INFINITE τ_{τ} PRODUCTS OF DISTRIBUTION FUNCTIONS

RICHARD MOYNIHAN

(Received 21 September 1976)
Communicated by J. Gani

Abstract

Let T be a continuous t-norm (a suitable binary operation on $[0,1]$) and Δ^{+}the space of distribution functions which are concentrated on $[0, \infty)$. The τ_{τ} product of any F, G in Δ^{+}is defined at any real x by $$
\tau_{T}(F, G)(x)=\sup _{u+v=x} T(F(u), G(v))
$$ and the pair $\left(\Delta^{+}, \tau_{\boldsymbol{r}}\right)$ forms a semigroup. Thus, given a sequence $\left\{F_{i}\right\}$ in Δ^{+}, the \boldsymbol{n}-fold product $\tau_{T}\left(F_{1}, \cdots, F_{n}\right)$ is well-defined for each n. Moreover, the resulting sequence $\left\{\tau_{T}\left(F_{1}, \cdots, F_{n}\right)\right\}$ is pointwise non-increasing and hence has a weak limit. This paper establishes a convergence theorem which yields a representation for this weak limit. In addition, we prove the Zero-One law that, for Archimedean t-norms, the weak limit is either identically zero or has supremum 1.

Subject classification (Amer. Math. Soc. (MOS) 1970): 60F99, 60B99.

1. Introduction

If T is a t-norm, that is, a suitable binary operation on $[0,1]$, and Δ^{+}is the space of one dimensional distribution functions which are concentrated on $[0, \infty)$, then the τ_{T} product of F, G in Δ^{+}is defined at any x by

$$
\begin{equation*}
\tau_{T}(F, G)(x)=\sup _{u+v=x} T(F(u), G(v)) \tag{1.1}
\end{equation*}
$$

If the t-norm T is left-continuous as a two place function then the operation τ_{T} is a mapping from $\Delta^{+} \times \Delta^{+}$into Δ^{+}and the pair $\left(\Delta^{+}, \tau_{T}\right)$ is a semigroup, called a τ_{T} semigroup. The τ_{T} operations are quite distinct from the operation of convolution of distribution functions [Schweizer and Sklar (1974)] and τ_{T} semigroups play a prominent role in the theory of probabilistic metric spaces [Schweizer (1967, 1975)].

Since the τ_{T} operations are associative, for any sequence $\left\{F_{i}\right\}$ in Δ^{+}, the
n-fold τ_{T} product $\tau_{T}\left(F_{1}, \cdots, F_{n}\right)$ is well defined for each n. Moreover, the induced sequence of distribution functions $\left\{\tau_{T}\left(F_{1}, \cdots, F_{n}\right)\right\}$ is pointwise nonincreasing [Moynihan (1978)] and hence has a unique weak limit in Δ^{+}. We call this weak limit the infinite τ_{T} product of the sequence $\{F\}$. Two naturally arising problems in this situation are to determine when an infinite τ_{T} product is non-trivial (that is, not identically zero) and to give a representation for it. The first question was partially solved in Moynihan (1978), where, using the concept of the T-conjugate transform on a given τ_{T} semigroup [Moynihan (1977)], we established:

Theorem 1.1. Given an Archimedean t-norm T and a sequence $\left\{F_{i}\right\}$ in Δ^{+}, the sequence of τ_{T} products $\left\{\tau_{T}\left(F_{1}, \cdots, F_{n}\right)\right\}$ has a non-trivial weak limit in Δ^{+}if and only if there exists a sequence of positive numbers $\left\{a_{i}\right\}$ such that $\sum_{i=1}^{\infty} a_{i}<\infty$ and $\lim _{n \rightarrow \infty} T\left(F_{1}\left(a_{1}\right), \cdots, F_{n}\left(a_{n}\right)\right)>0$.

In this paper we greatly improve on the above result by showing in Section 2 that, for any continuous t-norm T, if G is the infinite τ_{T} product of the sequence $\left\{F_{i}\right\}$ in Δ^{+}, then, for any x,

$$
\begin{equation*}
G(x)=\sup \left\{\lim _{n \rightarrow \infty} T\left(F_{1}\left(a_{1}\right), \cdots, F_{n}\left(a_{n}\right)\right) \mid \sum_{i=1}^{\infty} a_{i}=x\right\} . \tag{1.2}
\end{equation*}
$$

Note that, for any integer n, (1.1) implies that

$$
\begin{equation*}
\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(x)=\sup \left\{T\left(F_{1}\left(a_{1}\right), \cdots, F_{n}\left(a_{n}\right)\right) \mid \sum_{i=1}^{n} a_{i}=x\right\} . \tag{1.3}
\end{equation*}
$$

Thus (1.2) asserts that the limit and sup operations may be interchanged (for continuity points) and thus we obtain a convergence theorem for infinite τ_{T} products. Clearly (1.2) shows that Theorem 1.1 holds for any continuous t-norm.

However, as will be seen, Theorem 1.1 is a necessary and key tool used in establishing the results in this paper.

