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The low-frequency unsteadiness in the direct numerical simulation of a Mach 2.9
shock wave/turbulent boundary layer interaction with mean flow separation is analysed
using dynamic mode decomposition (DMD). The analysis is applied both to three-
dimensional and spanwise-averaged snapshots of the flow. The observed low-frequency
DMD modes all share a common structure, characterized by perturbations along the
shock, together with streamwise-elongated regions of low and high momentum that
originate at the shock foot and extend into the downstream flow. A linear superposition
of these modes, with dynamics governed by their corresponding DMD eigenvalues,
accurately captures the unsteadiness of the shock. In addition, DMD analysis shows
that the downstream regions of low and high momentum are unsteady and that their
unsteadiness is linked to the unsteadiness of the shock. The observed flow structures
in the downstream flow are reminiscent of Görtler-like vortices that are present in this
type of flow due to an underlying centrifugal instability, suggesting a possible physical
mechanism for the low-frequency unsteadiness in shock wave/turbulent boundary layer
interactions.
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1. Introduction
Shock wave/turbulent boundary layer interactions (STBLIs) are typically unsteady

across a broad range of frequencies. In addition to high-frequency unsteadiness, which
is associated with turbulent fluctuations, STBLIs in the supersonic regime display a
characteristic low-frequency unsteadiness (Dolling 2001; Smits & Dussauge 2006;
Clemens & Narayanaswamy 2014). The low-frequency unsteadiness is present in
separated STBLIs, i.e. when the shock is sufficiently strong to separate the boundary
layer in the mean. In addition, evidence for low-frequency unsteadiness has also been
observed when the probability of instantaneous flow separation is high but no mean
flow separation is observed (Souverein et al. 2010). The low-frequency unsteadiness,
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which is broadband, involves oscillations of the shock in the streamwise direction
and corresponding variations in the size of the separated flow.

Dussauge, Dupont & Debiève (2006) surveyed STBLI experiments covering a range
of Mach and Reynolds numbers and including different geometries for generating the
shock, such as compression ramps, incident shocks and three-dimensional fins. They
found that in the supersonic regime, the central frequency of the unsteadiness typically
lies in the Strouhal number range St = fLsep/U∞ = 0.02 − 0.05, where Lsep is the
length of the separated flow and U∞ is the free-stream velocity. These frequencies are
significantly lower than the characteristic frequency of the turbulence in the incoming
boundary layer, which is f δ/U∞ =O(1), where δ is the boundary layer thickness.

In addition to being observed experimentally, the low-frequency unsteadiness
is captured in a growing number of high-fidelity simulations. These include
direct numerical simulations (DNS) and large eddy simulations (LES) of the
compression-ramp configuration (Loginov, Adams & Zheltovodov 2006; Wu & Martín
2007; Grilli et al. 2012; Priebe & Martín 2012; Grilli, Hickel & Adams 2013) and
of the reflected shock configuration (Pirozzoli & Grasso 2006; Priebe, Wu & Martín
2009; Touber & Sandham 2009; Hadjadj 2012; Aubard, Gloerfelt & Robinet 2013;
Morgan et al. 2013; Bermejo-Moreno et al. 2014).

The physics that is responsible for the low-frequency unsteadiness is not fully
understood. Touber & Sandham (2011) derived a model for the low-frequency
unsteadiness by analysing the momentum integral equation in the context of reflected
shock interactions. Their model, which is of the same form as that postulated by
Plotkin (1975), shows that the shock/boundary layer interaction system behaves as a
low-pass filter. External forcing is required to drive the model response. Physically, the
required forcing could be provided by low-frequency content in either the incoming
boundary layer or the separated flow downstream of the shock.

Several works in the literature have investigated the role of the incoming boundary
layer in driving the low-frequency unsteadiness, see e.g. Beresh, Clemens & Dolling
(2002), Ganapathisubramani, Clemens & Dolling (2007, 2009), and Humble, Scarano
& van Oudheusden (2009). Based on particle image velocimetry (PIV) measurements
in a Mach 2 compression-ramp STBLI, Ganapathisubramani et al. (2007, 2009)
observed a correlation between the shock motion and streamwise-elongated regions of
low and high momentum in the incoming boundary layer. They suggested that these
large-scale boundary layer structures, which are also known as superstructures, play
a role in driving the low-frequency unsteadiness.

In addition to the incoming boundary layer, much attention has also been focused on
the role of the separated flow, downstream of the shock, as a possible source of low-
frequency unsteadiness. The separated flow undergoes breathing motions, or pulsations,
that correlate with the low-frequency excursions of the shock. The pulsations of the
separated flow were initially observed from unsteady wall-pressure measurements, both
in compression-ramp interactions (Erengil & Dolling 1991; Thomas, Putnam & Chu
1994) and in reflected shock interactions (Dupont, Haddad & Debiève 2006). The
pulsations may also be seen in the velocity field, which can be obtained from PIV
(e.g. Piponniau et al. 2009) or from numerical simulation (e.g. Priebe & Martín 2012).
It may be argued that the fact that the separated flow pulsates reveals little about the
physical mechanism for the low-frequency unsteadiness, since such pulsations are not
necessarily an indication of an inherent physical mechanism in the separated flow, but
could be due to low-frequency disturbances in the incoming boundary layer convecting
through the interaction.

Regarding possible physical mechanisms in the separated flow, several works in
the literature have suggested that the shear layer, which is formed at the separation
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shock foot and evolves downstream, could play a role. The separated flow constitutes
the low-speed side of the shear layer, and the free stream downstream of the shock
constitutes the high-speed side. As shown by Dupont et al. (2006), the shear layer
shares many of the characteristics found in canonical plane mixing layers and
incompressible shear layers. Due to the inflection point in the velocity profiles,
the shear layer is unstable and large-scale vortical structures are formed, which have
been observed in a number of STBLI studies (e.g. Dupont et al. 2008; Humble et al.
2009; Agostini et al. 2012).

