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CUSPIDAL MODULAR SYMBOLS ARE TRANSPORTABLE
WILLIAM A. STEIN AND HELENA A. VERRILL

Abstract

Modular symbols of weight 2 for a congruence subgrbgatisfy the
identity {«, ¥ («)} = {8, y(B)} for all «, B in the extended upper half
plane and/ € I'. The analogue of this identity is false for modular
symbols of weight greater than 2. This paper provides a definition
of transportable modular symbols, which are symbols for which an
analogue of the above identity holds, and proves that every cuspidal
symbol can be written as a transportable symbol. As a corollary, an
algorithm is obtained for computing periods of cuspforms.

Introduction

It is well known that modular symbols of weight 2 for a congruence subgrosgtisfy the
identity {«, y (a)} = {B, y(B)} for all «, B in the extended upper half plane apde T.
The analogue of this identity is, in general, false for modular symbols of weight greate
than 2. To investigate further, we define transportable modular symbols, which are symb
that can be expressed in such a way that an analogue of the above identity holds. We t
prove that every cuspidal symbol is transportable. As a corollary, we obtain an algorith
for computing periods of cuspforms.

In Sectionl we review the definition of modular symbols. In Sectiwe define trans-
portable modular symbols, and prove our main theorem. Se8tiamtains an application
of our transportability result to the computation of periods of modular forms. Finally, Sec
tion 4 contains two examples in which we verify the assertion of Theaehand apply
the period computation algorithm.

1. Modular symbols

In Sectionl.1we recall the definition of modular symbols given#j;fthen in Sectiord..2
we introduce a slight generalization of the definition. Meandk be positive integers with
k > 2,andlets : Z/NZ — C be a Dirichlet character modulg.

1.1. Definition

Let.M be the abelian group generated by all symljels8} with «, 8 € P1(Q), modulo
the relationd«, B} + {8, ¥} + {y, @} = 0, and modulo any torsion. Lét;_» denote the
group of homogeneous polynomialsZfX, Y] of degreek — 2.

Received 22 March 2001, revised 29 August 2(fiiblished 24 September 2001
2000 Mathematics Subject Classification 20C33, 20C44, 20G05, 20G40
© 2001, William A. Stein and Helena A. Verrill

https://doi.org/10.1112/5146115700000084X RublBhéd Caimeplht Chitifidgk (HOGIBTOPES]


http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/4
https://doi.org/10.1112/S146115700000084X

Cuspidal modular symbols are transportable

Each elemeny = (¢ 4) € SL(2, Z) acts on the left orV,_, by
y(P(X,Y)) = P(dX — bY, —cX +aY),
and onMy = Vi_2 ® M by

y(P ®{a, B} = y(P) ® {y (@), y(B)}.

Fix a Dirichlet charactee : Z/NZ — C, and denote b¥[¢] the ring generated by the

image ofe. We also views as a homomorphisiig(N) — C* by settinge (¢ 5) = e(d).
The spaceM; (N, ¢) of modular symbolsf level N and charactes is the quotient of

the Z[e]-module M} ® Z[¢] by the Z[e]-submodule generated by(x) — (y)x for all

x € My, forally € I'g(N), and by any torsion. Denote B{«, 8} the image ofP ® {«, B}

in My (N, ¢). TheQ[e]-vector space

Mi(N, e; Q) = M(N,e) @z Q

containsmMy (N, ¢).
Let B be the free abelian group generated by all symke)s for « € PX(Q). Define
a left action of SI2, Z) on B, = Vy_2 ® B by

y(P ®{a}) = y(P) ®{yal.
The spaceB; (N, ¢) of boundary symbois the quotient ofB; ® Z[¢] by theZ[e]-submodule
generated by (x) — e(y)x for all x € By, for all y € T'o(N), and by any torsion. The
subspacé (N, ¢) of cuspidal symbols the kernel of the map: My (N, &) — Bi(N, ¢)
given bys(P{a, B}) = P{B} — P{a}.
Whene = 1 is the trivial character, we shall also writé, (I'o(N)) for My (N, 1), and
similarly for 8, and 8.