In Section 3 we show that, for an Archimedean t-norm T, if $G \in \Delta^{+}$is the infinite τ_{T} product of a sequence $\left\{F_{i}\right\}$ in Δ^{+}, then, if G is non-trivial,

$$
\sup _{x} G(x)=\lim _{n \rightarrow \infty} T\left(\sup _{x} F_{1}(x), \cdots, \sup _{x} F_{n}(x)\right) .
$$

In particular, it then follows that if each F_{i} is non-defective (that is, has supremum 1) then the supremum of the infinite τ_{τ} product of the sequence $\left\{F_{i}\right\}$ is either 0 or 1 , that is, the limit function is either identically zero or has supremum 1. Finally, for a sequence of non-defective distribution functions $\left\{F_{i}\right\}$, we show that the corresponding infinite τ_{T} product is non-trivial for
$T=$ Product exactly when it is non-trivial for $T=T_{m}$, where $T_{m}(a, b)=$ $\max \{a+b-1,0\}$.

Before we present our results, we state some definitions and known facts: The spaces of distribution functions which we will consider are

$$
\Delta^{+}=\{F: \mathbb{R} \rightarrow[0,1] \mid F \text { is left-continuous, non-decreasing and } F(0)=0\}
$$

and

$$
\mathscr{D}^{+}=\left\{F \in \Delta^{+} \mid \sup _{x} F(x)=1\right\} .
$$

In particular ε_{0} and ε_{∞} in Δ^{+}are defined by

$$
\varepsilon_{0}(x)=\left\{\begin{array}{ll}
0, & x \leqq 0, \\
1, & x>0 ;
\end{array} \text { and } \varepsilon_{\infty}(x)=0 \text { for all } x\right.
$$

A t-norm is a two-place function $T:[0,1] \times[0,1] \rightarrow[0,1]$ which is symmetric, associative, non-decreasing in each place and has 1 as a unit and 0 as a null element. We say that a t-norm is Archimedean if T is continuous and satisfies $T(a, a)<a$ for all $a \in(0,1)$; and strict if T is continuous on the closed unit square and is strictly increasing in each place on $(0,1] \times(0,1]$. Note that a strict t-norm must also be Archimedean.

From Aczél (1966), Ling (1965) we have the following important characterization of t-norms: The t-norm T is Archimedean if and only if there exists a continuous and increasing function $h:[0,1] \rightarrow[0,1]$ with $h(1)=1$ such that T is representable in the form

$$
\begin{equation*}
T(x, y)=h^{[-1]}(h(x) \cdot h(y)) \tag{1.4}
\end{equation*}
$$

where $h^{[-1]}$ is the pseudo-inverse of h, that is,

$$
h^{[-1]}(x)= \begin{cases}0, & 0 \leqq x \leqq h(0) \tag{1.5}\\ h^{-1}(x) & h(0) \leqq x \leqq 1\end{cases}
$$

where h^{-1} is the usual inverse of h on $[h(0), 1]$. The function h of (1.4) is called a multiplicative generator of the Archimedean t-norm T.

Finally, if $\left\{F_{n}\right\}$ is a sequence in Δ^{+}then we say $\left\{F_{n}\right\}$ converges weakly to F in Δ^{+}, written $F_{n} \xrightarrow{w} F$, if $F_{n}(x) \rightarrow F(x)$ for all continuity points x of the limit function F.

2. A convergence theorem for infinite $\boldsymbol{\tau}_{\boldsymbol{T}}$ products

In this section we establish the identity (1.2) for infinite τ_{T} products for any continuous t-norm T.

First note that, since any t-norm T is associative, it naturally induces a well-defined n-place operation on $[0,1]$. Thus, for any sequence $\left\{a_{i}\right\}$ in $[0,1]$, we define, recursively,

$$
\begin{equation*}
T\left(a_{1}, \cdots, a_{n}\right)=\prod_{i=1}^{n} a_{i}=T\left({ }_{i=1}^{n-1} a_{i}, a_{n}\right) \tag{2.1}
\end{equation*}
$$

Also, we let

$$
\begin{equation*}
\prod_{i=1}^{\infty} a_{i}=\lim _{n \rightarrow \infty} \prod_{i=1}^{n} a_{i} \tag{2.2}
\end{equation*}
$$

where the sequence $\left\{T_{i=1}^{n} a_{i}\right\}$ is non-increasing and hence its limit always exists.

The τ_{T} operations given by (1.1) are examples of triangle functions [Schweizer (1975)] on Δ^{+}. For any triangle function τ and sequence $\left\{F_{i}\right\}$ in Δ^{+}, we also define, recursively,

$$
\begin{equation*}
\tau\left(F_{1}, \cdots, F_{n}\right)=\tau\left(\tau\left(F_{1}, \cdots, F_{n-1}\right), F_{n}\right) \tag{2.3}
\end{equation*}
$$

and let $\tau_{i=1}^{\infty} F_{i}$ denote the weak limit in Δ^{+}of the sequence $\left\{\tau\left(F_{1}, \cdots, F_{n}\right)\right\}$.
Our first step toward establishing (1.2) is:
Lemma 2.1. Let T be a continuous t-norm and let $\tau=\tau_{T}$. Then, for any sequence $\left\{F_{i}\right\}$ in Δ^{+}and any x, we have that

