuse of notation which we intend to perpetuate, we have written
(u) instead of(u + Z), with the result thaB3,,,({u)) and By, (u) are synonymous
for u € R). Itis easy to see that this definition does not depend on the choice of the
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set of representative{zgt}‘ti1 and it follows that it is also independent of the choice

T1
€2

of € X. Our sums are identical to the sur@gr, s, h, k, u,v) of Halbrit-

ter ([Hal]) excepfor arelabelling of the variables and for the constant factet !
which we have introduced for our own convenience and to simplify the formulae.
(For the purposes of translation, the precise correspondensg, ista, c,X) =
(1/m!n!)C(n,m, —a,c,z2,21)). The sumSy, ,(a, ¢, X) already appears in Satz 1
of [Sil], which can be used to express the value of a partial zeta-function over
a real-quadratic field at a non-positive integer (granted the appropriate functional
equation, see e.g. [Sh, Sect. 6] for the details). These are among the most general
Dedekind sums to have been defined. The most basia &) mentioned in the
Introduction (see also [R-G]) is given in our notation$y; (—~, £, 0), and many
of the more general versions considered by Apostol, Carlitz, Meyer and several
other authors are still special casesSgf,, (a, c, X).

We start by showing that a certain Shintani function is effectively a generating
function for the sums,,, ,,(«, ¢, X) for fixeda andc.

THEOREM 3.1 Let (‘2) , be an element of.? with ¢ # 0 andx an element of
(R/Z)? then

(e o) o (2))

la
= <0 c> * [?1@ < > Smalac x)zi’wg) - %5Zz(x)] : (20)

m,neN

Of course, ifc = 0 (anda # 0) then

2 X 1 X a
(ons () (1) -

by definition.
Proof. One simply applies Theorem 2.2: For any fi><e§i ) € X, the condition

on(u,v) € (0,1)? thatu é +v( % ) belongtoxis thatve = 2z andu + va =
z1 (ModZ). So a complete set of solutions is obtained by setting

vi=(Zlear &) and = (01— 22t 6)),

C

for any complete sefté, Li'l of representatives moduto O
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REMARK 4. The combination of Theorem 3.1 with Example 1 gives an explicit
form of Theorem 2.2, showing how to express &\, X, t,s) in terms of the
Dedekind Sums,,, ,. The properties of the Shintani functions proved in Section 2
will be applied to give essentially algebraic proofs of some important results on
Dedekind sums. Before doing so we list for future reference a few of the more
elementary relations that they satisfy.

PROPOSITION 3.1Leta andc be integers with: # 0 and letx = (i;) + 72
lie in (R/2)?. We writex’ for (‘é 2>x = (fg) + 7.2, x" for (é _g’)x =

( _2) + 22,a' for a/d andc’ for ¢/d whered = +h.c.f.(a,c). Then

(i) Smn(ra,re,x) =sgn(r)rt S, ,(a,c,X) Vm,n €N, Vr e z\{0}.
(i) S m(a ¢, —X) = (=1)™*t"S,, . (a,c,X) Vm,n €N,
(i) Smnla,e,x) = (=1)™"S, n(a,—c,x) and Sp.(a,c,X") =

Smn( —¢,X)Vm,n € N.

(iv) S ZSo,n(a, ¢, X)z" =sgnc) p(z2+ Z;z/c) and

neN

Son(a,c,X) = sgrc)ct" %Bn(@z»

(v) = ZSmo a,c,X)2™ = sgnd) |d|p(c'z1 — d'z2 + Z;2/¢) and

mEN

1 -
Sm.o(a, c,X) = sgnd)dt—m |d| %Bm((c'xl —d'x7))

Proof. Parts (i) and (ii) are easily deduced either from the definitio$),0f, (a, c,
x) together with the parity/distribution relations (17) for tBg,, or by using The-
orem 3.1 and properties of the Shintani functions. We skip the details. The second
formula of part (iii) follows on sending; to —¢; in the definition and the first
is then a consequence of part (ii). For (i§e(7) = 1 implies thatSo,, (a, ¢, X)
is independent of, so equalsSy , (0, ¢,X) = sgrc)ct S0, (0, 1,x) by part (i).
This proves the second equation and the first is simply a reformulation. For the
first equation in (v) we reduce to the case.h(a,c) = |d| = 1 (and replace
by ¢’ andc by /) by using part (i) to transform the left-hand side. We can then

write the latter a&l”! p((1/¢/ )(c 71— a'w2) + (a' /)& + 7; z) and sincda’ /') &,
runs exactly once through /¢’ } 1 moduloZz, the first equation follows from the
relations (17). The second is a reformulation. O