1.2. Extended modular symbols

Itis useful to extend the notion of modular symbols to allow symbols of the ®fmw}
wherez andw are arbitrary elements ¢f = h U PL(Q).

Definition 1 (Extended modular symbols). The groupM;. of extended modular symbols
is the free abelian group with basis the set of all symils, w} with z, w € bh*, subject
to the relationsP{u, v} + P{v, w} + P{w,u} = 0.

Note_thatﬂk is of uncountable rank ovef. It is ecEipped with an action dfo(N);
we let My (N, ¢) be the largest torsion-free quotient.of; by the relationg/x = e(y)x
fory € I'o(N).

2. Transportable modular symbols

In Section2.1we define transportable modular symbols, and we prove an elemental
proposition that motivates the definition. Secti®r2, which is the heart of this paper,
contains a proof that every cuspidal modular symbol is transportable.

2.1. Definition
Definition 2 (Transportable). A modular symbol igransportableif it can be written in
the form

m

DIRACNACHE

i=1
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fory; € To(N) and P; € Vj,_» with
D Pifoo, 7i(00)} = ) Pifa, yi (@)}
i=1 i=1

for all « € h*, where the equality takes place.; (N, ).

Whenk = 2, the identity{oco, y (c0)} = {«, y (@)} holds for anyx € h*, so in weight 2
there is a plentiful supply of transportable modular symbols.

Proposition 2.1. Foranyy € I'g(N), P € Vy_2 andu € bh*,
P{00, y(00)} = Pla, y (@)} + (P — &(y)y "' P){o0, a)
= () (y ' P){a, 00} — Ply (@), 00}. (1)
In particular,

P{oo, y(00)} = Pla, y(@)} & P =e(y)y *P. )

Proof. If x € My (N, €) is a modular symbol and € I'g(N), thenyx = ¢(y)x, where, as

usual. is viewed as a homomorphisfiy(N) — C* viae((%5)) = &(d). In particular,
1

e(y)y x =x,S0
P{00, y(00)} = P{oo, a} + Pla, y ()} + P{y (), y (c0)}
= P{oo,a} + Pla, y (@)} + )y "H(Ply(@), y (o))
= P{oo, a} + Pla, y (@)} +e(y)(y ' P){a, oo}
= Pfa, y(@)} + P{oo,a} — e(y)(y ' P){0c0, a}
= Pla, y(@)} + (P —e(y)y *P){o0, a}.
The remaining statements of the proposition now follow easily. O

Example 2.2. In some cases it is easy to give a formula for symbols that are obviousl
transportable. Supposethat 2isaneveninteger. I isapolynomial suchthat(P) = P
for somey € I'g(N), then P{oo, y (0c0)} is transportable. Givep € I'g(N), an example
of such aP is

P(X,Y) = (cX?+(d —a)XY — by?)72/2,
We found this polynomial by viewing/,_» as the(k — 2)th symmetric product of the
2-dimensional space on whidfp(N) acts naturally. Ify, which has determinant 1, has
eigenvaluesr anda 1, then the eigenvalues of thg — 2)-fold symmetric product of
are given bya*=2-2/ for 0 < j < k — 2. Although we have not been able to find a
counterexample, the authors see no reason to believe that transportable symbols of the f
given in this example always spdp(N; Q).

More generally, given any sequence of matriges . ., y, in [o(N), itis a simple matter
of linear algebra to give transportable symbols of the fdrth ; P;{oo, y;00}. This follows
from Lemma2.3, which shows that this symbol is transportable exactly wikgn. . ., P,)
is in the kernel of the magD;_;(1 — yfl) from B;_; Vik—2 to Vi_o.
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2.2. Characterization of transportable modular symbols

Lemma 2.3. A modular symbol inMy (N, ¢; Q) is transportable if and only if it can be
written in the form)_;"; P;{o0, y;(c0)} with

Z P = 28(%)%_13‘-
Proof. This follows from Propositior2.1. O

Figurelillustrates Lemma&.3with a trivial-character example.

The modular symbol

0
Ba
P{oo, yoo} + Qfy oo, poo}
a P can be ‘transported’ to
/
ya
0

Pla, ya} + O{ya, Ba},
provided that
P+0o-0=ytP+pto-yt0.
/f\/\

%) Y 00 Boo

Figure 1: ‘Transporting’ a transportable modular symbol.