Proof. For any x, choose $\left\{a_{i}\right\}$ so that $\sum_{i=1}^{\infty} a_{i}=x$ and $a_{i}>0$ for all i. Then, for any n,

$$
\begin{align*}
\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(x) & \geqq \tau_{T}\left(F_{1}, \cdots, F_{n}\right)\left(\sum_{i=1}^{n} a_{i}\right) \tag{2.5}\\
& \geqq \prod_{i=1}^{n} F_{i}\left(a_{i}\right) \geqq \prod_{i=1}^{\infty} F_{i}\left(a_{i}\right)
\end{align*}
$$

Also note that if any $a_{i} \leqq 0$, then the last term in (2.5) is zero. Thus, since the right hand side of (2.4) is easily shown to be left-continuous, if we let $n \rightarrow \infty$ in (2.5), then our desired result is obtained.

Next we prove (1.2) for Archimedean t-norms.
Lemma 2.2. Let T be an Archimedean t-norm and let $\tau=\tau_{T}$. Then, for any sequence $\left\{F_{i}\right\}$ in Δ^{+}and any x, we have that

Proof, If $\tau_{i=1}^{\infty} F_{i}=\varepsilon_{\infty}$ then by Lemma 2.1 we are done. So assume otherwise, so that by Theorem 1.1 there exists a sequence of positive numbers $\left\{a_{i}\right\}$ such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i}<\infty \quad \text { and } \quad \prod_{i=1}^{\infty} F_{i}\left(a_{i}\right)>0 \tag{2.7}
\end{equation*}
$$

Now choose any x and let $\varepsilon>0$ be arbitrary. By the uniform continuity of T there exists a $\delta>0$ so that

$$
\begin{equation*}
T(b, 1-\delta)>b-\frac{\varepsilon}{4} \quad \text { for any } \quad b \in[0,1] \tag{2.8}
\end{equation*}
$$

Next, using Moynihan (1978), Lemma 3.1, if h is the multiplicative generator of T then we have from (2.7) that

$$
\begin{equation*}
h^{[-1]}\left(\prod_{i=1}^{\infty} h F_{i}\left(a_{i}\right)\right)=\prod_{i=1}^{\infty} F_{i}\left(a_{i}\right)>0 \tag{2.9}
\end{equation*}
$$

whence, by (1.5), $\Pi_{i=1}^{\infty} h F_{i}\left(a_{i}\right)>h(0) \geqq 0$. Thus, since $h^{[-1]}$ is continuous with $h^{[-1]}(1)=1$, we have, for some integer $M>0$, that $\prod_{i=M}^{\infty} h F_{i}\left(a_{i}\right)$ is sufficiently close to 1 to insure that

$$
\begin{equation*}
\prod_{i=M}^{\infty} F_{i}\left(a_{i}\right)=h^{[-1]}\left(\prod_{i=M}^{\infty} h F_{i}\left(a_{i}\right)\right)>1-\delta \tag{2.10}
\end{equation*}
$$

Now by left-continuity there exists a continuity point y of $\tau_{i=1}^{\infty} F_{i}$ with $y<x$ so that

$$
\begin{equation*}
\left(\underset{i=1}{\infty} F_{i}\right)(y)>\left(\underset{i=1}{\infty} F_{i}\right)(x)-\frac{\varepsilon}{4} \tag{2.11}
\end{equation*}
$$

and, by weak convergence, we have, for some $N>0$, that for $n \geqq N$

$$
\begin{equation*}
\left\lvert\, \tau_{T}\left(F_{1}, \cdots, F_{n}\right)(y)-\left({\left.\underset{i=1}{\infty} F_{i}\right)(y) \left\lvert\,<\frac{\varepsilon}{4} . ~ . ~\right.}_{\text {. }}\right.\right. \tag{2.12}
\end{equation*}
$$

Now choose $n \geqq \max \{M, N\}$ and also sufficiently large so that $\sum_{i=n+1}^{\infty} a_{i}<$ $x-y$. Then by (1.3) there exist $\left\{b_{1}, \cdots, b_{n}\right\}$ such that $\sum_{i=1}^{n} b_{i}=y$ and

$$
\begin{equation*}
T\left(F_{1}\left(b_{1}\right), \cdots, F_{n}\left(b_{n}\right)\right) \geqq \tau_{T}\left(F_{1}, \cdots, F_{n}\right)(y)-\frac{\varepsilon}{4} \tag{2.13}
\end{equation*}
$$

Letting $b_{i}=a_{i}$ for $i>n$, we then have that $\sum_{i=1}^{\infty} b_{i}<x$ and, from (2.8) through (2.13),

$$
\begin{aligned}
\prod_{i=1}^{\infty} F_{i}\left(b_{i}\right) & =T\left(\prod_{i=1}^{n} F_{i}\left(b_{i}\right), \prod_{i=n+1}^{\infty} F_{i}\left(a_{i}\right)\right) \\
& \geqq T\left(\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(y)-\frac{\varepsilon}{4}, \prod_{i=M}^{\infty} F_{i}\left(a_{i}\right)\right) \\
& >\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(y)-\frac{\varepsilon}{2} \\
& >\left({ \underset { i = 1 } { \infty } F _ { i }) (y) - 3 \frac { \varepsilon } { 4 } } \gg \left({\left.\underset{i=1}{\infty} F_{i}\right)(x)-\varepsilon}^{\infty} .\right.\right.
\end{aligned}
$$

