J. Austral. Math. Soc. (Series A) 26 (1978), 227-240.

INFINITE τ_T PRODUCTS OF DISTRIBUTION FUNCTIONS

RICHARD MOYNIHAN

(Received 21 September 1976)

Communicated by J. Gani

Abstract

Let T be a continuous *t*-norm (a suitable binary operation on [0, 1]) and Δ^+ the space of distribution functions which are concentrated on $[0, \infty)$. The τ_T product of any F, G in Δ^+ is defined at any real x by

$$\tau_{\tau}(F,G)(x) = \sup_{u+v=x} T(F(u),G(v)),$$

and the pair (Δ^+, τ_T) forms a semigroup. Thus, given a sequence $\{F_i\}$ in Δ^+ , the *n*-fold product $\tau_T(F_1, \dots, F_n)$ is well-defined for each *n*. Moreover, the resulting sequence $\{\tau_T(F_1, \dots, F_n)\}$ is pointwise non-increasing and hence has a weak limit. This paper establishes a convergence theorem which yields a representation for this weak limit. In addition, we prove the Zero-One law that, for Archimedean *t*-norms, the weak limit is either identically zero or has supremum 1.

Subject classification (Amer. Math. Soc. (MOS) 1970): 60F99, 60B99.

1. Introduction

If T is a *t*-norm, that is, a suitable binary operation on [0, 1], and Δ^+ is the space of one dimensional distribution functions which are concentrated on $[0, \infty)$, then the τ_T product of F, G in Δ^+ is defined at any x by

(1.1)
$$\tau_{T}(F,G)(x) = \sup_{u+v=x} T(F(u),G(v)).$$

If the *t*-norm *T* is left-continuous as a two place function then the operation τ_T is a mapping from $\Delta^+ \times \Delta^+$ into Δ^+ and the pair (Δ^+, τ_T) is a semigroup, called a τ_T semigroup. The τ_T operations are quite distinct from the operation of convolution of distribution functions [Schweizer and Sklar (1974)] and τ_T semigroups play a prominent role in the theory of probabilistic metric spaces [Schweizer (1967, 1975)].

Since the τ_T operations are associative, for any sequence $\{F_i\}$ in Δ^+ , the

227

n-fold τ_T product $\tau_T(F_1, \dots, F_n)$ is well defined for each *n*. Moreover, the induced sequence of distribution functions $\{\tau_T(F_1, \dots, F_n)\}$ is pointwise non-increasing [Moynihan (1978)] and hence has a unique weak limit in Δ^+ . We call this weak limit *the infinite* τ_T product of the sequence $\{F_i\}$. Two naturally arising problems in this situation are to determine when an infinite τ_T product is non-trivial (that is, not identically zero) and to give a representation for it. The first question was partially solved in Moynihan (1978), where, using the concept of the *T*-conjugate transform on a given τ_T semigroup [Moynihan (1977)], we established:

THEOREM 1.1. Given an Archimedean t-norm T and a sequence $\{F_i\}$ in Δ^+ , the sequence of τ_T products $\{\tau_T(F_1, \dots, F_n)\}$ has a non-trivial weak limit in Δ^+ if and only if there exists a sequence of positive numbers $\{a_i\}$ such that $\sum_{i=1}^{\infty} a_i < \infty$ and $\lim_{n \to \infty} T(F_1(a_1), \dots, F_n(a_n)) > 0$.

In this paper we greatly improve on the above result by showing in Section 2 that, for any continuous *t*-norm *T*, if *G* is the infinite τ_T product of the sequence $\{F_i\}$ in Δ^+ , then, for any *x*,

(1.2)
$$G(x) = \sup \left\{ \lim_{n \to \infty} T(F_1(a_1), \cdots, F_n(a_n)) \middle| \sum_{i=1}^{\infty} a_i = x \right\}.$$

Note that, for any integer n, (1.1) implies that

(1.3)
$$\tau_T(F_1,\cdots,F_n)(x) = \sup\left\{T(F_1(a_1),\cdots,F_n(a_n)) \middle| \sum_{i=1}^n a_i = x\right\}.$$

Thus (1.2) asserts that the limit and sup operations may be interchanged (for continuity points) and thus we obtain a convergence theorem for infinite τ_T products. Clearly (1.2) shows that Theorem 1.1 holds for any continuous *t*-norm.

However, as will be seen, Theorem 1.1 is a necessary and key tool used in establishing the results in this paper.

In Section 3 we show that, for an Archimedean *t*-norm *T*, if $G \in \Delta^+$ is the infinite τ_T product of a sequence $\{F_i\}$ in Δ^+ , then, if *G* is non-trivial,

$$\sup_{x} G(x) = \lim_{n \to \infty} T\left(\sup_{x} F_{1}(x), \cdots, \sup_{x} F_{n}(x)\right).$$

In particular, it then follows that if each F_i is non-defective (that is, has supremum 1) then the supremum of the infinite τ_T product of the sequence $\{F_i\}$ is either 0 or 1, that is, the limit function is either identically zero or has supremum 1. Finally, for a sequence of non-defective distribution functions $\{F_i\}$, we show that the corresponding infinite τ_T product is non-trivial for T = Product exactly when it is non-trivial for $T = T_m$, where $T_m(a, b) = \max\{a + b - 1, 0\}$.