Theorem 2.4. A modular symbol is transportable if and only if it is cuspidal.

Proof. By Lemma2.3, every transportable modular symbols is cuspidal, so we must prov
that every cuspidal symbol is transportable.

Let I = Iy, be the ideal in the group ring dfo(N) generated by all elements
of the forme(y) — y for y € T'o(N). Suppose that € 4;(N,¢). Use the relation
{a, B} = {00, B} — {00, a} € M to see that any is the image of an elemeiit € My
of the form

BeQ
with only finitely many Pg nonzero. For later convenience, we 8gt = 0, and take sums

over all 8 € PL(Q). The boundary map lifts in a natural way toM; = Vi_» ® M, as
illustrated.

I(Vico@ M) —— 1 (Vi2 @ B)

Lo

Vico @ M Vico ®@ 8

| |

8 (N, &) > Mi(N, &) ——> By(N, ¢)
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Bearing in mind tqrsion, our assumption thgt) = O implies that for some nonzero
M € Z, we haveMs(v) € I(Vi_2 ® B). So there arg,, g € Vi_p, for y € T'g(N) and
B € PL(Q), only finitely 8 many nonzero, such that

M3@) =) (e() = ¥)(Qy.5 @ {B)).
VB

We now use a summation trick.

M3(@) =My (Ps® (B} — Py ® {o0})

B
= ()0 s @B} — (¥Qy.p) ® [¥BY)
v.B
=Y eQy (B — (0, ,-15) ® (B}
v.B
=> (e Qyp— 10, ,-15) ® (B
v.B

This shows that

MY (Ps@{B)— Pg@{00)) =D (e Qyp—vQ, ,-15) @ {B). ®)

B v.B
Equating terms, we deduce that for£ oo,
MPg =Y (¢0)Qyp—vQy ,15)- @
14

Using this expression foPg, as well as the fact that(y)y ~1 acts trivially onMy (N, ),
we find that

Mv = MZ Pﬂ{OO, B} = Z(E(V)Qy,ﬁ - VQy,y—lﬁ){oo’ B}
B VB

= e Qyp— )y H(rQ, ,-1p){c0. B))
v.B

=Y () Qyp(00, B} —e(1)Q, ,-15{y too, ¥ B}
V.8

= e(1)Qy.pl00. B} — e(y)Qy p{y too. B}
v.B
=Y e(y)Qy p{oc. ytoo}. (5)
v.B
Equating coefficients ofco} in Equation3, we have
MY Pg=> (61)Qy0 — ¥ Q) y-100):
B Y
which, combining with Equatiod, and recalling thaP,, = 0, means that
= > (e 0yp =70y -15) =D (1) Qy00 — VO, -100)-
y.B#00 Y
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and hence
Y (60)Qyp—vQyp) =0.
v.B
Using the expression
v=—4 Ze(y)vaﬂ{oo, y " too}
B.y
obtained from EquatioB, we see that this is the condition foto be transportable. [

Corollary 2.5. Fix a € h*. Every element of, (N, ¢) is a sum of modular symbols of the
form P{a, y (a)}.

Proof. Letx € 4, (N, ). Proposition2.1implies thatx is transportable, so there exiBt
andy; such that

x =" P00, yi(00)} = Y PR, vi(B))

foranyp € h*. Taking = « proves the corollary. O

Remark 2.6.

1. Whenk = 2, the corollary follows from 4, Section 1], which asserts that map
To(N) — 82('0(N)) = H1(Xo(N), Z) sendingy to {«, ¥ («)} is a surjective group
homomorphism.

2. InPropositior2.7below, we shall prove more generally thatevery elemempfN, ¢)
is a sum of modular symbols of the for{«, ¥ («)}, as long as we allow to vary
overP(Q).

2.3. What space do the symbaboo, y (c0)} span?

Suppose thalv andk are positive integers, with even.

Definition 3. For anyx € P1(Q), let W, denote the subspace #f,(I'o(N); Q) spanned
by symbols of the fornP{«, y (@)}, for P € V;_2 andy € I'g(N).