Clearly, if we let $c_{1}=b_{1}+\left(x-\sum_{i=1}^{\infty} b_{i}\right)$ and $c_{i}=b_{i}$ for $i>1$, then $\sum_{i=1}^{\infty} c_{i}=x$ and $T_{i=1}^{\infty} F_{i}\left(c_{i}\right) \geqq T_{i=1}^{\infty} F_{i}\left(b_{i}\right)$, whence, since $\varepsilon>0$ was arbitrary, (2.14) establishes the reverse inequality to (2.4), completing the proof.

We will also need:
Lemma 2.3. Let T be a continuous t-norm, let $\tau=\tau_{T}$ and let $\{F\}$ be a sequence in Δ^{+}. Then, for any $\varepsilon>0$, if $\left(\tau_{i=1}^{\infty} F_{i}\right)(x) \geqq \varepsilon$ for some $x>0$, then there exists a sequence of non-negative numbers $\left\{a_{i}\right\}$ such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i}<\infty \quad \text { and } \quad . \inf _{i}\left\{F_{i}\left(a_{i}\right)\right\} \geqq \varepsilon \tag{2.15}
\end{equation*}
$$

Proof. Suppose that (2.15) does not hold for some $\varepsilon>0$. Let

$$
a_{i}=\sup \left\{x \mid F_{i}(x)<\varepsilon\right\} \quad \text { for all } i .
$$

Then $a_{i} \geqq 0$ for each i. Also, if $a_{k}=\infty$ for any integer k, then it follows, since τ_{T} is non-decreasing and $F_{i} \leqq \varepsilon_{0}$ for each i, that $\left(\tau_{i=1}^{\infty} F_{i}\right)(x) \leqq F_{k}(x)<\varepsilon$ for all x. Otherwise, $\inf _{i}\left\{F_{i}\left(a_{i}+2^{-i}\right)\right\} \geqq \varepsilon$, whence, necessarily,

$$
\sum_{i=1}^{\infty}\left(a_{i}+2^{-i}\right)=\left(\sum_{i=1}^{\infty} a_{i}\right)+1=\infty
$$

Now choose any $x>0$. Then, for some $N>0$, we have $\sum_{i=1}^{N} a_{i}>x$. If we let $\delta=\left(\sum_{i=1}^{N} a_{i}\right)-x$, then, for any $\left\{b_{1}, \cdots, b_{N}\right\}$ with $\Sigma_{i=1}^{N} b_{i}=x$, we must have $b_{k} \leqq a_{k}-\delta / N$ for some integer k with $1 \leqq k \leqq N$. Thus, since Min is the strongest t-norm [Schweizer (1975)], that is, $T(u, v) \leqq \operatorname{Min}(u, v)$ for all $u, v \in[0,1]$, it follows that

$$
\begin{aligned}
\left({\underset{i=1}{\infty}}_{\tau_{i}}\right)(x) & \leqq \tau_{T}\left(F_{1}, \cdots, F_{N}\right)(x)=\sup \left\{{\underset{i=1}{N}}_{T_{i}}\left(b_{i}\right) \mid \sum_{i=1}^{N} b_{i}=x\right\} \\
& \leqq \sup \left\{\operatorname{Min}\left\{F_{1}\left(b_{1}\right), \cdots, F_{N}\left(b_{N}\right)\right\} \mid \sum_{i=1}^{N} b_{i}=x\right\} \\
& \leqq \operatorname{Max}\left\{F_{1}\left(a_{1}-\frac{\delta}{N}\right), \cdots, F_{N}\left(a_{N}-\frac{\delta}{N}\right)\right\}<\varepsilon,
\end{aligned}
$$

completing the proof.
We can now establish:
Theorem 2.1. Let T be any continuous t-norm, let $\tau=\tau_{T}$ and let $\left\{F_{i}\right\}$ be a sequence in Δ^{+}. Then, for any x,

Proof. We have from Paalman-de Miranda (1964), Theorem 2.5.4, p. 87 that T is an "ordinal sum" of Archimedean t-norms and the t-norm Min; that is, if

$$
E=\{x \in[0,1] \mid T(x, x)=x\}
$$

then $[0,1] \backslash E=\bigcup_{i \in J}\left(d_{i}, e_{i}\right)$ where $\left\{\left(d_{i}, e_{i}\right) \mid i \in J\right\}$ is a finite or countable collection of disjoint open intervals. Furthermore, if T_{i} denotes T restricted to [$\left.d_{i}, e_{i}\right] \times\left[d_{i}, e_{i}\right]$, then ($\left.\left[d_{i}, e_{i}\right], T_{i}\right)$ is a semigroup with unit e_{i} and null element d_{i}. (Note $T_{i}(x, x)<x$ for all $x \in\left(d_{i}, e_{i}\right)$.) In other words, T consists of Archimedean "blocks" along the diagonal of the unit square and $T=$ Min outside of these blocks, that is, $T(x, y)=\operatorname{Min}(x, y)$ if $(x, y) \notin\left[d_{i}, e_{i}\right] \times\left[d_{i}, e_{i}\right]$ for any $i \in J$.