Before we present our results, we state some definitions and known facts: The spaces of distribution functions which we will consider are

 $\Delta^+ = \{F : \mathbb{R} \to [0, 1] \mid F \text{ is left-continuous, non-decreasing and } F(0) = 0\}$

and

$$\mathcal{D}^+ = \left\{ F \in \Delta^+ \left| \sup_x F(x) = 1 \right\}.$$

In particular ε_0 and ε_{∞} in Δ^+ are defined by

$$\varepsilon_0(x) = \begin{cases} 0, & x \leq 0, \\ 1, & x > 0; \end{cases}$$
 and $\varepsilon_\infty(x) = 0$ for all x .

A *t*-norm is a two-place function $T:[0,1] \times [0,1] \rightarrow [0,1]$ which is symmetric, associative, non-decreasing in each place and has 1 as a unit and 0 as a null element. We say that a *t*-norm is Archimedean if T is continuous and satisfies T(a, a) < a for all $a \in (0, 1)$; and strict if T is continuous on the closed unit square and is strictly increasing in each place on $(0, 1] \times (0, 1]$. Note that a strict *t*-norm must also be Archimedean.

From Aczél (1966), Ling (1965) we have the following important characterization of *t*-norms: The *t*-norm *T* is Archimedean if and only if there exists a continuous and increasing function $h:[0,1] \rightarrow [0,1]$ with h(1) = 1 such that *T* is representable in the form

(1.4)
$$T(x, y) = h^{[-1]}(h(x) \cdot h(y)),$$

where $h^{[-1]}$ is the pseudo-inverse of h, that is,

(1.5)
$$h^{[-1]}(x) = \begin{cases} 0, & 0 \leq x \leq h(0), \\ h^{-1}(x) & h(0) \leq x \leq 1; \end{cases}$$

where h^{-1} is the usual inverse of h on [h(0), 1]. The function h of (1.4) is called a *multiplicative generator* of the Archimedean *t*-norm *T*.

Finally, if $\{F_n\}$ is a sequence in Δ^+ then we say $\{F_n\}$ converges weakly to F in Δ^+ , written $F_n \xrightarrow{w} F$, if $F_n(x) \rightarrow F(x)$ for all continuity points x of the limit function F.

2. A convergence theorem for infinite τ_T products

In this section we establish the identity (1.2) for infinite τ_T products for any continuous *t*-norm *T*.

[4]

First note that, since any *t*-norm *T* is associative, it naturally induces a well-defined *n*-place operation on [0, 1]. Thus, for any sequence $\{a_i\}$ in [0, 1], we define, recursively,

(2.1)
$$T(a_1, \dots, a_n) = \prod_{i=1}^n a_i = T\left(\prod_{i=1}^{n-1} a_i, a_n\right).$$

Also, we let

(2.2)
$$\prod_{i=1}^{\infty} a_i = \lim_{n \to \infty} \prod_{i=1}^n a_i,$$

where the sequence $\{T_{i=1}^{n} a_i\}$ is non-increasing and hence its limit always exists.

The τ_{τ} operations given by (1.1) are examples of triangle functions [Schweizer (1975)] on Δ^+ . For any triangle function τ and sequence $\{F_i\}$ in Δ^+ , we also define, recursively,

(2.3)
$$\tau(F_1,\cdots,F_n)=\tau(\tau(F_1,\cdots,F_{n-1}),F_n)$$

and let $\tau_{i=1}^{\infty} F_i$ denote the weak limit in Δ^+ of the sequence $\{\tau(F_1, \dots, F_n)\}$.

Our first step toward establishing (1.2) is:

LEMMA 2.1. Let T be a continuous t-norm and let $\tau = \tau_T$. Then, for any sequence $\{F_i\}$ in Δ^+ and any x, we have that

(2.4)
$$\begin{pmatrix} \stackrel{\infty}{\tau} \\ \stackrel{i=1}{\tau} F_i \end{pmatrix} (x) \geq \sup \left\{ \stackrel{\infty}{T} \\ \stackrel{K}{T} \\ \stackrel{K}{F}_i(a_i) \middle| \sum_{i=1}^{\infty} a_i = x \right\}.$$

PROOF. For any x, choose $\{a_i\}$ so that $\sum_{i=1}^{\infty} a_i = x$ and $a_i > 0$ for all *i*. Then, for any n,

(2.5)

$$\tau_T(F_1,\cdots,F_n)(x) \ge \tau_T(F_1,\cdots,F_n)\left(\sum_{i=1}^n a_i\right)$$
$$\ge \prod_{i=1}^n F_i(a_i) \ge \prod_{i=1}^\infty F_i(a_i)$$

Also note that if any $a_i \leq 0$, then the last term in (2.5) is zero. Thus, since the right hand side of (2.4) is easily shown to be left-continuous, if we let $n \to \infty$ in (2.5), then our desired result is obtained.