Before passing to the applications of Theorem 3.1 we introduce three pieces of
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notation: The abbreviation,, stands for the ray} (é) € P, (Q?), (the posi-

tive rationalz-axis). For anyN € N, N > 0 we define a finite set of matrices
An C M2(Z)N GLy(R) by

d b
QlN::{(o ):d,a,bEN, ad:N,O<b<d}
a

and for anyl € Z we denote by, the arithmetic function

o(N) = Z q.
qeEN
alN

Thus we have2ly| = o1(NV) for all N > 0. The first application is

THEOREM 3.2Forall N € N, N > 0 and every € P (Q?) we have

Z P(AZZ,O,tOO,t) = Zq*qP(ZZ,O,tOO,t), (21)
AcAn geEN
q|N

from which we deduce the (essentially equivalent)

COROLLARY 3.1 (The Generalised Petersson—Knopp ldentiti€ig)m, n and
N €N, N > 0.Then, forallh, k € Z, k # 0, we have

N1 N d™ 1S n(—(ah + bk), dk,0)
ad=N
ogb<d
= 0min-1(N)Smn(—h,k,0). (22)

REMARK 5. A brief history of these identities is as follows (see e.g. [A-V] for more
details). Forn = n = 1, Dedekind himself treated the case whatés prime, and

in [Kn], M. Knopp, stimulated by a conjecture of H. Petersson, removed this con-
dition on V. The proofs of these results depended on an analysis of the behaviour
of log 7(z) under the action of Hecke operators. The identities of Corollary 3.1
were first proven for general andn by L. A. Parson and K. Rosen in [P-R]. In
place of logn(z), they used the transformation properties of certain Lambert series
studied by Apostol. Other, essentially elementary, proofs were given in e.g. [Pa]
and [A-V], the latter being totally analysis-free and applicable to more general
sums ‘of Dedekind type’. Subsequently, C. Nagasaka [N] proved even more gen-
eral versions for sums which also involve Dirichlet characters.

DEDUCTION OF THE COROLLARY.2y fixes v, SO, by Proposition 2.2,
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the left-hand side of (21) can be written Hs, A x P(Z2 0, ts,A 1t). Now,

settingr = Qf ( _Z>, (so thatA=te = (NA™He = Qf ( _;Zh+bk) )), we
use (20) to substitute for thé?(Z? 0,t.,-)'s on both sides. Applying

—1
(é _Z> to the resulting equation, we find

Z (g ;) * {i Z Smn(—(ah + bk),dk,0)z1" 25 — %}

ad=N Z1%2 m,neN
0gb<d

geEN #1722 m,neN
qlN

=> dxq {i > Smm(—h,k,0)27"25 — %}

and the Corollary follows on multiplying by:z, and equating coefficients of
2'23 . O

We now prove Theorem 3.2 by means of two lemmas. The first is fundamental
in the theory of Hecke operators and shows that ‘that’s really what's going on
here’.

LEMMA 3.1. The set2y is in bijective correspondence with the set of lat-
tices {A C z2:[z?:A] = N} (respectively, with the set of subgroups <
(Z/NZ)?:[(zZ/NZ)?: L] = N}) via the mapping

(00) (6 0)7=(a)=(2)

(respectively, via the mappir(gg Z ) — ( g Z ) (Z/N7)? =7 (g) D7 (Z ) ).