Let (d, e) be any one of these open intervals and, for any $F \in \Delta^{+}$, define $F^{*} \in \Delta^{+}$by

$$
F^{*}(x)= \begin{cases}0, & F(x) \leqq d \\ F(x), & d<F(x) \leqq e \\ e, & F(x)>e\end{cases}
$$

Then, for any $F, G \in \Delta^{+}$and real x, we claim that:

$$
\begin{equation*}
\text { If } \tau_{T}(F, G)(x) \in(d, e] \text { then } \tau_{T}(F, G)(x)=\tau_{T}\left(F^{*}, G^{*}\right)(x) \tag{2.16}
\end{equation*}
$$

To prove (2.16) we first note that if the first part of (2.16) holds, then we can evaluate $\tau_{T}(F, G)(x)$ by restricting the supremum in (1.1) to those pairs u, v where $T(F(u), G(v)) \in(d, e]$. Now, using the ordinal sum above, this can happen only if either (i) both $F(u), G(v) \geqq e$ and $T(F(u), G(v))=e$; or (ii) $F(u) \in(d, e)$ and $G(v) \geqq e$, so that $T(F(u), G(v))=F(u)$; or (iii)
$G(v) \in(d, e)$ and $F(u) \geqq e$, so that $T(F(u), G(v))=G(v)$; or (iv) both $F(u), G(v) \in(d, e)$. But in all of these cases $\quad T(F(u), G(v))=$ $T\left(F^{*}(u), G^{*}(v)\right)$. Since clearly $T(F(u), G(v)) \geqq T\left(F^{*}(u), G^{*}(v)\right)$ for all other pairs $u, v,(2.16)$ then follows.

In addition, we can easily extend (2.16) inductively to obtain that if $\tau_{\tau}\left(F_{1}, \cdots, F_{n}\right)(x) \in(d, e]$ then

$$
\begin{equation*}
\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(x)=\tau_{T}\left(F_{1}^{*}, \cdots, F_{n}^{*}\right)(x) \tag{2.17}
\end{equation*}
$$

Thus, if x is a continuity point of $\tau_{i=1}^{\infty} F_{i}$ and $\left(\tau_{i=1}^{\infty} F_{i}\right)(x) \in(d, e)$, then $\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(x) \in(d, e)$ for all n sufficiently large, whence

$$
\begin{equation*}
\tau_{T}\left(F_{1}^{*}, \cdots, F_{n}^{*}\right)(x) \rightarrow\left(\underset{i=1}{\infty} F_{i}\right)(x) . \tag{2.18}
\end{equation*}
$$

Next define the operation T_{A} on $[0,1] \times[0,1]$ by

$$
\begin{equation*}
T_{A}(w, y)=\frac{T(d+w(e-d), d+y(e-d))-d}{e-d} \tag{2.19}
\end{equation*}
$$

Then it is clear that T_{A} is an Archimedean t-norm. Furthermore, for any i, if we define

$$
G_{i}(u)= \begin{cases}0, & F_{i}^{*}(u)=0 \tag{2.20}\\ \frac{F_{i}^{*}(u)-d}{e-d}, & \text { otherwise }\end{cases}
$$

then $G_{i} \in \Delta^{+}$for all i and, for all u, v, if $F_{1}^{*}(u)>0$ and $F_{2}^{*}(v)>0$ then

$$
T_{A}\left(G_{1}(u), G_{2}(v)\right)=\left(T\left(F_{1}^{*}(u), F_{2}^{*}(v)\right)-d\right)(e-d)^{-1} .
$$

An easy induction step then yields that for any integer n, if $F_{i}^{*}\left(u_{i}\right)>0$ for all i, then

$$
\begin{equation*}
T_{A}\left(G_{1}\left(u_{1}\right), \cdots, G_{n}\left(u_{n}\right)\right)=\left(T\left(F_{1}^{*}\left(u_{1}\right), \cdots, F_{n}^{*}\left(u_{n}\right)\right)-d\right)(e-d)^{-1} \tag{2.21}
\end{equation*}
$$

Now if any $F_{i}^{*}\left(u_{i}\right)=0$ then $T\left(F_{1}^{*}\left(u_{1}\right), \cdots, F_{n}^{*}\left(u_{n}\right)\right)=0$. Thus, using (1.3) and (2.21), we have, for any y such that $\tau_{T}\left(F_{1}^{*}, \cdots, F_{n}^{*}\right)(y)>0$, that

$$
\tau_{T_{A}}\left(G_{1}, \cdots, G_{n}\right)(y)=\left(\tau_{T}\left(F_{1}^{*}, \cdots, F_{n}^{*}\right)(y)-d\right)(e-d)^{-1} .
$$