Next we prove (1.2) for Archimedean *t*-norms.

LEMMA 2.2. Let T be an Archimedean t-norm and let $\tau = \tau_T$. Then, for any sequence $\{F_i\}$ in Δ^+ and any x, we have that

(2.6)
$$\binom{\infty}{\tau} F_i(x) = \sup\left\{ \frac{\infty}{T} F_i(a_i) \mid \sum_{i=1}^{\infty} a_i = x \right\}.$$

PROOF. If $\tau_{i=1}^{\infty} F_i = \varepsilon_{\infty}$ then by Lemma 2.1 we are done. So assume otherwise, so that by Theorem 1.1 there exists a sequence of positive numbers $\{a_i\}$ such that

(2.7)
$$\sum_{i=1}^{\infty} a_i < \infty \quad \text{and} \quad \prod_{i=1}^{\infty} F_i(a_i) > 0.$$

Now choose any x and let $\varepsilon > 0$ be arbitrary. By the uniform continuity of T there exists a $\delta > 0$ so that

(2.8)
$$T(b, 1-\delta) > b - \frac{\varepsilon}{4} \text{ for any } b \in [0, 1].$$

Next, using Moynihan (1978), Lemma 3.1, if h is the multiplicative generator of T then we have from (2.7) that

(2.9)
$$h^{[-1]}\left(\prod_{i=1}^{\infty} hF_i(a_i)\right) = \prod_{i=1}^{\infty} F_i(a_i) > 0,$$

whence, by (1.5), $\prod_{i=1}^{\infty} hF_i(a_i) > h(0) \ge 0$. Thus, since $h^{[-1]}$ is continuous with $h^{[-1]}(1) = 1$, we have, for some integer M > 0, that $\prod_{i=M}^{\infty} hF_i(a_i)$ is sufficiently close to 1 to insure that

(2.10)
$$\prod_{i=M}^{\infty} F_i(a_i) = h^{[-1]} \left(\prod_{i=M}^{\infty} hF_i(a_i) \right) > 1 - \delta.$$

Now by left-continuity there exists a continuity point y of $\tau_{i=1}^{\infty} F_i$ with y < x so that

(2.11)
$$\begin{pmatrix} x \\ \tau \\ i=1 \end{pmatrix} (y) > \begin{pmatrix} x \\ \tau \\ i=1 \end{pmatrix} (x) - \frac{\varepsilon}{4};$$

and, by weak convergence, we have, for some N > 0, that for $n \ge N$

(2.12)
$$\left|\tau_T(F_1,\cdots,F_n)(y)-\binom{\infty}{\tau}F_i\right|(y)\right|<\frac{\varepsilon}{4}$$

Now choose $n \ge \max\{M, N\}$ and also sufficiently large so that $\sum_{i=n+1}^{\infty} a_i < x - y$. Then by (1.3) there exist $\{b_1, \dots, b_n\}$ such that $\sum_{i=1}^{n} b_i = y$ and

(2.13)
$$T(F_1(b_1),\cdots,F_n(b_n)) \geq \tau_T(F_1,\cdots,F_n)(y) - \frac{\varepsilon}{4}.$$

Letting $b_i = a_i$ for i > n, we then have that $\sum_{i=1}^{\infty} b_i < x$ and, from (2.8) through (2.13),

(2.14)

$$\begin{array}{l} \prod_{i=1}^{\infty} F_{i}(b_{i}) = T\left(\prod_{i=1}^{n} F_{i}(b_{i}), \prod_{i=n+1}^{\infty} F_{i}(a_{i})\right) \\
\geq T\left(\tau_{T}(F_{1}, \cdots, F_{n})(y) - \frac{\varepsilon}{4}, \prod_{i=M}^{\infty} F_{i}(a_{i})\right) \\
> \tau_{T}(F_{1}, \cdots, F_{n})(y) - \frac{\varepsilon}{2} \\
> \left(\prod_{i=1}^{\infty} F_{i}\right)(y) - 3\frac{\varepsilon}{4} \\
> \left(\prod_{i=1}^{\infty} F_{i}\right)(x) - \varepsilon.
\end{array}$$

Clearly, if we let $c_1 = b_1 + (x - \sum_{i=1}^{\infty} b_i)$ and $c_i = b_i$ for i > 1, then $\sum_{i=1}^{\infty} c_i = x$ and $T_{i=1}^{\infty} F_i(c_i) \ge T_{i=1}^{\infty} F_i(b_i)$, whence, since $\varepsilon > 0$ was arbitrary, (2.14) establishes the reverse inequality to (2.4), completing the proof.