Proof. The fact that the first mapping is a bijection is the contents of Lem-
ma 2, [Sel, p. 99]. The second bijection is a consequence of the natural one
between the two specified sets (nama&ly+ L = A, since[z?: A] = N implies
A D NZ?. O

LEMMA 3.2. Lety be an element ofz/NZ)? (N € N,N > 0), whose addi-
tive order we denote by(y). Then

{L < (Z/NZ)?>:[(Z/NZ)?>:L] = N and ye L}
= o1(Nfo(y) = >« (23)

qlN
ye(qz/NzZ)?
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Proof. (Sketch). If N has the prime decompositiad = p{*...p% then the
isomorphism(z /N7)? = @;_,(%/p§7)? allows us to reduce to the cade= p°
by a simple multiplicativity argument. Furthermore, for anye (z /p®z)? with
o(y) = p¥, 0 < € < e there exists an automorphism (@f/p®z)? taking y to

(peﬁd ) . To see this, set = <zl ), so that, without loss of generality, we have
2

¥ = o(y1) > o(y») (orders inz /p°z) andy = p=—¢ ( o ) with 21 € (Z/p°Z)".

Thus{ ( i; ) , ( 2) } is a base ofZ /p®Z)? and there exists an automorphism tak-

ingittothe base{ < %) , < g) } .Now fory = (pe; ) , the second two quantities

in (23) are clearly both equal toflp +p?+- - -4+ p& €. That this is also equal to the
first quantity follows from the previous lemma, since for= <p0u bt> € Upe, it
p

is clear thay lies in A(Z /p®z)?if and only if 0 < u < e — €, and for each such
there arep® possibilities forb. O

Proof of Theoren8.2. Using successively Lemma 3.1, Proposition 2.3, Lem-
ma 3.2, Proposition 2.3 again and Proposition 2.2 we get

Z P(AZ?0,t00,t) = Z P(A,0,tx0,t)

AcAn ACZZ
[ZZZA]:N

= ) > PUNZ)ZY, too, )
ACz? YE(A/NZ)?
[zZA)=N

= > oa(N/o(y))P((NL)2 Y, o0,

YE(Z/NZ)2

- Zq< Z P((NZ) Y5 Toos T ))
(

qeN  \ye(qz/Nz)?
q|N

= > qP((¢Z)% 0, te0, 1)
geN
q|N

= > a*qP(2% 0,10, 7)
geN
q|N

as required. O
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Dedekind proved the following ‘reciprocity law’ for his sumgor all h, k € Z,

withh, k > 0and(h, k) = 1,one hasi(h, k) +s(k, h) = &(k/h+h/k+1/hk)—

‘—11’. Various other authors (Apostol, Berndt, Carlitz, Mi&sl...) subsequently
devised versions and variants of this law which apply to more and more generalised
Dedekind sums and whose proofs, especially in the more complicated cases, tended
to rely on complex- or real-analytic arguments. One of the most recent versions
is due to Halbritter [Hal, Thm 2]. It includes many of the previous versions as
specialisations and can be seen as a ‘transformation law’ for his generalised sums
under the action of GLZ). We shall now give an essentially algebraic proof of

(a reformulation of) Halbritter's law by means of Theorem 3.1 and the properties
(especially the ‘Formal Cauchy Theorem’) of Shintani functions.

THEOREM 3.3 (Reciprocity Law for Generalised Dedekind Sunst A =

Z Z) be a matrix inGL,(Z) with ¢ # 0. Leta’ and¢’ # 0 be integersx an

element of(R/Z)? andm,n € N, m,n > 1. We set

o (2)-a(2)

y = AX, 6 = 652(X) = 052(Y), l

m+n>2
and we suppose that # 0. Then

Smn(a”,c"y)

n —1 M pc )V
Z ( ) %Sm’,n’ (a,c, y)

m'>0,n'>n n—1
m' +n'=l

! !
m' -1 cm 7m(ncl)m
! /
+ F Z ( 1 > cllm’ Sm,an, (a ) € 7X) + Gman67
m'>m, n'>0 m =
m'+n'=|

(24)
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whereG,,, ,, is defined to be-zsgr(ncc’) if m = n = 1and is otherwis@®.
Proof. We set

/ X a, n X a” !/
v =Q} e v =QF .= Ar
c c

and apply Theorem 2.1 to the triple of rafts,, ", Aty ), taking the latticeA to
bez? (and dropping it henceforth from the notation). We obtain