In particular then, if G denotes the weak limit in Δ^{+}of the sequence $\left\{\tau_{T_{A}}\left(G_{1}, \cdots, G_{n}\right)\right\}$ and x is as in (2.18) then

$$
\begin{equation*}
G(x)=\left(\left({\left.\left.\underset{i=1}{\infty} F_{i}\right)(x)-d\right)(e-d)^{-1} ~}_{\text {. }}\right.\right. \tag{2.22}
\end{equation*}
$$

Hence, using Lemma 2.2 and the fact that (2.21) holds whenever its left-hand side is non-zero, we have that

$$
\begin{aligned}
G(x) & =\sup \left\{T_{i=1}^{\infty} G_{i}\left(a_{i}\right) \mid \sum_{i=1}^{\infty} a_{i}=x\right\} \\
& =\left[\sup \left\{\prod_{i=1}^{\infty} F_{i}^{*}\left(a_{i}\right) \mid \sum_{i=1}^{\infty} a_{i}=x\right\}-d\right](e-d)^{-1}
\end{aligned}
$$

Since $F_{i} \geqq F_{i}^{*}$ for each i, (2.22) and (2.23) then yield that
whence, using Lemma 2.1, we have that (2.6) holds.
To complete our proof suppose, for a given x, that $\left(\tau_{i=1}^{\infty} F_{i}\right)(x) \notin\left(d_{i}, e_{i}\right)$ for any i, that is, suppose $\left(\tau_{i=1}^{\infty} F_{i}\right)(x)=c \in E$ so that $T(c, c)=c$. Then by Lemma 2.3 there exists a sequence of non-negative numbers $\left\{a_{i}\right\}$ such that

$$
\sum_{i=1}^{\infty} a_{i}<\infty \quad \text { and } \quad \inf _{i}\left\{F_{i}\left(a_{i}\right)\right\} \geqq c .
$$

Let $\varepsilon>0$ be arbitrary. Now by left-continuity there exists a continuity point y of $\tau_{i=1}^{\infty} F_{i}$ with $y<x$ such that

$$
\left({\left.\underset{i=1}{\infty} F_{i}\right)(y)>c-\frac{\varepsilon}{2} . ~ . ~}_{\text {. }}\right.
$$

We can then find an integer N sufficiently large so that we have both $\sum_{i=N+1}^{\infty} a_{i} \leqq x-y$ and

$$
\left|\tau_{T}\left(F_{1}, \cdots, F_{N}\right)(y)-\left(\underset{i=1}{\underset{\tau}{\infty}} F_{i}\right)(y)\right|<\frac{\varepsilon}{4} .
$$

Next by (1.3) there exist $\left\{b_{1}, \cdots, b_{N}\right\}$ so that $\sum_{i=1}^{N} b_{i}=y$ and

$$
T\left(F_{1}\left(b_{1}\right), \cdots, F_{N}\left(b_{N}\right)\right) \geqq \tau_{T}\left(F_{1}, \cdots, F_{N}\right)(y)-\frac{\varepsilon}{4}
$$

Thus if we let $b_{i}=a_{i}$ for $i>N$ then $\sum_{i=1}^{\infty} b_{i} \leqq x$ and, combining the above results and using the given facts about ordinal sums, we have that

$$
\begin{aligned}
& \geqq T\left(\left(\underset{i=1}{\infty} F_{i}\right)(y)-\frac{\varepsilon}{2}, c\right) \geqq T(c-\varepsilon, c)=c-\varepsilon .
\end{aligned}
$$

As in the end of the proof of Lemma 2.2, this yields equality in (2.6), at least for continuity points of $\tau_{i=1}^{\infty} F_{i}$. But, since both sides of (2.6) are leftcontinuous, the result then follows for all x.

Remark. The pointwise limit of the sequence $\left\{\tau_{T}\left(F_{1}, \cdots, F_{n}\right)\right\}$ may not be left-continuous, and hence may not equal the right-hand side of (2.6). For example, for each integer n, let $F_{n}(x)=\varepsilon_{0}\left(x-2^{-n}\right)$ for all x. Then, for any t-norm T,

$$
\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(x)=\varepsilon_{0}\left(x-\left(1-2^{-n}\right)\right)
$$

Thus $\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(1)=1$ for all n, but $\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(x) \rightarrow 0$ for all $x<1$.

3. Supremums of infinite τ_{T} products

In general, for supremums of weak limits of infinite τ_{T} products, the most we can say is:

Theorem 3.1. Let T be a continuous t-norm and let $\tau=\tau_{\tau}$. Then, for any sequence $\left\{F_{i}\right\}$ in Δ^{+}, we have that

Proof. Using Theorem 2.1, for any y, we have

Letting $y \rightarrow \infty$ then yields our result.
In the Archimedean t-norm case we obtain the following improvement to Theorem 3.1:

Theorem 3.2. Let T be Archimedean and let $\tau=\tau_{T}$. Then, for any sequence $\left\{F_{i}\right\}$ in Δ^{+}, we have that if $\tau_{i=1}^{\infty} F_{i} \neq \varepsilon_{\infty}$ then

$$
\begin{equation*}
\sup _{x}\left({\left.\underset{i=1}{\infty} F_{i}\right)(x)=\prod_{i=1}^{\infty} \sup _{x} F_{i}(x)}^{x}\right. \tag{3.2}
\end{equation*}
$$

Proof. In view of Theorem 3.1, we need only establish the reverse inequality to (3.1). This is easily done by using part of the proof of Lemma 2.2.