We will also need:

LEMMA 2.3. Let T be a continuous t-norm, let $\tau = \tau_T$ and let $\{F_i\}$ be a sequence in Δ^+ . Then, for any $\varepsilon > 0$, if $(\tau_{i=1}^{\infty} F_i)(x) \ge \varepsilon$ for some x > 0, then there exists a sequence of non-negative numbers $\{a_i\}$ such that

(2.15)
$$\sum_{i=1}^{\infty} a_i < \infty \quad and \quad \inf_i \{F_i(a_i)\} \ge \varepsilon$$

PROOF. Suppose that (2.15) does not hold for some $\varepsilon > 0$. Let

$$a_i = \sup\{x \mid F_i(x) < \varepsilon\}$$
 for all *i*.

Then $a_i \ge 0$ for each *i*. Also, if $a_k = \infty$ for any integer *k*, then it follows, since τ_T is non-decreasing and $F_i \le \varepsilon_0$ for each *i*, that $(\tau_{i=1}^{\infty} F_i)(x) \le F_k(x) < \varepsilon$ for all *x*. Otherwise, $\inf_i \{F_i(a_i + 2^{-i})\} \ge \varepsilon$, whence, necessarily,

$$\sum_{i=1}^{\infty} \left(a_i + 2^{-i}\right) = \left(\sum_{i=1}^{\infty} a_i\right) + 1 = \infty.$$

Now choose any x > 0. Then, for some N > 0, we have $\sum_{i=1}^{N} a_i > x$. If we let $\delta = (\sum_{i=1}^{N} a_i) - x$, then, for any $\{b_1, \dots, b_N\}$ with $\sum_{i=1}^{N} b_i = x$, we must have $b_k \leq a_k - \delta/N$ for some integer k with $1 \leq k \leq N$. Thus, since Min is the strongest t-norm [Schweizer (1975)], that is, $T(u, v) \leq Min(u, v)$ for all $u, v \in [0, 1]$, it follows that

$$\begin{pmatrix} \stackrel{*}{\tau} \\ \stackrel{*}{\tau} \\ F_i \end{pmatrix} (x) \leq \tau_T (F_1, \cdots, F_N)(x) = \sup \left\{ \stackrel{N}{T} \\ F_i(b_i) \middle| \sum_{i=1}^N b_i = x \right\}$$
$$\leq \sup \left\{ \operatorname{Min} \left\{ F_1(b_1), \cdots, F_N(b_N) \right\} \middle| \sum_{i=1}^N b_i = x \right\}$$
$$\leq \operatorname{Max} \left\{ F_1 \left(a_1 - \frac{\delta}{N} \right), \cdots, F_N \left(a_N - \frac{\delta}{N} \right) \right\} < \varepsilon,$$

completing the proof.

We can now establish:

THEOREM 2.1. Let T be any continuous t-norm, let $\tau = \tau_T$ and let $\{F_i\}$ be a sequence in Δ^+ . Then, for any x,

$$\binom{\infty}{\tau}_{i=1}F_i(x) = \sup\left\{ \left. \prod_{i=1}^{\infty}F_i(a_i) \right| \sum_{i=1}^{\infty}a_i = x \right\}.$$

PROOF. We have from Paalman-de Miranda (1964), Theorem 2.5.4, p. 87 that T is an "ordinal sum" of Archimedean *t*-norms and the *t*-norm Min; that is, if

$$E = \{x \in [0, 1] \mid T(x, x) = x\}$$

then $[0, 1] \setminus E = \bigcup_{i \in J} (d_i, e_i)$ where $\{(d_i, e_i) | i \in J\}$ is a finite or countable collection of disjoint open intervals. Furthermore, if T_i denotes T restricted to $[d_i, e_i] \times [d_i, e_i]$, then $([d_i, e_i], T_i)$ is a semigroup with unit e_i and null element d_i . (Note $T_i(x, x) < x$ for all $x \in (d_i, e_i)$.) In other words, T consists of Archimedean "blocks" along the diagonal of the unit square and T = Min outside of these blocks, that is, T(x, y) = Min(x, y) if $(x, y) \notin [d_i, e_i] \times [d_i, e_i]$ for any $i \in J$.

Let (d, e) be any one of these open intervals and, for any $F \in \Delta^+$, define $F^* \in \Delta^+$ by

$$F^{*}(x) = \begin{cases} 0, & F(x) \leq d, \\ F(x), & d < F(x) \leq e, \\ e, & F(x) > e. \end{cases}$$

Then, for any $F, G \in \Delta^+$ and real x, we claim that:

(2.16) If
$$\tau_T(F, G)(x) \in (d, e]$$
 then $\tau_T(F, G)(x) = \tau_T(F^*, G^*)(x)$.