P(y, Toos t”) + P(y, tﬂu Atoo) + P(y, Atoo; too) = _5W(t007 Tﬂu Atoo)
and hence

P(yutooat”) = P(y, tomAtoo) +A *P(Xatooatl) - 5W(toout”>Atoo)-

" -1
Now substitute for theP’'s using Theorem 3.1 and applg/é Z,, > * to the
resulting equation, noting that

1 d'—a" 1 a B 1 f/
_<0 1><0c>_<o f)
MDD
e 0 1 0 ¢ f 1

where we have writtefi andf’ for the nonzero rationaly' ¢’ and(¢"a—a"c) /' =
ncd /" respectively. This gives

and

Z Smlnl a C 7y)Zl 2’2 —%(5
Zl 2

m’,n' EN
1y 1
= <O f ) * <Em,’%NmSm/ (a C y)Zlm 2’2 — —(5>
"0
+ / * Z Smnacx)zlmzz——5
f 1 Z1Z2 m! ,n'EN

—0sgnc”)W (too, v, Atoo).
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Now ‘do thex’s’, multiply by z1z, and then equate thith homogeneous parts (see
the Introduction) to obtain

Z Sm’,n’ (a”7c”7y)’z§.nlzgl

m!+n'=l

=sgr(f)zz . Swawla, e,y (fler+ fz2)"
m'>0,n'>1
m' +n'=l

+sgr(f)er Y. Swwld ) (2 + fz)™ 12y
m'>1, n'>0
m/+n'=l

<122

-1
+m[sgr(f)81,o(a, ¢, Y)zq

—sgn(f")Sou(a, ¢, X) 25 1] + Gndz122, (25)

Whereém,n is O unlesd = 2 (& m = n = 1) in which case it equal%(l —
sgn(f) —san(f')) — sgn(d’)W (reo, t”, Ats). This equation takes pla@epriori

in R(z); C R(z) but since all the terms are evidently polynomials except possibly
the third on the R.H.S., this one must be as well. In other woyds, + f2»)

must divide the quantity in square brackets (this also follows from Proposition 3.1
and (17)) and the quotient must be

Sg;(,f)Sz,o(a,c, y) <zl12 +273 (—:ff,zz> oot (—;"72)12) .

Substituting this into (25), expanding and equating coefficient§'af we obtain
Equation (24) Witl’ém,n in place ofG,, ,, (and, of course, with sdif)/f = 1/|f]

standing in fori¢” /¢| etc.). It therefore only remains to show tlﬁi_,l =Gy, an
eqguation which may be written

sg(c")W (oo, ", Atoo) = 7(1 —sgr(f))(1 — sgn(f")). (26)

Now the conditions:, ¢, ¢’ # 0 are easily seen to imply that the triple., ",
Ary) = (t00,At’, Ary) is Nnon-degenerate and non-critical. Therefore, by Lem-
ma 2.1, it is splayed if and only if

6 (too, ) = (A, Aty) = 6(Atso, too),
le. sgric”’) = —sgn(nc’) = —sgrc),
ie. —1=sgn(f')=sgn(f),

https://doi.org/10.1023/A:1000493903703 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000493903703

ALGEBRAIC PROPERTIES OF SHINTANI'S GENERATING FUNCTIONS 357

in which caséV (roo, v, Ats) = S(ta0, t”") = sgn(¢’) and both sides of (26) are
equal to 1. Otherwise, the triple must be folded so ivat= 0, either sgfif) or
sgn(f’) must be equal to 1 and consequently both sides of (26) vanish. O

Dedekind’s law is obtained from Theorem 3.3 by specialising

A= 0 -1 '— _h, =k x=0 and n=m =1
=\ _1 Yk a = , ¢ =Kk, = n=m=1

The proof of Theorem 2 of [Hal] relies on the manipulation of Fourier series
such as (16) and occupies fifteen journal pages. The result itself is, however,
equivalent to Theorem 3.3. This can be seen as follows: Replace our raiix

~1
(Z Z) (i.e. our ‘@’ by Halbritter’s ‘4d’ etc.) and oura, ', X, m,n,n,a”, ",y

etc. by the quantities which would be denoteld + bk, ch + dk, <55333>

+72,q,p,6,h, k, ( _Z) + 72 etc. using the notation of [Hal]. Taking into account

the conversion between our sun$s and Halbritter’s C’s’, the equivalence results
from Proposition 3.1 and a certain amount of rearranging. Notice that we have
excluded consideration of the three simplest of the seven special cases in [Hal]
(namely when one or both of: andn is zero) since these are easily treated
by means of Proposition 3.1. For more details and a comparison with previous
reciprocity laws, the reader should consult Halbritter’s paper.