The characteristic frequency of the shear layer vortices in STBLIs is approximately
St ≈ 0.5 (Dupont et al. 2006). Since this frequency is significantly higher than the
frequencies of the shock unsteadiness, several mechanisms that would result in a low-
frequency variation of the shear layer have been suggested, some of which are similar
to physical scenarios proposed in the context of incompressible separated flows (Eaton
& Johnston 1982; Kiya & Sasaki 1985; Lee & Sung 2002).

Based on DNS results for a reflected STBLI, Pirozzoli & Grasso (2006) found
evidence for an acoustic feedback mechanism in the interaction. They suggested that
downstream disturbances, which are generated, for example, by the interaction of the
shear layer vortices with the incident shock, travel upstream through the low-speed
region of the flow and affect the initial development of the shear layer near the
separation shock foot, thus leading to a low-frequency feedback loop.

Piponniau et al. (2009) proposed a mechanism based on the entrainment of fluid by
the shear layer. They determined the time scale required for the fluid in the separation
bubble to be drained by shear layer entrainment. Since this time scale was found to
agree favourably with the time scale of the shock unsteadiness, they suggested that the
entrainment of fluid by the shear layer results in the low-frequency breathing of the
separated flow. Based on DNS data of a Mach 2.9 compression-ramp STBLI, Priebe &
Martín (2012) found evidence for low-frequency variations of the turbulence intensity
in the shear layer. The low-frequency dynamics of the flow could thus be driven by
low-frequency variations of the shear layer, as had previously been proposed in the
context of incompressible separated flows (Eaton & Johnston 1982; Kiya & Sasaki
1985; Lee & Sung 2002).

The shear layer constitutes one source of instability in the flow. Linear stability
analyses of incompressible laminar separated flows have shown that, in addition to the
instability related to the shear layer, there is another instability related to the entire
separated flow (e.g. Theofilis, Hein & Dallmann 2000; Rodríguez & Theofilis 2010).
A similar instability has also been found in the compressible regime by applying linear
stability analysis to a laminar shock/boundary layer interaction (Robinet 2007).

The physical mechanism that is responsible for the linear instability of canonical
laminar separated flows could also be present in turbulent shock/boundary layer
interactions. Touber & Sandham (2009) performed a global linear stability analysis of
a Mach 2.3 reflected STBLI. The base flow for the stability analysis was the turbulent
mean flow obtained from an LES, and the stability analysis showed an exponentially
growing global mode in the interaction. This instability mode was also found by
Pirozzoli et al. (2010), who performed linear stability analysis of reflected STBLIs.
In addition, Priebe & Martín (2012) found evidence in their compression-ramp
DNS of low-frequency structural changes occurring in the separated flow and shear
layer. They noted that these structural changes are qualitatively similar to the linear
instability modes reported in Touber & Sandham (2009) and Pirozzoli et al. (2010).

Another important aspect of STBLIs is the presence of large-scale streamwise
vortices, which are usually attributed to a centrifugal mechanism that was first
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described in the context of laminar flows by Görtler (1941). The streamwise vortices
induce spanwise-alternating regions of low and high momentum (and temperature)
and are visible in the skin friction (and surface heat transfer). In STBLI flows,
these structures are most commonly observed using surface oil flow visualizations
(e.g. Settles, Fitzpatrick & Bogdonoff 1979; Smits & Dussauge 2006; Schülein &
Trofimov 2011), and they have also been observed in the time-averaged flow obtained
from LES (Loginov et al. 2006).

These previous works have focused on the time-averaged behaviour of the
streamwise structures. As suggested by Loginov et al. (2006) and Schülein &
Trofimov (2011), the structures are expected to display some degree of unsteadiness
in a turbulent shock/boundary layer interaction, especially if steady disturbances in
the upstream boundary layer, which tend to pin the structures to preferred spanwise
locations, are absent or insignificant. In this paper, we present evidence for unsteady
Görtler-type vortices in a Mach 3 compression-ramp STBLI. The unsteadiness is
found to occur in the same range of low frequencies that is associated with the
characteristic unsteadiness of the shock, which suggests that the shock unsteadiness
and unsteady Görtler-type vortices are linked.

We investigate the low-frequency STBLI dynamics by applying dynamic mode
decomposition (DMD) to a DNS that was previously reported in Priebe & Martín
(2012). Similar to the well-known proper orthogonal decomposition (POD), DMD is
typically used to identify coherent structures in a flow field. However, unlike POD,
DMD targets modes that are important to the dynamics of the flow evolution, rather
than those that optimally reconstruct the flow. Each DMD mode has a corresponding
DMD eigenvalue that captures its growth rate and frequency; as such DMD can be
thought of as an extension of linear stability analysis to nonlinear dynamics (Schmid
2010). DMD can also be thought of as an approximation of Koopman spectral
analysis (Rowley et al. 2009; Tu et al. 2014), providing further justification for its
use in analysing nonlinear dynamics. In the context of STBLIs, the DMD method has
previously been applied to LES data of a reflected shock interaction (Pirozzoli et al.
2010) and a compression-ramp interaction (Grilli et al. 2012). These previous works
have shown the ability of DMD to capture the main features of the low-frequency
STBLI dynamics, including the relevant frequencies and the pulsating nature of the
separated flow dynamics.

The present analysis finds that the low-frequency dynamics observed in STBLIs
is not associated with any single dominant DMD mode, but rather, it is the result
of interactions between a number of low-frequency DMD modes. These modes
each oscillate at different frequencies but all exhibit streamwise streaks in the
downstream separation bubble. Together, they accurately reproduce the complex
breathing behaviour characteristic of STBLIs.

The paper is organized as follows. Details of the numerical methods used in
the DNS computations and the DMD analysis are given in § 2. The results of the
DMD analysis are presented in § 3 and discussed in § 4, where a possible physical
mechanism for the low-frequency unsteadiness is proposed. Conclusions are provided
in § 5.