Corollary 2.5 draws our attention t6,,. Since Wy, containss; (I'o(N)), it is natural
to ask how much bigger it is. As mentioned in Rem2u&, whenk = 2, Manin proved that
for anya € PL(Q), we haveW, = Wy, = $2(I'o(N); Q). We now computeW, for any
weightk > 2.

Proposition 2.7. Suppose that > 2. Then the spac&V, is equal to the inverse image
under the boundary ma of the one-dimensional subspa®g 2{a} C Bix(T'o(N); Q).
Hencedim W, = dim 8, (To(N); Q) + Land M (To(N); Q) = >, cp1(q) We-

Proof. In [5, Section 1.4], Merel shows thaf,_»>{a} has dimension 1 (see the proof of
[5, Section 1.4, Proposition 4]), and thatX, Y){u/v} is nonzero ifP (u, v) # 0.

Corollary 2.5 implies thatWw,, contains the kerne$; (I'o(N)) of the boundary map.
It thus suffices to show thal{'W, ) = Vi_»{a}. For P € V;_2 andy € I'g(N), we have

8(Pla, y(@))) = Ply (@)} — Pla} = (y P — P){a} € Vi_2{a},
S08(Wy) C Vi_o{a}.
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Fory = (}9) € To(W), we have
S(X* Y e, y@) = (r 1P — x40
= (X*3NX +7) - X737 o)
= NX*?{a}.
If & # 0, then, as mentioned above*?{a} # 0. (If « = 0, usexY*—3 andy = (§7%)

instead.) Because there is a nonzero elemenst(iti,) and V;_»>{«} has dimension 1,
it follows that §(W,) = Vi_2{a}. The final claim of the proposition is true because

Bi(To(N); Q) = 3 geprg) Vi—2fat. O

Corollary 2.8. Fix a € PL(Q). ThenW, = My (I'o(N); Q) if and only if N = 1.

Proof. When N = 1, y can be any element of $lZ), so the assertion is clear. Next,
suppose thaw, = My (To(N); Q). If k = 2, then by }, Section 1];W, = 8 (T'o(N); Q),
SoN = 1since there is always a weight 2 Eisenstein series henl. Next, suppose that
k > 2.By|[5, Section 1.4, Proposition 3]js surjective and by [5, Section1.4, Proposition 5]
the dimension of the image éfequals #o(N)\P1(Q). Combining Propositior2.7 with
our assumption that, = My (To(N); Q) implies that #o(N)\P*(Q) = 1, soN = 1,
as claimed. O

3. Application to computing periods of newforms

The authors were led to introduce transportable modular symbols in order to study tl
error term(P — &(y)y ~1P){o0, o} of equationl of Proposition2.1 in the context of
computing periods of newforms. There are many ways to compute periods of newform
but we hope that the method given below will be of value in some contexts.

Section3.1 contains an algorithm for computing periods that relies on Thedem
We present a potentially more efficient method in Sec8ich

3.1. An algorithm for computing periods

Letf = > anq" € Sk(N, ¢) be acuspform, and lete M (N, £) be amodular symbol.
Then(f, x) is a linear combination of integrals of the form

(f. xXmyk=2=my oo}) = 2mi /l f(7"dz, (6)

(see [5, Section 1.5]), whete € h* and the integem satisfies 0K m < k — 2. If a € b,
then the imaginary part af is positive, so

00
27'[1'/ f(z7"dz = Zancn,
o n>1

where
100 .
Cp = 2:11'/ ez,
o

The reversal of summation and integration is justified because the sum converges absolut
We compute the, using the following formula, which we obtain using repeated integration
by parts.
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Lemma 3.1.

m

ioco i o m (_1)sam—s
Tinz m _ ina % .
/a o Z{ et 1l ’}'

s=0 j=(m+1)—s

If @ has large imaginary part, tlg will rapidly converge to 0 as — oo. However, the
reversal of summation and integration above need not be validwisenreal number, so for
computational purposes we are led to express periods in terms of integrals with end poi
that are infh. Whenk = 2, this is easy because of the identfty, y (c0)} = {«, y (@)},
which is valid for anye € h*. However, this identity can fail wheh > 2; the failure is
made precise in Propositidhl.