(Note added June 199T addition to reciprocity laws of this type, there are
also various generalisations springing from Rademacher’s so-called ‘three-term
relation’. One very general such law has appeared since the writing of the present
article, in [H-W-Z]. While its formulation does not involve matrices, nor is a
logical connection with Theorem 3.3 immediately apparent (except, perhaps, when
z = y = z = 0 in the notation of loc. cit.), we nevertheless note that the proof of
this law uses quotients of certain 2-variable formal power-series which resemble
ourpP’s).

4. Cocycles

The complicated formulae of the previous chapter resulted from explicitly writing
out certain simple functional relations obtained in Chapter 2 for the Shintani
functions in terms of the latter’s coefficients. Drawing the appropriate conclusion
we now proceed in the opposite direction, showing that these relations have a neat
reformulation in a certain abstract framework of 1-cocycles on #GLsimilar to

that appearing in [St].
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4.1. DSTRIBUTIONS AND MATRIX ACTIONS

Given a positive integed, a (rankd) lattice A ¢ R? and any Abelian group
A we shall writeC(R¢ /A, A) for A®Y/A), the Abelian group of all functions
g:R¢/A — A under pointwise addition. Given any linear left action of the
multiplicative monoid ofz\ {0} on A (for examplen * a =: n'a for some fixed
t € N), we define a subgroup(R? /A, A) of C(R?/A, A) by setting

D(RY/A, A)

= {g €C(RY/A,A):g(X) = n * Z g(y), Vn € Z\{0}, ¥x € ]Rid/A}.

yER/A
y=X

We shall refer to the elements D{R? /A, A) as' A-valued distributions oi? /A’

(with respect toe) although the term ‘distribution’ in this general context has been
defined by various authors in various ways that are not always precisely equivalent
to ours.

EXAMPLE 4. (Dirac Distributions). Lef, be the Dirac function oi? /A, defined
just as it was in Chapter 2 in the case= 2. Any element: € A on whichz\ {0}
acts trivially gives rise to apl-valued distributioruds: X — 04 (X)a.

EXAMPLE 5. Ford = 2 andA = R((2))", we seth * F = nx F = F(nz1,nz2)
for anyn € z\{0} and anyF € R((z))". Equation (5) then amounts to the
statement that for any rank-2 lattice C R? and any two fixed rays ands in
P, (QA), the map

P(A,r,s): K2 /A — R((z))M
X = P(A, X, t,s;2)

lies inD(R? /A, R((z))"?). Similarly, ford = 1, formula (17) implies that the map
X — p(X; z) is anR((z))-valued distribution orR/Z, wheren € Z\{0} acts on
R((z)) by sendingF'(z) ton * F(z) := sgnn)F(nz).

In the second example above we can identifywith Z2 by means of a choice &-
basis as in Example 1. The distribution propertyfgQ, «, s) is then a consequence
of the same property in the special case= Z2 From now on we shall consider
only the case\ = z% The quotient groufk?/z¢ then comes equipped with a
natural action of the multiplicative monoid of GIQ) N M4(Z) which contains
Z\{0} identified with the set of scalar matrices. Suppose thatkthetion of the
latter extends to a linear, left action of Q) "M, (Z) on A, also denoted. Then,
foranyA € GL4(Q)NMy(z)andg € C(R? /74, A) we writeA - g € C(R? /74, A)
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for the function which sendsto A x X (y), (afinite sum).

yerd/z49
Ay=x

PROPOSITION 4.1. (ifhe mappindA, g) — A - g defines a linear left action of
the monoidSLy(Q) N Mgy(Z) onC(R? /7%, A).

(i) D(RY/2% A) = {g € C(R? /2% A):n-g = gVn e z\{0}}.

(i) D(rRY/z% A) is stable under thisdot-action of GL4(Q) N My4(Z) on
C(RY /7% A).