First, let $\varepsilon>0$ be arbitrary and let $\delta>0$ be such that (2.8), in which $\varepsilon / 4$ is replaced by ε, holds. Then, since $\tau_{i=1}^{\infty} F_{i} \neq \varepsilon_{\infty}$, there exists a sequence of positive numbers $\left\{a_{i}\right\}$ such that (2.7) holds.
Also, we can again find an integer $M>0$ so that (2.10) holds.
Hence, combining (2.8) and (2.10) with (2.6) we have that

$$
\begin{aligned}
& \geqq T\left({\left.\underset{i=1}{M}\left(\sup _{x} F_{i}(x)\right), 1-\delta\right), ~(1) ~}_{n}\right. \\
& >\prod_{i=1}^{M}\left(\sup _{x} F_{i}(x)\right)-\varepsilon \\
& \geqq{\underset{i}{T}}_{T_{1}}\left(\sup _{x} F_{i}(x)\right)-\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, this completes the proof.
For sequences of non-defective (that is, supremum 1) distribution functions, Theorem 3.2 yields the following Zero-One Law for infinite τ_{T} products:

Theorem 3.3. Let T be Archimedean and let $\tau=\tau_{T}$. Then, for any sequence $\left\{F_{i}\right\}$ in \mathscr{D}^{+}, the supremum of $\tau_{i=1}^{\infty} F_{i}$ is either 0 or 1 .

Example. Theorem 3.3 (and hence also Theorem 3.2) does not hold for (continuous) non-Archimedean t-norms. For suppose the t-norm T satisfies $T(c, c)=c$ for some c with $0<c<1$. Then if we let $F_{n} \in \mathscr{D}^{+}$be given by

$$
F_{n}(x)=\left\{\begin{array}{ll}
0, & x \leqq 0 \\
c, & 0<x \leqq 1, \\
1, & 1<x
\end{array} \quad \text { for all } n\right.
$$

then it is easily shown that $\sup _{x}\left(\tau_{i=1}^{\infty} F_{i}\right)(x)=c$.
The method of Theorem 3.2 can also be used to establish:

Theorem 3.4. Let T be a strict t-norm and let $\tau=\tau_{T}$. Let $\left\{F_{i}\right\}$ be a sequence in Δ^{+}so that $F_{i}(x)>0$ for all $x>0$ and all i. Then either $\tau_{i=1}^{\infty} F_{i}=\varepsilon_{x}$ (so that $\left(\tau_{i=1}^{\infty} F_{i}\right)(x)=0$ for all $\left.x>0\right)$ or $\left(\tau_{i=1}^{\infty} F_{i}\right)(x)>0$ for all $x>0$.

Thus if $\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(y) \rightarrow 0$ for any $y>0$, then $\tau_{T}\left(F_{1}, \cdots, F_{n}\right)(x) \rightarrow 0$ for all x.

Proof. If $\left(\tau_{i=1}^{\infty} F_{i}\right) \neq \varepsilon_{\infty}$ then again by Theorem 1.1 there exists a sequence of positive numbers $\left\{a_{i}\right\}$ such that (2.7) holds. Then for any $x>0$ there exists an integer $M>0$ so that $\sum_{i=M+1}^{\infty} a_{i}<x / 2$. Thus, using (2.6) and the fact that T is strict (so that $T(\varepsilon, \delta)>0$ for any $\varepsilon, \delta>0$), we have that

$$
\begin{aligned}
& \geqq T\left(\prod_{i=1}^{M} F_{i}\left(\frac{x}{2 M}\right),{\left.\underset{i=M+1}{\infty} F_{i}\left(a_{i}\right)\right)>0, ~}_{\text {i }}\right.
\end{aligned}
$$

completing the proof.
We close with a somewhat surprising result about infinite τ_{T} products. As mentioned previously, a crucial question is whether the weak limit of the pointwise non-increasing sequence $\left\{\tau_{T}\left(F_{1}, \cdots, F_{n}\right)\right\}$ is not identically zero, that is, not equal to ε_{∞}. For a given sequence $\left\{F_{i}\right\}$, it would appear that the answer to this question should depend strongly on the particular t-norm T being used. But, at least for Product and $T_{m}(a, b)=\max \{a+b-1,0\}$, this is not so, for we have:

Theorem 3.5. Let $\left\{F_{i}\right\}$ be a sequence in \mathscr{D}^{+}. Then

$$
\begin{equation*}
\tau_{\mathrm{Prod}}\left(F_{1}, \cdots, F_{n}\right) \xrightarrow{w} \varepsilon_{\infty} \tag{3.4}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\tau_{T_{m}}\left(F_{1}, \cdots, F_{n}\right) \xrightarrow{w} \varepsilon_{\infty} \tag{3.5}
\end{equation*}
$$