Since we can take the real parvafo be greater than 0, each of the terms on the right-hand
side of Equatiorl can be computed using the sum given by Lengiia

We showed in Sectiof that every cuspidal modular symbol can be expressed as a su
of symbols of the formP{oo, y (0c0)}. Periods of modular symbols of this form can then be
computed using the following algorithm.

Algorithm 3.2. Given a tripley € T'o(N), P € Vy_2 andg € S¢(N, ¢), this algorithm
computes the period integréd, P{oco, y(c0)}).
Expressy as( &%) € To(N), and setr = (—d +i)/cN in Proposition2.1.
Replacing y by —y if necessary, we find that the imaginary parts ofand
y(a) = (a +i)/cN are both equal to the positive number 1/cN

Equation6 and Lemma3.1 can now be used to compute the period integrals provided
by Propositior.1.

3.2. TheWy-trick

In this section, in order to obtain a potentially more efficient way of computing period:
than Algorithm3.2, we generalize the method of Cremo8H even integer weight > 2.
In Algorithm 3.2, withy = (ds Z), the endpoints of the corresponding integrals have
imaginary part 1/cN However, using the following trick, one can increase the imaginary
part of all the endpoints involved to at leastdl/N, which is sometimes a significant
improvement.

Recall that the Atkin—Lehner involutioW = Wy is induced by the matri>(]?/ ‘é);
it acts on modular forms by sending a cuspfofng Sk (N, ¢) to the form

flw(@) = NF275 £(~1/(N2)) € S (N, e 7).

If £ is an eigenvector foiV, then necessarily = ¢~1. For the rest of this section, we
assume that? = 1. ThenW acts onM (N, ) by

P(Y,—NX) 1 1
W(PX. Ve B)) = — {—m, —N—ﬁ},

and this action is compatible with the integration pairing.
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Proposition 3.3. Let ¢ € Si(N, ¢) be a cuspform that is an eigenform for the Atkin—
Lehner involutionW having eigenvaluev. Then for any transportable modular symbol
Z}":l P;{o0, yj(co)} withy; € I'g(N) and P; € Vj._2, we have for any € b the following
formula:

" . Pj(Y,-NX
<g,ZPj{oo, )/j(oo)}> <g, Zw (Nk/Z T ){W(a),oo}

j=1
“ P;j(Y,—NX) i
+Z( v 7w )
=

- Py, oo}>.
j=1
HereW(a) = —1/(Na).

Ify; = ( ”’) wherec andd are fixed integers that do not depend grthen

d
" 2. Pi(Y,-NX) i
g ) Pj{oo, y~(oo)}>=<g, —{—+ }
< ; J J ; Nk/2-1 AN’
“ P;(Y,—NX) i
-+
jz_; J Nk/2-1 \/ﬁ

m .
_ Z )2 {li + ! oo}
= PN U
Proof. By Proposition2.1, our condition of transportability implies that we have

Y Pifoo, yj(00)} = Y Pifa, yj ().

j=1 j=1
The steps of the following computation are described below.
(8, Pifo, yj(2)})
i i
= <g, P; {Oé, «/_ﬁ} + P Vi W(a) ¢ + Pi{W(a), Vj(a)}>
P; i i
=\& vy {W(Ol), \/_ﬁ} + P {«/_N’ W(Ol)} + Pi{W(a), )/j(Ol)}>

W(P) i

W(P;) W(P ) i
In the first step, we break the path frento y; () into three paths. In the second step, we
apply theWw-involution to the first term, and use the fact that the actioWds compatible
with the pairing(, ). The third step involves combining the first two terms, and breaking
up the third. In the final step, we repla¢® («), i /~/N} by {W (), 0o} + {00, i/+/N},
and regroup. Taking the sum of both sides of the expressionjofrem 1 tom gives the
first result of the proposition.
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Now, following Cremona [2, Section 2.10.8], in order to simultaneously maximize the
imaginary parts of; (o) andW («), we take

(i)
o = —_— .
" \a T auN

In this case we have

C 1
W =5+ 75
and
yjlo) = i + dIN
The second formula then follows. O

Remark 3.4. Lety = (¢ 4) e I'g(N). Since the imaginary parts of the teriyis/N, y; ()
andW («) in the second part of the proposition are all relatively large, the sums appearir
in Equation6 converge relatively quickly it/ is small. However, we emphasize thiis
extremely important to choose in Proposition3.3with 4 small; otherwise, the series will
converge very slowly.