Proof. The verification of (i) is left to the reader and part (i) is a tautology.
Part (iii) follows from (i) and (ii) sincen commutes with each € GL4(Q) N
Md(Z). O

To obtain agroup action onC(R? /7% A) one can simply restrict”to GL4(Z).
Explicitly, this gives:(M - g)(x) = M % g(M~1x) for all M € GL4(Z), g €
C(RY /7% A) andx € R?/z% This in turn restricts to a Gl(Z)-action on the
distributions, but we can do better by performing this restriction first of all: Propo-
sition 4.1 has the easily deduced

COROLLARY 4.1.There is a unique left action dBL4(Q) on D(R?/z%, A)
extending theédot action of GL;(Q) N M4(Z). Explicitly, a matrix M sends a
distributiong to (rM) - g wheren is any nonzero integer chosen so thdll lies
in GLg(Q) N My(Z). a

The point is, of course, thgiM) - g doesn’t depend on. This extended action
of will be of principal interest in this section. It clearly factors through the quo-
tient group PGL(Q) and there will be no ambiguity in denotinght - ¢ for any
distributiong and anyM considered either as an element of GR) or of PGLy(Q).

4.2. THE SHINTANI COCYCLE (AND VARIATIONS)

Henceforth we shall work in dimensiah = 2 so that the latticé\ will always
bez? c R? and will usually be suppressed from the notation. Let's consider the
distributionP(x,s) := P(Z?,s) lying in D(R((2))") := D(R?/z2 R((z))"),

as defined in Example 5 for each pair of rayands in P, (Q?). Since thex-
action onR((z))" is defined for allA € GL,(Q) N My(Z), it gives rise as above

to a (P)GL,(Q)-action onD(R((z))"%) which we denote-* and which is clearly
R-linear. We can reformulate Equation (6) of Example 3 as

P(Mt,Ms) =M - P(r,s) in D(R((z))"%)
forall M € GL,(Q) and r,s € P (Q?). (27)

The action ofz\ {0} on constant power-series t{(z))" is trivial so that the set
3.6 := {3mdz:m € Z}is asubgroup ob(R((z))") on which anyM € GL(Q)
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acts by multiplication by sgetM)). We shall denote the quotie(®)GL,(Q)-
moduleD(RR((z))"Y)/(362) by D(R((z))"). The point of all this definition-making
is to formulate the

THEOREM 4.1.For each rational rayr € P, (Q?) we define a mag, from

GL2(Q)? to D(R((2))") by setting¥.(Mg,M1) = P(Mor,M1r) and write

U.:GL2(Q)%2 — D(R((z))M) for the composite of, with the quotient map.
Then

(i) ¥, = v_,, i.e. ¥, depends only on the imageJ —t of « in the rational
projective lineP(Q).
(i) The same is true of the map which in addition factors througRGL(Q)?.
It defines a homogeneolicocycle orPGLy(Q) (or on GLy(Q)) with values
in D(R((2))").
(iii) The cohomology class representedbyin H(PGLy(Q), D(R((z))")) is
independent of the ray

Proof. Part (i) and the first statement in Part (i) follow from parts (iii) and (iv)
of Proposition 2.1. The rest of part (ii) is a consequence of the following two
equations irD(R((z))"?), valid for all M, Mg, M1, M> € GL»(Q)

U.(MMog,MM 1) =M - ¥ (Mg, M),
(from (27)) and, by Theorem 2.1 and part (i) of Proposition 2.1
\I/r(M 1, Mz) — \IJY(MQ, Mz) + \IJY(MQ, Ml) = —W(Mot, M]_t, Mzt)(5.

The images of these two equationsIinconstitute respectively the homogeneous
1-cochain and 1-cocyle conditions on the map(see [Se2, p. 112]). Finally, if

s € P (Q?) is any other rational ray, then applying Theorem 2.1 to the two triples
(Mor,M1r, M1s) and(Mos, M1s, Mgr) and subtracting gives on the one hand

U.(Mg,M1) — ¥, (Mg,M1y)
= P(Mot,Mgs) — P(M1r,M1s) (mod3ZJ), (28)

for all Mg, M1 € GL,(Q), while on the other hand Equation (27) tells us that the
mapM +— P(Mt, Ms) is a homogeneous 0-cochain with valueitR((z))").
The right-hand side of (28) is its corresponding 1-coboundary solthat W, lies
in the groupB(PGLy(Q), D(R((z))")), as required for part (iii). m

We call ¥, thehomogeneous Shintani cocy¢ssociated to the ray.