2. Numerical methods and computational set-up
2.1. Direct numerical simulation (DNS)

The DNS has previously been reported in Priebe & Martín (2012). An overview of
the simulation methodology and set-up is provided here; further details may be found
in Priebe & Martín (2012).
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The DNS code implements a fourth-order weighted essentially non-oscillatory
(WENO) scheme to discretize the convective fluxes, standard fourth-order central
differences to discretize the viscous fluxes and a third-order low-storage Runge–Kutta
scheme (Williamson 1980) to advance the solution in time. As described in Martín
et al. (2006) and Taylor, Wu & Martín (2007), the WENO scheme is optimized to
reduce both the linear and nonlinear errors that are present in the original WENO
formulation introduced by Jiang & Shu (1996). Reducing these errors is necessary to
accurately compute compressible flows involving both shock waves and turbulence.

Wu & Martín (2007) and Ringuette, Wu & Martín (2008) validated the DNS for
a compression-ramp case against experiments at matching flow conditions (Bookey
et al. 2005; Ringuette et al. 2009). The mean wall pressure, the separation length,
several velocity profiles through the interaction and the fluctuating wall pressure were
compared to experiments and good agreement was obtained.

The geometry under investigation in the present paper is a compression ramp with
an angle of 24◦. The Mach number upstream of the interaction is M∞ = 2.9, and the
momentum-thickness Reynolds number is Reθ = U∞θ/ν∞ = 2900, where U∞ is the
free-stream velocity, θ is the momentum thickness, and ν∞ is the kinematic viscosity
in the free stream. The Reynolds number based on the ratio of the outer length scale
to the inner, viscous length scale is δ+= δuτ/νw= 340, where δ is the boundary layer
thickness, uτ is the friction velocity and νw is the kinematic viscosity at the wall.

The computational domain measures Lx = 14.3δ in the streamwise direction and
Ly = 2.0δ in the spanwise direction. The wall-normal extent of the domain Lz varies
somewhat with the streamwise coordinate x; at the inlet of the computational domain,
Lz is 4.4δ. Of the total streamwise domain length, 7.9δ are located upstream of the
corner, while the remaining 6.4δ are located downstream of the corner (where this
length is measured along the ramp surface). The domain is discretized using Nx=1024
grid points in the streamwise direction, Ny= 160 grid points in the spanwise direction
and Nz = 128 grid points in the wall-normal direction, resulting in a total grid size
of 21 million. Further details on the computational set-up, including grid resolutions,
boundary conditions and initial conditions, may be found in Priebe & Martín (2012).

The separation point signal for the DNS investigated in the present paper is shown
in figure 1, which is adapted from Priebe & Martín (2012). The signal extends
over a time of approximately 200δ/U∞, during which large-amplitude, low-frequency
excursions of the separation point in the upstream and downstream direction are
visible. As shown in Priebe & Martín (2012), the DNS captures the low-frequency
unsteadiness in agreement with previous STBLI experiments and simulations reported
in the literature. To ensure adequate spatial and temporal resolution for the DMD
analysis and to avoid aliasing, the three-dimensional DNS flow field is sampled at a
relatively high frequency of approximately fsδ/U∞ = 10.

2.2. Dynamic mode decomposition (DMD)
DMD is typically used to analyse fluid flows with complex temporal dynamics. It can
be applied equally well to data from numerical simulations or experiments (Schmid
2010). The resulting DMD modes highlight dynamically important spatial structures,
while the complex-valued DMD eigenvalues encode each mode’s associated growth
rate and frequency. Like the more familiar POD, DMD is a purely data-based method
and is suitable for the large datasets generated by high-fidelity simulations. However,
while POD analysis is optimal for generating low-dimensional reconstructions of a
dataset, DMD analysis targets dynamically relevant flow features. Formally, DMD
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FIGURE 1. Time evolution of the spanwise-averaged separation point illustrating the low-
frequency unsteadiness in the DNS. Both the actual signal and the low-pass-filtered signal
are shown. Adapted from figure 30 in Priebe & Martín (2012).

can be thought of as an eigendecomposition of the best-fit linear approximation
of the dynamics underlying a dataset (Tu et al. 2014). It can also be thought of
as an approximation to Koopman spectral analysis (Rowley et al. 2009; Williams,
Kevrekidis & Rowley 2015), making it applicable to nonlinear dynamics.

Of particular use, Koopman operator theory allows the decomposition of a
nonlinearly evolving trajectory into a sum of oscillating modes, similar to the way
the evolution of a linear system can be written as a sum of oscillating eigenvectors
(Rowley et al. 2009). For instance, consider a set of flow field measurements
{q0, q1, . . . , qm} collected at a fixed sampling rate. We can express the evolution
of this measurement in terms of Koopman modes θj, Koopman eigenvalues λj and
scalar coefficients cj as

qk =
∞∑

j=1

cjλ
k
j θj k= 0, 1, 2, . . . (2.1)

Because DMD modes approximate Koopman modes, it is often instructive to
consider a DMD reconstruction of the form

qk =
r∑

j=1

djφj, (2.2)

where φj is a DMD mode, dj is a scalar coefficient and r is the number of modes
used for the reconstruction. By isolating particular sets of mode indices j, we can
characterize the contribution of particular DMD modes to the evolution of the flow
field. For snapshots that are linearly consistent (Tu et al. 2014), as is often the case
with high-dimensional data, each DMD projection coefficient dj in (2.2) necessarily
encodes a (damped) oscillation, just as the scalar term cjλ

k
j does in (2.1). Rather than

assume this form, dj can also be computed explicitly by using the adjoint DMD modes
to perform a biorthogonal projection.

We note that a similar decomposition could be obtained using Fourier analysis,
for which the coefficients dj in (2.2) would be equally spaced along the unit circle.
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That is, each coefficient would have unit magnitude and the resulting frequencies
would be uniformly distributed between zero and the Nyquist frequency. For the
purpose of describing a dataset in terms of oscillating modes, Fourier analysis and
DMD are both equally well suited. In this work we choose to use DMD due to its
connections to Koopman operator theory and nonlinear dynamics.