Proof. Suppose (3.4) does not hold. Then there exists a sequence of positive numbers $\left\{a_{i}\right\}$ such that $\sum_{i=1}^{\infty} a_{i}<\infty$ and $\prod_{i=1}^{\infty} F_{i}\left(a_{i}\right)>0$. But then, by a well-known result on infinite products, we have that $\Sigma_{i=1}^{\infty}\left(1-F_{i}\left(a_{i}\right)\right)<\infty$. In particular, for some $N>0$, we have $\sum_{i=N+1}^{\infty}\left(1-F_{i}\left(a_{i}\right)\right)<1 / 2$. Now, since we are in \mathscr{D}^{+}, for each integer i with $1 \leqq i \leqq N$, we can find a number $b_{i}>0$ so that $F_{i}\left(b_{i}\right)>1-(2 N)^{-1}$. Letting $b_{i}=a_{i}$ for $i>N$, we then have that $\sum_{i=1}^{\infty} b_{i}<$ ∞ and

$$
\begin{aligned}
T_{i=1}^{\infty} F_{i}\left(b_{i}\right) & =\max \left\{\lim _{n \rightarrow \infty}\left[\left(\sum_{i=1}^{n} F_{i}\left(b_{i}\right)\right)-(n-1)\right], 0\right\} \\
& =\max \left\{1-\sum_{i=1}^{\infty}\left(1-F_{i}\left(b_{i}\right)\right), 0\right\}>0
\end{aligned}
$$

since $\sum_{i=1}^{\infty}\left(1-F_{i}\left(b_{i}\right)\right)<1$. But then, by Theorem 1.1, (3.5) does not hold.
The converse is easily established by the fact that Product is stronger than T_{m}, that is, $a \cdot b \geqq T_{m}(a, b)$ for all $a, b \in[0,1]$. Thus

$$
\tau_{\text {Prod }}\left(F_{1}, \cdots, F_{n}\right) \geqq \tau_{T_{m}}\left(F_{1}, \cdots, F_{n}\right)
$$

for all n, whence (3.4) implies (3.5), completing the proof.
Theorem 3.5 does not hold in Δ^{+}, but is easily shown to generalize as follows:

Corollary 3.1. Let $\{F\}$ be a sequence in Δ^{+}. If $\sum_{i=1}^{\infty}\left(1-\sup _{x} F_{i}(x)\right) \geqq 1$ then (3.5) holds. If $\sum_{i=1}^{\infty}\left(1-\sup _{x} F_{i}(x)\right)<1$, then (3.5) holds if and only if (3.4) holds.

Remark. Product and T_{m} are the two standard non-isomorphic examples of Archimedean t-norms. Thus one might conjecture whether convergence to ε_{∞} of an infinite τ_{T} product of a given sequence $\{F\}$ in \mathscr{D}^{+}is a class property of Archimedean t-norms. But this conjecture is false, as is seen by the following:

Example. For each integer $i>0$, define $F_{i} \in \mathscr{D}^{+}$by

$$
F_{i}(x)= \begin{cases}0, & x \leqq 0, \\ 1-\frac{1}{i^{2}}, & 0<x \leqq i, \\ 1, & i<x .\end{cases}
$$

then it is easily checked using Theorem 1.1 that (3.4) does not hold. However, if we let T be the Archimedean t-norm which is multiplicatively generated using (1.4) by $h(x)=1-\sqrt{1-x}$, then

$$
h F_{i}(x)= \begin{cases}1-\frac{1}{i}, & 0<x \leqq i, \\ 1, & 1<x .\end{cases}
$$

Hence, for any sequence of positive numbers $\left\{a_{i}\right\}$ satisfying $\sum_{i=1}^{\infty} a_{i}<\infty$, it is clear that

$$
\prod_{i=1}^{\infty} F_{i}\left(a_{i}\right)=h^{[-1]}\left(\prod_{i=1}^{\infty} h F_{i}\left(a_{i}\right)\right)=h^{[-1]}(0)=0,
$$

whence, by Theorem 1.1, $\tau_{\tau}\left(F_{1}, \cdots, F_{n}\right) \xrightarrow{w} \varepsilon_{\infty}$.

References

J. Aczél (1966), Lectures on functional equations and their applications, (Academic Press, New York).
C. H. Ling (1965), 'Representation of associative functions', Publ. Math., Debrecen, 12, 189-212.
R. Moynihan (1977), 'Conjugate transforms for τ_{T} semigroups of probability distribution functions', J. Math. Anal. and Appl., to appear.
R. Moynihan (to appear), 'Conjugate transforms and limit theorems for τ_{T} semigroups'.
A. B. Paalman-de Miranda (1964), Topological semigroups, Mathematical Centre Tracts, No. 11 (Mathematisch Centrum Amsterdam).
B. Schweizer (1967), 'Probabilistic metric spaces-the first 25 years', The New York Statistician, 19, 3-6.
B. Schweizer (1975), 'Multiplications on the space of probability distribution functions', Aequationes Math., 12, 156-183.
B. Schweizer and A. Sklar (1974), 'Operations on distribution functions not derivable from operations on random variables', Studia Math., 52, 43-52.

Analysis Department,
The MITRE Corporation,
Bedford, Massachusetts 01730 , U.S.A.