To prove (2.16) we first note that if the first part of (2.16) holds, then we can evaluate $\tau_T(F, G)(x)$ by restricting the supremum in (1.1) to those pairs u, v where $T(F(u), G(v)) \in (d, e]$. Now, using the ordinal sum above, this can happen only if either (i) both $F(u), G(v) \ge e$ and T(F(u), G(v)) = e; or (ii) $F(u) \in (d, e)$ and $G(v) \ge e$, so that T(F(u), G(v)) = F(u); or (iii)

 $G(v) \in (d, e)$ and $F(u) \ge e$, so that T(F(u), G(v)) = G(v); or (iv) both $F(u), G(v) \in (d, e)$. But in all of these cases $T(F(u), G(v)) = T(F^*(u), G^*(v))$. Since clearly $T(F(u), G(v)) \ge T(F^*(u), G^*(v))$ for all other pairs u, v, (2.16) then follows.

In addition, we can easily extend (2.16) inductively to obtain that if $\tau_T(F_1, \dots, F_n)(x) \in (d, e]$ then

(2.17)
$$\tau_T(F_1,\cdots,F_n)(x)=\tau_T(F_1^*,\cdots,F_n^*)(x).$$

Thus, if x is a continuity point of $\tau_{i=1}^{\infty} F_i$ and $(\tau_{i=1}^{\infty} F_i)(x) \in (d, e)$, then $\tau_{\tau}(F_1, \dots, F_n)(x) \in (d, e)$ for all n sufficiently large, whence

(2.18)
$$\tau_T(F_1^*,\cdots,F_n^*)(x) \to \left(\begin{array}{c} \overset{\infty}{\tau} \\ i=1 \end{array} F_i \right)(x).$$

Next define the operation T_A on $[0, 1] \times [0, 1]$ by

(2.19)
$$T_A(w, y) = \frac{T(d + w(e - d), d + y(e - d)) - d}{e - d}$$

Then it is clear that T_A is an Archimedean *t*-norm. Furthermore, for any *i*, if we define

(2.20)
$$G_{i}(u) = \begin{cases} 0, & F^{*}(u) = 0, \\ \frac{F^{*}_{i}(u) - d}{e - d}, & \text{otherwise}; \end{cases}$$

then $G_i \in \Delta^+$ for all *i* and, for all *u*, *v*, if $F_1^*(u) > 0$ and $F_2^*(v) > 0$ then

$$T_A(G_1(u), G_2(v)) = (T(F_1^*(u), F_2^*(v)) - d)(e - d)^{-1}.$$

An easy induction step then yields that for any integer *n*, if $F_i^*(u_i) > 0$ for all *i*, then

(2.21)
$$T_A(G_1(u_1), \cdots, G_n(u_n)) = (T(F_1^*(u_1), \cdots, F_n^*(u_n)) - d)(e - d)^{-1}$$

Now if any $F_i^*(u_i) = 0$ then $T(F_1^*(u_1), \dots, F_n^*(u_n)) = 0$. Thus, using (1.3) and (2.21), we have, for any y such that $\tau_T(F_1^*, \dots, F_n^*)(y) > 0$, that

$$\tau_{T_{A}}(G_{1},\cdots,G_{n})(y) = (\tau_{T}(F_{1}^{*},\cdots,F_{n}^{*})(y) - d)(e - d)^{-1}.$$

In particular then, if G denotes the weak limit in Δ^+ of the sequence $\{\tau_{T_A}(G_1, \dots, G_n)\}$ and x is as in (2.18) then

(2.22)
$$G(x) = \left(\left(\mathop{\tau}\limits_{i=1}^{\infty} F_i \right) (x) - d \right) (e-d)^{-1}.$$

Hence, using Lemma 2.2 and the fact that (2.21) holds whenever its left-hand side is non-zero, we have that

[8]

(2.23)

$$G(x) = \sup \left\{ \left. \prod_{i=1}^{\infty} G_i(a_i) \right| \sum_{i=1}^{\infty} a_i = x \right\} \\
= \left[\sup \left\{ \left. \prod_{i=1}^{\infty} F_i^*(a_i) \right| \sum_{i=1}^{\infty} a_i = x \right\} - d \right] (e - d)^{-1},$$

Since $F_i \ge F_i^*$ for each *i*, (2.22) and (2.23) then yield that

$$\sup\left\{\left| \prod_{i=1}^{\infty} F_i(a_i) \right| \sum_{i=1}^{\infty} a_i = x \right\} \ge \sup\left\{\left| \prod_{i=1}^{\infty} F_i^*(a_i) \right| \sum_{i=1}^{\infty} a_i = x \right\} = \left(\left| \prod_{i=1}^{\infty} F_i \right| (x),$$

whence, using Lemma 2.1, we have that (2.6) holds.