For our analysis, we collect 1700 samples (in time) of the flow field from the
three-dimensional (3-D) DNS. We find the DMD results to be well-converged with
respect to the sampling rate; the low-frequency DMD modes and eigenvalues do
not vary much as we consider slower sampling rates of fs,nom/2, fs,nom/5, fs,nom/10
and fs,nom/20, where fs,nom is the nominal sampling frequency given in § 2.1, which
produces 1700 samples. To lower computational costs, the 3-D flow fields are filtered
and downsampled in the spanwise direction using the following equation:

f̄i = 1
2n

(
fi−n/2 + 2

i+n/2−1∑
j=i−n/2+1

fj + fi+n/2

)
, (2.3)

where f̄ denotes filtered values, f denotes unfiltered values and here we use n= 4. In
addition to the 3-D flow fields, we also analyse spanwise-averaged (2-D) flow fields.
The DMD modes and eigenvalues are computed in parallel using the modred library
(Belson, Tu & Rowley 2014).

For a compressible flow, it is natural to work with the conservative mass flux fields
(ρu, ρv, ρw), rather than the primitive velocity fields (u, v, w). Accordingly, we define
the inner product between two flow fields q1 and q2 as

〈q1, q2〉 =
∫∫∫

D

ρ1ρ2(u1u2 + v1v2 +w1w2) dx dy dz, (2.4)

where D is the flow domain. We note that computationally, we work with the mass
flux quantities ρu, ρv and ρw, rather than ρ, u, v and w individually. The choice of
the inner product (2.4) is reasonable if we consider the norm it induces: two flow
fields are considered to be ‘close together’ if their mass flux fields are everywhere
close. In practice, we find that the DMD modes and eigenvalues do not vary much
whether or not they are computed using a mass flux inner product or a velocity
inner product. From a theoretical perspective, for a sequential time series like the
one analysed here, DMD provides a decomposition of the form (2.1) that minimizes
the residual in reconstructing the final snapshot of the dataset. The choice of inner
product induces a norm that defines the magnitude of this residual. Since we are
analysing a long dataset describing a stationary process, we expect this residual to
be small, and thus the choice of inner product should have little effect.

For convenience, we can think of each snapshot of the mass flux field as a flattened
1-D vector. We can collect these snapshots/vectors into a matrix of mass flux fields.
Then the DMD algorithm provides a linear transformation TQ that maps a matrix of
mass flux snapshots Q into a matrix of DMD modes ΦQ:

ΦQ =QTQ. (2.5)

Since the columns of Q are mass flux fields, so are the columns of ΦQ. The
discretized mass flux field has the same dimension (number of elements) as the
discretized velocity field, so we can apply the transformation TQ to the matrix of
velocity field snapshots U. In § 3 we will do so in some cases as a convenient
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FIGURE 2. DMD spectrum for the (projected) 3-D flow field: the frequency range St =
0.0−1.25 is shown in (a) and a detailed view of the low-frequency range up to a Strouhal
number of 0.1 is shown in (b).

visualization strategy, as the velocity field tends to more clearly depict the behaviour
of the modes in near-wall regions. We emphasize that the columns of UTQ are not
precisely equivalent to DMD modes computed using velocity field data, which would
require a different, velocity-based inner product. However, in practice we find that
visualizations of the columns of UTQ are extremely similar to those of the velocity
data DMD modes ΦU =UTU.

3. Results
3.1. DMD analysis of the three-dimensional flow field

To avoid overfitting the complex dynamics of the fully turbulent flow field, we first
perform DMD analysis on a projection of the flow field, which we refer to as a
‘truncated DMD’. We choose a POD projection onto 43 modes (including the mean
flow), as this retains 50 % of the perturbation energy. The resulting DMD spectrum
is shown in figure 2. For each mode, we plot the magnitude of the mean projection
coefficient over the time series (see (2.2)) against the mode frequency. In previous
work (Priebe & Martín 2012), we have reported Fourier spectra of the wall pressure,
the mass flux, and the separation and reattachment points for the present flow. The
Fourier spectra show that most of the energy associated with the low-frequency
motions is contained at Strouhal numbers below 0.1. As can be seen from the
detailed view of the truncated DMD spectrum in figure 2(b), two energetic modes
are present in the Strouhal number range of interest, at St= 0.025 and St= 0.049.

Figure 3 shows the real parts of the low-frequency truncated DMD modes. The
modes share a similar structure: significant perturbations are visible along the shock,
in the separated flow, and in the downstream boundary layer on the ramp. Since the
perturbations in the upstream boundary layer are weaker, they are not visible at the
isocontour levels shown in figure 3. The perturbations along the shock have a high
degree of two-dimensionality, at least in the free stream, away from the shock foot.
In contrast, the perturbations in the separated flow and downstream boundary layer
are three-dimensional and consist of two streamwise-elongated regions in which the
perturbations of streamwise momentum ρu are significant. The perturbations are of
opposite sign in these two regions. Note that in figure 3, three regions of momentum
perturbation, rather than two, are typically visible. However, two of these three regions
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FIGURE 3. Real part of the low-frequency (truncated) DMD modes. The mode structure
is visualized by two isocontours of the streamwise mass flux: ρu = −0.15 is shown in
blue and ρu= 0.15 in red. (a) St= 0.025 and (b) St= 0.049.

are, in fact, connected and form a single, larger structure since the DNS is spanwise
periodic. The perturbations along the shock are consistent with displacements of the
shock sheet in the streamwise direction away from its average position. The structure
of the 3-D DMD modes thus suggests that the low-frequency displacements of the
shock are associated with streamwise-elongated regions of low and high momentum
in the separated flow.

The truncated DMD modes shown in figure 3 only capture the low-frequency
dynamics present in a POD projection of the flow field that retains 50% of the
perturbation energy. In order to more accurately reproduce the full low-frequency
dynamics, specifically the time evolution of the low-pass-filtered separation point
shown in figure 1, less aggressive truncation is required. We investigate projections
with a perturbation energy content ranging from 25 % to 99 %, finding that increasing
the dynamic content of the dataset results in additional DMD modes in the
low-frequency range of interest. Interestingly, regardless of the truncation level,
the same structure, consisting of streamwise-elongated regions of low and high
momentum in the downstream flow, is present in all low-frequency DMD modes.