To round off this article we introduce a number of variant@of This involves
no substantial new mathematics but the new notations and the ideas they repre-
sent will be of use in the sequel to the present paper. For eaelv. the /th
homogeneous componertz); of R((z))" (see the Introduction) is stable for
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the x-action of GLx(Q) N M2(Z) and in particular eaclh € Z\{0} acts on it
by multiplication byn!. We write D(R(z);) for the associated space of distribu-
tions onk?/Z2. Since3Zd is entirely contained iD(R(z)o), the composition of
distributions with theth-homogeneous-parts map gives rise to a well-defined
R[GL2(Q)]-projection fromD(R((z))") onto D(R(z);) for eachl # 0 and onto
D(R(z2)o) =: D(R(z)o)/(%zd) in the casé = 0. (The product of these projections
defines an embedding DX(R((z))") into (IT120 D(R(2):)) x D(R(2)0)). The com-
posite of thelth projection withW, will be denoted¥ ; for I # 0, (respectively,
W, o for I = 0). Concretely, it sendéMo,M1) € GL2(Q)? to the R(z);-valued
distribution?(Mgr, M 1t); : X — P(X, Mor, M1t); (respectively, tdP(Mgr, M 1t)o
modulo %Zé, as an element dD(R(z)o)). It depends only on the image ofin
P1(Q) and is zero foi < —2. The following is an easy consequence of parts (i)
and (iii) of Theorem 4.1.

COROLLARY 4.2.For eachl € 7,1 > —2 and eachc € P, (Q?), the map
V., (respectively, the mag, o if I = 0) defines a homogeneodscocycle on
GL,(Q) with values inD(R(z);) (respectively, ifD(R(z)o), if I = 0) which fac-
tors throughPGL>(Q). The correspondingP)GL,(Q) cohomology classes do not
depend on the ray. O

The infinite sequence of cocyclek,; for I # 0 and the cocyclel, o recall
those defined in [St] and [Scl]. Since these papers deal largely in termiscaf
mogeneoud.-cocycles (meaning now that they are functions of a single group
element instead of two), we hereby introduce the nota@nsl)t,l andéno for

the versions of our cocycles,, U and\i/,70 which are ‘inhomogeneous’ in this
sense. Thus, genericallg(M) =: ¥(1,M) for anyM € (P)GL,(Q), so that

T (Mo, M) = Mg - ®(MyMj). The homogeneous 1-cocycle condition onHe

is equivalent to the familiar ‘crossed homomorphism’ property ofdtse

B(MM') = &(M) + M - &(M’) forallM, M’ in (P)GL,(Q).

Notice that, ifM+ = +¢ then for eachi € Z,[ # 0, P(X,t, M), is zero for allx
so that the cocycl@, ; vanishes on suckl, as does the cocyce, o. In particular,
the cocyclesd, _,; (I # 0) and®,_ o areparabolic(see the Introduction). Their
values therefore depend only on the first columiviond are given explicitly by
Theorem 3.1 in terms of Dedekind sums.

It is natural to ask whether any of the cocycles that we have constructed here
are actually coboundaries, i.e. whether or not they represent the trivial class in the
appropriate cohomology groufi®. The answer to this question clearly does not
depend on the choice of the rayOne can prove the following statement (which
certainly implies the non-triviality of,): ‘For every evei > 2 (respectively, for
| = 0) the cocycled, ; (respectively, the cocycte, o) does not lie in the group
BY(PGLx(Q), D(R(z);)) (respectively, in the group!(PGLy(Q), D (R(z)o))) of
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coboundaries.The idea, as mentioned in the Introduction, is to use the non-
vanishing of certairi.-values over real quadratic fields, calculated by means of the
Shintani cocycle. In fact, this method gives much stronger non-triviality statements
concerning certairestrictionsof the cocycle, for example to principal congruence
subgroup$’(N) of SLy(Z).
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