To complete our proof suppose, for a given x, that $(\tau_{i=1}^{\infty} F_i)(x) \notin (d_i, e_i)$ for any *i*, that is, suppose $(\tau_{i=1}^{\infty} F_i)(x) = c \in E$ so that T(c, c) = c. Then by Lemma 2.3 there exists a sequence of non-negative numbers $\{a_i\}$ such that

$$\sum_{i=1}^{\infty} a_i < \infty \quad \text{and} \quad \inf_i \{F_i(a_i)\} \ge c.$$

Let $\varepsilon > 0$ be arbitrary. Now by left-continuity there exists a continuity point y of $\tau_{i=1}^{\infty} F_i$ with y < x such that

$$\binom{\infty}{\tau}_{i=1}F_i(y)>c-\frac{\varepsilon}{2}$$

We can then find an integer N sufficiently large so that we have both $\sum_{i=N+1}^{\infty} a_i \leq x - y$ and

$$\left| \tau_T(F_1,\cdots,F_N)(y) - \left(\sum_{i=1}^{\infty} F_i \right)(y) \right| < \frac{\varepsilon}{4}$$

Next by (1.3) there exist $\{b_1, \dots, b_N\}$ so that $\sum_{i=1}^N b_i = y$ and

$$T(F_1(b_1),\cdots,F_N(b_N)) \geq \tau_T(F_1,\cdots,F_N)(y) - \frac{\varepsilon}{4}.$$

Thus if we let $b_i = a_i$ for i > N then $\sum_{i=1}^{\infty} b_i \leq x$ and, combining the above results and using the given facts about ordinal sums, we have that

$$\overset{\tilde{n}}{\underset{i=1}{T}} F_i(b_i) = T\left(\overset{N}{\underset{i=1}{T}} F_i(b_i), \quad \overset{\tilde{n}}{\underset{i=N+1}{T}} F_i(a_i) \right) \\ \geq T\left(\left(\overset{\tilde{n}}{\underset{i=1}{\tau}} F_i \right)(y) - \frac{\varepsilon}{2}, c \right) \geq T(c - \varepsilon, c) = c - \varepsilon.$$

As in the end of the proof of Lemma 2.2, this yields equality in (2.6), at least for continuity points of $\tau_{i=1}^{\infty} F_i$. But, since both sides of (2.6) are left-continuous, the result then follows for all x.

REMARK. The pointwise limit of the sequence $\{\tau_T(F_1, \dots, F_n)\}$ may not be left-continuous, and hence may not equal the right-hand side of (2.6). For example, for each integer *n*, let $F_n(x) = \varepsilon_0(x - 2^{-n})$ for all *x*. Then, for any *t*-norm *T*,

$$\tau_T(F_1,\cdots,F_n)(x)=\varepsilon_0(x-(1-2^{-n}))$$

Thus $\tau_T(F_1, \dots, F_n)(1) = 1$ for all *n*, but $\tau_T(F_1, \dots, F_n)(x) \rightarrow 0$ for all x < 1.

3. Supremums of infinite τ_T products

In general, for supremums of weak limits of infinite τ_T products, the most we can say is:

THEOREM 3.1. Let T be a continuous t-norm and let $\tau = \tau_T$. Then, for any sequence $\{F_i\}$ in Δ^+ , we have that

(3.1)
$$\sup_{x} \left(\frac{\tilde{\tau}}{\tau} F_{i} \right)(x) \leq \prod_{i=1}^{\infty} \sup_{x} F_{i}(x).$$

PROOF. Using Theorem 2.1, for any y, we have

$$\left(\mathop{\overset{\infty}{\tau}}_{i=1}^{\infty}F_{i}\right)(y) = \sup\left\{\mathop{\overset{\infty}{T}}_{i=1}^{\infty}F_{i}(a_{i}) \middle| \sum_{i=1}^{\infty}a_{i} = y\right\} \leq \mathop{\overset{\infty}{T}}_{i=1}^{\infty}\sup_{x}F_{i}(x).$$

Letting $y \rightarrow \infty$ then yields our result.

In the Archimedean *t*-norm case we obtain the following improvement to Theorem 3.1:

THEOREM 3.2. Let T be Archimedean and let $\tau = \tau_T$. Then, for any sequence $\{F_i\}$ in Δ^+ , we have that if $\tau_{i=1}^{\infty} F_i \neq \varepsilon_{\infty}$ then

(3.2)
$$\sup_{x} \left(\frac{\tilde{\tau}}{\tau} F_i \right)(x) = \prod_{i=1}^{\infty} \sup_{x} F_i(x).$$

PROOF. In view of Theorem 3.1, we need only establish the reverse inequality to (3.1). This is easily done by using part of the proof of Lemma 2.2.

First, let $\varepsilon > 0$ be arbitrary and let $\delta > 0$ be such that (2.8), in which $\varepsilon/4$ is replaced by ε , holds. Then, since $\tau_{i=1}^{\infty} F_i \neq \varepsilon_{\infty}$, there exists a sequence of positive numbers $\{a_i\}$ such that (2.7) holds.

Also, we can again find an integer M > 0 so that (2.10) holds.