If we perform DMD analysis on the raw DNS data (i.e. without first performing
a projection), we obtain the spectrum shown in figure 4(a), which shows a relatively
continuous distribution of modes, with few distinct and isolated peaks. This is
consistent with the fact that the flow dynamics under investigation is known to
be broadband across a wide range of frequencies. Within the frequency range of
interest, we see in figure 4(b) that there are five modes, compared to the two seen
in figure 2(b). These low-frequency modes are listed in table 1. They are ordered
according to their frequency: the lowest-frequency mode, which has a Strouhal
number of St = 0.020, is designated as LF1, followed by LF2 at St = 0.040, LF3
at St = 0.056, LF4 at St = 0.075 and LF5 at St = 0.098; the prefix LF indicates a
low-frequency mode. From figures 5 and 6, we observe that these modes all share
the same structure, which also matches that of the truncated DMD modes shown in
figure 3.

For the remainder of the paper, we present the full (untruncated) DMD results.
While we focus in part on modes LF1 and LF3, which are the two modes with the
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FIGURE 4. DMD spectrum for the 3-D flow field: the frequency range St= 0.0− 5.0 is
shown in (a) and a detailed view of the low-frequency range up to a Strouhal number of
approximately 0.1 is shown in (b). Rapidly decaying modes (|λ| < 0.995) are shown in
light blue.

Mode name |λ| St= fLsep/U∞ ‖d‖
LF1 1.000 0.020 4.016× 10−1

LF2 1.000 0.040 2.555× 10−1

LF3 0.999 0.056 3.320× 10−1

LF4 1.000 0.075 2.060× 10−1

LF5 1.000 0.098 1.587× 10−1

TABLE 1. Three-dimensional DMD modes at low frequencies.

highest energy, we emphasize that all of the low-frequency modes shown in figure 4(b)
and listed in table 1 are required to accurately reconstruct the low-frequency dynamics
present in the DNS. In other words, when considering the full complexity of the flow
field evolution, all of the low-frequency modes are dynamically relevant, which is
consistent with the broadband nature of the unsteadiness. LF1 and LF3 are singled
out only for illustrative purposes.

Since each DMD mode is a complex-valued spatial field φreal + iφimag, we
may calculate a corresponding phase angle Ψ = tan−1(φimag/φreal) at each spatial
location, with Ψ ∈ (−π, π]. It is apparent from figure 7(a), which shows contours
of the phase angle for mode LF1, that in the region of the flow occupied by the
streamwise-elongated structures, the phase angle is approximately zero in the spanwise
interval extending from y/δ ≈ 1 to y/δ ≈ 2, whereas it is approximately ±π in the
interval extending from y/δ≈0 to y/δ≈1. This behaviour is highlighted in figure 7(b),
which plots the phase angle against the spanwise coordinate at several streamwise
and wall-normal locations in the downstream flow. The observed behaviour may be
explained as follows: the perturbation amplitude is significantly higher in the real
part of the mode (figure 8a) as compared to the imaginary part (figure 8b). As a
result, the phase angle is either close to zero (large positive real part and small
imaginary part) or close to ±π (large negative real part and small imaginary part).
Since the reconstruction of the time-dependent dynamics will consist of a rotation
in the complex plane, from the real part of the mode to the imaginary part, the
unsteadiness captured by mode LF1 involves significant variations of the strength

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.557


Low-frequency dynamics in a shock-induced separation 451

1–1–2–3–4–5–6–7 0 2 3 4 5

1–1–2–3–4–5–6–7 0 2 3 4 5

1–1–2–3–4–5–6–7 0 2 3 4 5

1–1–2–3–4–5–6–7 0 2 3 4 5

1–1–2–3–4–5–6–7 0 2 3 4 5

1–1–2–3–4–5–6–7 0 2 3 4 5

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

0

1

0

1

0

1

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

10

10

10

(a)

(b)

(c)

FIGURE 5. Real part of several low-frequency DMD modes visualized by two isocontours
of the streamwise mass flux ρu. (a) Mode LF1, St= 0.020, mass flux isocontour levels at
ρu=−0.08 in blue and ρu= 0.08 in red; (b) mode LF2, St= 0.040, mass flux isocontour
levels at ρu=−0.14 in blue and ρu= 0.14 in red; and (c) mode LF3, St= 0.056, mass
flux isocontour levels at ρu=−0.12 in blue and ρu= 0.12 in red.
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FIGURE 6. Real part of several low-frequency DMD modes visualized by two isocontours
of the streamwise mass flux ρu. (a) Mode LF4, St = 0.075, mass flux isocontour levels
at ρu = −0.12 in blue and ρu = 0.12 in red; and (b) mode LF5, St = 0.098, mass flux
isocontour levels at ρu=−0.14 in blue and ρu= 0.14 in red.

of the streamwise-elongated structures, with both structures growing and fading in
magnitude together.

As is apparent from figure 9, mode LF3 shows a different behaviour. In the region
of the flow occupied by the streamwise-elongated structures, the phase angle tends
to decrease as the spanwise coordinate y is increased. The observed behaviour is
consistent with a phase shift of approximately π/2 that exists in this region of the
flow between the real and the imaginary part of the DMD mode. In other words,
the streamwise-elongated structures present in the real part of the mode are shifted
by a phase angle of approximately π/2, or equivalently by a spanwise distance
of 1y/δ ≈ 0.5, as compared to the imaginary part of the mode. The streamwise-
elongated structures thus move in the spanwise direction from large to small y

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.557


Low-frequency dynamics in a shock-induced separation 453

1
–1–2–3–4–5

0
2 3 4 5

–6–7

5

6

0

0

0

0

1

1

2

3

4

(a) (b)

0.5 1.0 1.5

FIGURE 7. Phase angle plots for mode LF1. (a) Contours of the phase angle on three
spanwise-wall-normal planes: x/δ = 0.0, x/δ = 2.0 and x/δ = 4.0. (b) Phase angle versus
spanwise coordinate at two streamwise locations, x/δ = 2.0 (open symbols) and x/δ =
4.0 (closed symbols) and at three wall-normal locations, (z− zw)/δ = 0.4 (squares), (z−
zw)/δ = 0.6 (circles) and (z − zw)/δ = 0.8 (triangles), where zw is the coordinate of the
wall. In both (a,b), the phase angle is only shown at points where the magnitude of the
complex number representing the DMD mode is at least 10 % of the maximum magnitude
encountered in the flow domain.
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FIGURE 8. Low-frequency DMD mode LF1 visualized by contours of the streamwise
mass flux ρu. (a) Real part and (b) imaginary part.