4. Examples

The example of Sectiof.1lillustrates some of the results of this paper for the weight-12
modular formA, and Sectiort.2 concerns a nonrational form of level 11 and weight 4.
The computations below were done using the first author’'s implementation of the algorithn
of [6] in MaGMma [1].

4.1. The weight-1Zorm A

Let f = A = ¢ - [[(1 — ¢™)?* be the unique normalized eignformshx(1). The space
M12(1; Q) of modular symbols has dimension 3, and is spannediby= X1%{0, oo},
as = X8Y?{0, 00}, andaz = X°Y{0, o0}, and the cuspidal subspadas(1; Q) has
dimension 2, and is spanned &yandas.

As explained in Exampl2.2, there is a transportable modular symbol associated to eac
nonidentity elemeny € SLy(Z). The transportable symbol

(2x2 +2XY — ¥?)*{o0, 3} = —300x°¥{0, o0}
is attached tq 5 1), and
—46656008Y?{0, oo} — 87300¢°Y {0, oo}

is attached tc( ES _13). Together, these two transportable symbols sfafl; Q).

The period magb, sendsx’ Y1%-/{0, oo} to 27i [;° z' f(z) dz. These integrals are, up
to scalars, special values &f f, s) at critical integers, so they could be computed using
any of the standard methods. In any case, we obtain an approximation for the period mz

®p(ay) ~ 0.0374412812
@ (ap) ~ —0.0159703242
@y (az) ~ —0.0232962319i.
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The period latticeA of f is spanned byP(((1/14ap) and ®¢((1/48)a). (The frac-
tions appear becausfio(1; Z) has basig1/14a; and (1/48)a.) SinceC/A is a one-
dimensional torus, it makes sense to consider the corresponding elliptic curvé.aues

is the elliptic curvey? = x3 — 27ux — 54ce, Wherecs ~ 280919513487933488 and

ce ~ —4.70682548¢ 1074, The j-invariant of this curve is approximately 2592849.394270.
Is j a transcendental number?

4.2. Levelll, weight4
The unique normalized eigenform #a(I'p(11)) is
f=q+ag®+ (—4a+3)¢°+ (20 —6)g* + Ba — Ng°+ -+ ,
wherea? — 2o — 2 = 0. The spaceMs(I"'o(11); Q) has basis

a1 = X?{0, oo},

az = (64X2 +16XY + ¥?){ — %,0},
az = (49X2 + 14xy +v?){ - 1,0},
as = (25X? +10xY + ¥?)| - %,0}.
as = (100x2 + 20xY + ¥?){ — &, 0},

ag = Y?{0o, 0}.

The subspaces(I'g(11); Q) has basi®1 = az — ag, b2 = a3 — ag, b3 = aq — ae,
ba = as — ag.

As explained in Exampl2.2, there is a transportable modular symbol associated to eac
nonidentity elemeny € I'g(11). For example the transportable symbol

(11X% — 11XY + Y?) {00, £} = 11(a5 — ap)

is associated tp = (12 ~1). The symbol

—2b1+ 2by — 3b3+ 3ba
is the transportable symbol associatetﬂ ﬁ) :%) The symbol
—3b1 — Lo+ Lbs + Py
is associated t6,1 1), and
—%7b1 + 1glbz + %bs + %gb‘l

is associated 10,3 ~2). Together, these four transportable symbols spilo(11); Q).

In order to illustrate Sectio.3, we remark that symbols of the forf{co, y (c0)}
do not span all ofM4(I'g(11); Q), but they do span a space bigger th&lo(11); Q).
Corollary 2.5 implies that their span contain$;(I'o(11); Q); however, the symbol
Y?{c0, 1/11}does not lie in§4(Tg(11); Q).
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