Hence, combining (2.8) and (2.10) with (2.6) we have that

(3.3)

$$\sup_{x} \left(\begin{array}{c} \overset{\infty}{\tau} \\ i=1 \end{array} F_{i} \right)(x) = \lim_{x \to \infty} \left(\begin{array}{c} \overset{\infty}{\tau} \\ i=1 \end{array} F_{i} \right) \left(x + \sum_{i=M+1}^{\infty} a_{i} \right) \\
\geq \lim_{x \to \infty} T \left(\begin{array}{c} \overset{M}{T} \\ i=1 \end{array} F_{i}(x/M), \quad \begin{array}{c} \overset{\infty}{T} \\ i=M+1 \end{array} F_{i}(a_{i}) \right) \\
\geq T \left(\begin{array}{c} \overset{M}{T} \\ i=1 \end{array} \left(\begin{array}{c} \sup_{x} F_{i}(x) \right), \quad 1-\delta \right) \\
> \quad \begin{array}{c} \overset{M}{T} \\ i=1 \end{array} \left(\begin{array}{c} \sup_{x} F_{i}(x) \right) - \varepsilon \\
\geq \quad \begin{array}{c} \overset{\infty}{T} \\ i=1 \end{array} \left(\begin{array}{c} \sup_{x} F_{i}(x) \right) - \varepsilon . \end{array} \right)$$

Since $\varepsilon > 0$ is arbitrary, this completes the proof.

For sequences of non-defective (that is, supremum 1) distribution functions, Theorem 3.2 yields the following Zero-One Law for infinite τ_T products:

THEOREM 3.3. Let T be Archimedean and let $\tau = \tau_T$. Then, for any sequence $\{F_i\}$ in \mathcal{D}^+ , the supremum of $\tau_{i=1}^{\infty} F_i$ is either 0 or 1.

EXAMPLE. Theorem 3.3 (and hence also Theorem 3.2) does not hold for (continuous) non-Archimedean *t*-norms. For suppose the *t*-norm *T* satisfies T(c, c) = c for some *c* with 0 < c < 1. Then if we let $F_n \in \mathcal{D}^+$ be given by

$$F_n(x) = \begin{cases} 0, & x \leq 0, \\ c, & 0 < x \leq 1, \\ 1, & 1 < x; \end{cases}$$
 for all *n*,

then it is easily shown that $\sup_{x} (\tau_{i=1}^{\infty} F_i)(x) = c$.

The method of Theorem 3.2 can also be used to establish:

THEOREM 3.4. Let T be a strict t-norm and let $\tau = \tau_T$. Let $\{F_i\}$ be a sequence in Δ^+ so that $F_i(x) > 0$ for all x > 0 and all i. Then either $\tau_{i=1}^{\infty} F_i = \varepsilon_{\infty}$ (so that $(\tau_{i=1}^{\infty} F_i)(x) = 0$ for all x > 0) or $(\tau_{i=1}^{\infty} F_i)(x) > 0$ for all x > 0.

Thus if $\tau_T(F_1, \dots, F_n)(y) \rightarrow 0$ for any y > 0, then $\tau_T(F_1, \dots, F_n)(x) \rightarrow 0$ for all x.

PROOF. If $(\tau_{i=1}^{\infty} F_i) \neq \varepsilon_{\infty}$ then again by Theorem 1.1 there exists a sequence of positive numbers $\{a_i\}$ such that (2.7) holds. Then for any x > 0 there exists an integer M > 0 so that $\sum_{i=M+1}^{\infty} a_i < x/2$. Thus, using (2.6) and the fact that T is strict (so that $T(\varepsilon, \delta) > 0$ for any $\varepsilon, \delta > 0$), we have that

$$\binom{\tilde{\tau}}{i} F_i(x) \geq \binom{\tilde{\tau}}{i-1} F_i \left(\frac{x}{2} + \sum_{i=M+1}^{\infty} a_i \right)$$

$$\geq T \binom{M}{i-1} F_i \left(\frac{x}{2M} \right), \quad \overset{\tilde{\tau}}{\underset{i=M+1}{T}} F_i(a_i) > 0,$$

completing the proof.

We close with a somewhat surprising result about infinite τ_T products. As mentioned previously, a crucial question is whether the weak limit of the pointwise non-increasing sequence $\{\tau_T(F_1, \dots, F_n)\}$ is not identically zero, that is, not equal to ε_{∞} . For a given sequence $\{F_i\}$, it would appear that the answer to this question should depend strongly on the particular *t*-norm *T* being used. But, at least for Product and $T_m(a, b) = \max\{a + b - 1, 0\}$, this is not so, for we have:

THEOREM 3.5. Let $\{F_i\}$ be a sequence in \mathcal{D}^+ . Then

(3.4)
$$\tau_{\operatorname{Prod}}(F_1,\cdots,F_n) \xrightarrow{\mathfrak{s}} \varepsilon_{\infty}$$

if and only if

(3.5)
$$\tau_{T_m}(F_1,\cdots,F_n) \xrightarrow{w} \varepsilon_{\infty}.$$

PROOF. Suppose (3.4) does not hold. Then there exists a sequence of positive numbers $\{a_i\}$ such that $\sum_{i=1}^{\infty} a_i < \infty$ and $\prod_{i=1}^{\infty} F_i(a_i) > 0$. But then, by a well-known result on infinite products, we have that $\sum_{i=1}^{\infty} (1 - F_i(a_i)) < \infty$. In particular, for some N > 0, we have $\sum_{i=N+1}^{\infty} (1 - F_i(a_i)) < 1/2$. Now, since we are in \mathcal{D}^+ , for each integer *i* with $1 \le i \le N$, we can find a number $b_i > 0$ so that $F_i(b_i) > 1 - (2N)^{-1}$. Letting $b_i = a_i$ for i > N, we then have that $\sum_{i=1}^{\infty} b_i < \infty$ and

$$\overset{\infty}{T_{m}} F_{i}(b_{i}) = \max\left\{\lim_{n \to \infty} \left[\left(\sum_{i=1}^{n} F_{i}(b_{i})\right) - (n-1)\right], 0\right\} \\
= \max\left\{1 - \sum_{i=1}^{\infty} (1 - F_{i}(b_{i})), 0\right\} > 0,$$

since $\sum_{i=1}^{\infty} (1 - F_i(b_i)) < 1$. But then, by Theorem 1.1, (3.5) does not hold.

The converse is easily established by the fact that Product is stronger than T_m , that is, $a \cdot b \ge T_m(a, b)$ for all $a, b \in [0, 1]$. Thus

$$\tau_{\operatorname{Prod}}(F_1,\cdots,F_n) \geq \tau_{T_m}(F_1,\cdots,F_n)$$

for all n, whence (3.4) implies (3.5), completing the proof.

Theorem 3.5 does not hold in Δ^+ , but is easily shown to generalize as follows:

COROLLARY 3.1. Let $\{F_i\}$ be a sequence in Δ^+ . If $\sum_{i=1}^{\infty} (1 - \sup_x F_i(x)) \ge 1$ then (3.5) holds. If $\sum_{i=1}^{\infty} (1 - \sup_x F_i(x)) < 1$, then (3.5) holds if and only if (3.4) holds.

REMARK. Product and T_m are the two standard non-isomorphic examples of Archimedean *t*-norms. Thus one might conjecture whether convergence to ε_{∞} of an infinite τ_T product of a given sequence $\{F_i\}$ in \mathcal{D}^+ is a class property of Archimedean *t*-norms. But this conjecture is false, as is seen by the following:

EXAMPLE. For each integer i > 0, define $F_i \in \mathcal{D}^+$ by

$$F_i(x) = \begin{cases} 0, & x \leq 0, \\ 1 - \frac{1}{i^2}, & 0 < x \leq i, \\ 1, & i < x. \end{cases}$$

then it is easily checked using Theorem 1.1 that (3.4) does not hold. However, if we let T be the Archimedean *t*-norm which is multiplicatively generated using (1.4) by $h(x) = 1 - \sqrt{1-x}$, then

$$hF_i(x) = \begin{cases} 1 - \frac{1}{i}, & 0 < x \le i, \\ 1, & 1 < x. \end{cases}$$

Hence, for any sequence of positive numbers $\{a_i\}$ satisfying $\sum_{i=1}^{\infty} a_i < \infty$, it is clear that

$$\prod_{i=1}^{\infty} F_i(a_i) = h^{[-1]} \left(\prod_{i=1}^{\infty} hF_i(a_i) \right) = h^{[-1]}(0) = 0,$$

whence, by Theorem 1.1, $\tau_T(F_1, \dots, F_n) \xrightarrow{w} \varepsilon_{\infty}$.

References

- J. Aczél (1966), Lectures on functional equations and their applications, (Academic Press, New York).
- C. H. Ling (1965), 'Representation of associative functions', Publ. Math., Debrecen, 12, 189-212.
- R. Moynihan (1977), 'Conjugate transforms for τ_T semigroups of probability distribution functions', J. Math. Anal. and Appl., to appear.
- R. Moynihan (to appear), 'Conjugate transforms and limit theorems for τ_{τ} semigroups'.
- A. B. Paalman-de Miranda (1964), Topological semigroups, Mathematical Centre Tracts, No. 11 (Mathematisch Centrum Amsterdam).
- B. Schweizer (1967), 'Probabilistic metric spaces—the first 25 years', The New York Statistician, 19, 3-6.

- B. Schweizer (1975), 'Multiplications on the space of probability distribution functions', *Aequationes Math.*, 12, 156-183.
- B. Schweizer and A. Sklar (1974), 'Operations on distribution functions not derivable from operations on random variables', *Studia Math.*, **52**, 43-52.

Analysis Department, The MITRE Corporation,

Bedford, Massachusetts 01730, U.S.A.