(i.e. in the direction of increasing phase angle). Note that in the region of the flow
occupied by the streamwise-elongated structures, mode LF3 also shows gradients of
the phase angle in the wall-normal direction. At x/δ= 4.0 and between y/δ≈ 1.5 and
y/δ≈ 2, for example, the phase angle is higher near the wall than away from the wall
(figure 9a). This wall-normal gradient of the phase angle suggests that mode LF3 also
involves wall-normal motions of the streamwise-elongated structures. Regarding the
unsteady motion of the shock, we note that with increasing distance from the shock
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FIGURE 9. Phase angle plots for mode LF3. The phase angle is shown at the same spatial
locations as in figure 7 and the same symbol key is used.

foot the phase angle increases along the shock, which implies that the low-frequency
perturbations of the shock originate at the foot and travel outwards, away from the
wall. This behaviour is seen both in mode LF1 (figure 7a) and mode LF3 (figure 9a).

As is apparent from figure 10(a,b), mode LF2 has a similar phase angle behaviour
as mode LF1. On the ramp, the phase angle is approximately zero between y/δ≈ 1.0
and y/δ≈ 1.6, and it is approximately ±π between y/δ≈ 0.0 and y/δ≈ 0.7. Between
y/δ ≈ 0.7 and y/δ ≈ 1.0, the amplitude of the real part of the mode is lower (see
figure 5b). In this region, spanwise gradients of the phase angle are visible, similar to
the behaviour seen in mode LF3.

Mode LF4 (figure 10c,d) has a similar phase angle behaviour as mode LF3. The
spanwise gradient of the phase angle indicates that the streamwise-elongated regions
move in the spanwise direction. Mode LF4 also shows wall-normal gradients of the
phase angle indicating wall-normal motion.

The highest-frequency and lowest-energy mode considered here, mode LF5, shows a
less well-defined phase angle behaviour, as is apparent from figure 10(e, f ), although it
appears that in the flow region occupied by the streamwise-elongated structures there
is a general trend for increasing phase angle with increasing y, which indicates a
motion in the positive y direction.

Based on the analysis of the phase angle, modes LF1 and LF2 demonstrate a first
type of unsteadiness that the streamwise-elongated regions of low and high momentum
can display: the strength of the positive and negative momentum perturbations can
vary in time. A second and third type of unsteadiness are shown by modes LF3 and
LF4 (and, to a lesser extent, by modes LF2 and LF5): the regions of low- and high-
momentum perturbation can move in the spanwise direction, and they can move in
the wall-normal direction.

To further describe the combination of spanwise and wall-normal motion captured
by several of the modes, we have reconstructed the time-dependent dynamics based
on mode LF3. Eight phase angles of the pure oscillation are shown in figure 11. The
dynamics is of the form shown in (2.1), assuming a purely oscillatory eigenvalue and
ignoring the scaling constant cj. As observed from the phase angle plots in figure 9,
the perturbations associated with the shock originate at the shock foot and travel
tangentially along the shock. This behaviour is visible, for example, in the sequence
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FIGURE 10. Phase angle plots for modes: (a,b) LF2, (c,d) LF4 and (e, f ) LF5. The phase
angle is shown at the same spatial locations as in figure 7 and the same symbol key is
used.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.557


456 S. Priebe, J. H. Tu, C. W. Rowley and M. P. Martín

1
–1

–3
–5

3
5

–7

5
6

0
0

1

1

2
3
4

(b)

0.1 0.3 0.5–0.1–0.3–0.5

1
–1

–3
–5

3
5

–7

5
6

0
0

1

1

2
3
4

(a)

0.1 0.3 0.5–0.1–0.3–0.5

1
–1

–3
–5

3
5

–7

5
6

0
0

1

1

2
3
4

(d )

0.1 0.3 0.5–0.1–0.3–0.5

1
–1

–3
–5

3
5

–7

5
6

0
0

1

1

2
3
4

(c)

0.1 0.3 0.5–0.1–0.3–0.5

1
–1

–3
–5

3
5

–7

5
6

0
0

1

1

2
3
4

( f )

0.1 0.3 0.5–0.1–0.3–0.5

1
–1

–3
–5

3
5

–7

5
6

0
0

1

1

2
3
4

(e)

0.1 0.3 0.5–0.1–0.3–0.5

1
–1

–3
–5

3
5

–7

5
6

0
0

1

1

2
3
4

(h)

0.1 0.3 0.5–0.1–0.3–0.5

1
–1

–3
–5

3
5

–7

5
6

0
0

1

1

2
3
4

(g)

0.1 0.3 0.5–0.1–0.3–0.5

FIGURE 11. Pure oscillation based on mode LF3. One period of the dynamics is shown
using eight uniformly spaced snapshots.
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of figure 11(c–g), where a negative streamwise-momentum perturbation at the shock
foot (visible in figure 11c) travels along the shock, away from the wall and into
the free stream (visible in the subsequent figure 11(d–g)). The pure oscillation in
figure 11 also shows the low-frequency unsteadiness of the low- and high-momentum
regions in the downstream flow. If one tracks the region of positive (or negative)
momentum perturbation in time through the sequence of figure 11(a–h), it is apparent
that both of these regions are unsteady. Consistent with the phase angle plots in
figure 9, their motion can be described as a predominantly spanwise translation, at
least based on the single mode LF3 considered here. At x/δ = 4.0, for example,
the core of the positive momentum region is located at approximately y/δ = 1.0 in
figure 11(a), at approximately y/δ= 0.5 in figure 11(c) and at approximately y/δ= 0.0
in figure 11( f ). The negative momentum region also moves in the spanwise direction,
but at a given instant its spanwise position is shifted by approximately 1y/δ= 1 with
respect to the positive momentum region.

In order to quantitatively describe the unsteadiness in the downstream separated
flow, we detect the cores of the low- and high-momentum regions and track their
positions in time. At fixed time t and streamwise coordinate x, the high-momentum
core position vector ph is calculated based on the following averaging procedure

ph(x, t)= (yh, zh)(x, t)=

N∑
k=1

(ρu1y1z)h,kph,k

N∑
k=1

(ρu1y1z)h,k

, (3.1)

where {ph,k}Nk=1 is the set of N position vectors ph,k = (y, z)h,k, at which the largest
values of the streamwise mass flux ρu are encountered (at time t and streamwise
coordinate x). The spanwise and wall-normal grid spacings are denoted by 1y and
1z, respectively. The low-momentum core position vector pl is calculated in a similar
manner based on the set of position vectors {pl,k}Nk=1, at which the lowest values of
the streamwise mass flux ρu are encountered.

We have repeated the analysis using several values of the averaging sample size
ranging from N = 10 to N = 250. Since the core trajectories are similar for all of
the values of N investigated, the averaging procedure defined by equation (3.1) is
relatively insensitive to the choice of the parameter N. Figure 12 shows the core
trajectories at three streamwise stations along the ramp. Here, a sample size of N= 50
is used.

It is apparent from figure 12 that the unsteady motion of the low- and high-
momentum cores has components both in the spanwise direction and in the
wall-normal direction. The low- and high-momentum cores translate monotonically
in the spanwise direction as may be seen from figure 12(a). It is also apparent that
the low- and high-momentum cores are shifted by a spanwise distance, which is
on average approximately 1y/δ = 1. A further observation that may be made from
figure 12(a) is that the spanwise core position y depends on the streamwise location
x. For most of the times shown, as x is increased, the spanwise core position y also
increases, indicating that the loci of the low- and high-momentum core positions are
not aligned perfectly with the streamwise direction but tend to be somewhat skewed
away from the streamwise direction with a component in the spanwise direction.

Figure 12(b) shows that, in addition to translating in the spanwise direction, the
cores describe an unsteady motion in the wall-normal direction. The wall-normal
motion of the positive core is essentially anti-correlated with that of the negative
core, i.e. when the positive core is close to the wall, the negative core is farther away
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FIGURE 12. Low- and high-momentum core positions for the pure oscillation based on
mode LF3. Three different streamwise stations are shown: x/δ = 0.0 (squares), x/δ =
2.0 (circles) and x/δ = 4.0 (triangles). Open symbols indicate the low-momentum core
and closed symbols indicate the high-momentum core. A sample size N = 50 is used
for calculating the average core position. (a) Spanwise core position y versus time, (b)
wall-normal core position z versus time, (c) core trajectory in the spanwise-wall-normal
plane and (d) magnitude of the average mass flux perturbation associated with the core
versus time.

from the wall, and vice versa. The entire motion consisting of spanwise translation
and up-and-down wall-normal motion is apparent from figure 12(c), which shows the
core trajectories in the spanwise-wall-normal plane. A final observation that may be
made about the unsteady motion of the low- and high-momentum regions is that the
average perturbation strength associated with the cores is not constant but varies in
time as shown in figure 12(d). Note that variations in the perturbation strength were
also shown to be present in mode LF1 based on the behaviour of the phase angle
(see figure 7).

In addition to computing a pure oscillation based on a single DMD mode, we
have also reconstructed the dynamics based on combinations of several modes. The
dynamics does not assume the form given by (2.1), but instead uses a truncated
projection onto the DMD modes, i.e. a truncated form of (2.2) where the coefficients
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FIGURE 13. Comparison between the original DNS data and the reconstruction based on
all of the relevant low-frequency DMD modes. The comparison is shown in terms of the
separation point xs. The DNS is shown in black, and the reconstruction based on modes
LF1, LF2, LF3, LF4 and LF5 in red. Note that this figure is identical to figure 1, except
that the DMD reconstruction has been added.

dj are computed using a biorthogonal projection. As more modes are added to the
reconstruction, the low-frequency dynamics present in the DNS is approximated with
increasing accuracy. As is apparent from figure 13, the reconstruction based on all
of the low-frequency modes listed in table 1 (LF1 to LF5) accurately captures the
low-frequency behaviour of the separation point: the correlation coefficient between
the low-pass-filtered DNS signal and the reconstruction signal is 0.87. It should be
noted that the DNS signal was low-pass filtered with a higher cutoff Strouhal number
of 0.22, so that additional, relatively low-energy DMD modes at Strouhal numbers
between 0.1 and 0.22 need to be added to the reconstruction to further improve the
match between the actual and reconstructed separation point signals. The first 25% of
the separation point signal from tU∞/Lsep = 112.8 to tU∞/Lsep = 127.5, in particular,
appear to show some higher-frequency contributions. If this part of the signal is
excluded, the correlation coefficient between the low-pass-filtered DNS signal and the
reconstruction signal is 0.96.

A movie of the low-frequency dynamics reconstructed based on modes LF1
to LF5 is available with the online version of this paper at http://dx.doi.org/
10.1017/jfm.2016.557. Four uncorrelated snapshots of the reconstruction are shown in
figure 14, and the core-tracking results for the reconstruction are shown in figure 15.
As is apparent from figures 14 and 15, the many-mode reconstruction shows similar
dynamics as the dynamics observed in the pure oscillation. Regarding the streamwise
motions of the shock, figure 14(a) shows a snapshot in which the shock is located
upstream of its average position (positive ρu perturbation along the shock), whereas
figure 14(c) shows a snapshot in which the shock is located downstream (negative ρu
perturbation). In figures 14(b) and 14(d), the shock is located closer to its average
position (near-zero perturbation along the shock). The streamwise-elongated structures
and their unsteady motion are also visible. The perturbation strength associated
with the structures varies and is stronger in figure 14(a,b,d) than in figure 14(c). In
addition, the structures are unsteady in the spanwise and wall-normal directions. The
spanwise motion, for example, is apparent by comparing figures 14(b) and 14(d);
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FIGURE 14. Reconstruction of the low-frequency dynamics based on modes LF1, LF2,
LF3, LF4 and LF5. Four uncorrelated snapshots are shown. In addition, a movie of the
reconstruction is available with the online version of this paper.

the spanwise location of the low- and high-momentum regions is approximately
interchanged between these two snapshots. The three types of unsteadiness associated
with the streamwise-elongated structures are shown quantitatively in figure 15: the
structures move along the span (figure 15a), they move in the wall-normal direction
(figure 15b) and their intensity varies (figure 15c). While there are strong similarities
between the many-mode dynamics shown here and the pure oscillation shown in
figures 11 and 12, there is also a key difference: while the spanwise motion in the
pure oscillation is monotonic, the inclusion of many modes leads to a more complex,
non-monotonic spanwise motion (see figure 15a).

3.2. Two-dimensional DMD modes
While the perturbations in the downstream separated flow are spanwise dependent, the
perturbations associated with the shock display a high degree of uniformity across the
span of the computational domain, at least in the free stream, away from the foot of
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FIGURE 15. Low- and high-momentum core positions for the reconstruction of the
dynamics based on modes LF1, LF2, LF3, LF4 and LF5. (a) Spanwise core position y
versus time at x/δ = 4.0; (b) wall-normal core position z versus time at three different
streamwise stations: x/δ= 0.0 (squares), x/δ= 2.0 (circles) and x/δ= 4.0 (triangles); and
(c) magnitude of the average mass flux perturbation associated with the core versus time
at x/δ= 4.0. Open symbols indicate the low-momentum core and closed symbols indicate
the high-momentum core. A sample size N = 50 is used for calculating the average core
position.

the shock which tends to display some variation in the spanwise direction. The two-
dimensionality of the shock is apparent from figures 3, 7–11 and 14. As discussed in
Wu & Martín (2008) and Priebe & Martín (2012), a significantly wider computational
domain would be required to capture any possible 3-D effects associated with the low-
frequency shock motion.

The two-dimensionality of the low-frequency shock motion was also shown in
Priebe & Martín (2012), where a coherence analysis of pressure signals across the
span of the computational domain was performed. The analysis showed that pressure
signals obtained in the region of shock motion at different spanwise locations have
a coherence of almost one at the low frequencies of interest. This indicates that
the signals are related almost linearly across the span of the domain. Since the
signals were also shown to be in phase, it was concluded that the low-frequency
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shock motion is essentially two-dimensional across the spanwise width of the present
computational domain.

The two-dimensionality of the shock provides the justification for analysing the low-
frequency dynamics from spanwise-averaged fields in addition to the full 3-D fields.
The spanwise-averaged fields and modes show the net 2-D effect of the inherently 3-D
separated flow dynamics that drives the shock. Two different approaches are used here:
the 2-D dynamics is first investigated by spanwise averaging the 3-D DMD modes.
Second, we apply the DMD method directly to the spanwise-averaged DNS flow field.
This second approach is of interest, since it is computationally cheaper than applying
the DMD analysis to the 3-D flow field.

3.2.1. Spanwise average of the 3-D DMD modes
We have spanwise averaged the reconstruction of the dynamics based on the 3-D

DMD modes LF1–LF5. The resulting 2-D and time-dependent flow field reveals
structural changes that occur in the separation bubble during the low-frequency
shock motions. Two particularly clear examples of these structural changes are
shown in figures 16(a,b) and 16(c,d). In both cases, a similar change is shown,
from figures 16(a) to 16(b), and similarly from figures 16(c) to 16(d). In all of the
snapshots, significant streamwise velocity perturbations are present in the following
regions of the flow: along the shock, in the separation bubble and in the separated
shear layer, as well as in the out-of-equilibrium boundary layer downstream of
reattachment. Compared with the strong perturbations in the flow downstream of the
shock, the perturbations in the incoming boundary layer upstream of the shock are
relatively weak.

If we focus on the structure of the flow up to reattachment, five distinct regions
of significant, positive or negative, perturbation may be identified from figure 16(a)
(or similarly figure 16c). To aid in the description, these regions are encircled and
labelled in the figure. The region of negative perturbation labelled A1 coincides
with the shock, extending from the shock foot in the boundary layer to the free
stream. Since the streamwise velocity u decreases as the shock is traversed in the
direction of increasing streamwise coordinate x, a negative perturbation in this region
implies that the shock is located upstream of its time-averaged position. Region A2,
a streamwise-elongated region of negative perturbation, coincides with the shear layer
and the reattaching boundary layer. Since the sign of the perturbation in region A2
is the same as along the shock in region A1, the upstream displacement of the shock
is linked with a negative velocity perturbation in region A2, which is consistent with
a larger separation bubble and a shear layer that is farther away from the wall.

In addition to region A2, three other regions of significant perturbation, which
are labelled as regions A3, A4 and A5 in figure 16(a,c), are visible in the flow
downstream of separation. These regions occupy near-wall patches of the flow
domain: region A3 is located a short distance downstream of separation, region A5 is
located around the corner and region A4 is located near reattachment. Crucially, the
perturbation in two of these regions (A3 and A4) is of opposite sign as compared
to regions A1 or A2. This implies that when the shock is located in an upstream
position (negative perturbation in region A1), the outer part of the shear layer and
the separation bubble are characterized by a negative velocity perturbation (region
A2), whereas in two near-wall regions, one near separation (region A3) and the other
closer to reattachment (region A4), the velocity perturbation carries the opposite sign
and is positive. In other words, the velocity perturbation is not negative everywhere
in the shear layer and in the separation bubble when the shock is located upstream.
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FIGURE 16. Two-dimensional field of u perturbation obtained by spanwise averaging the
reconstruction of the dynamics based on the 3-D DMD modes LF1–LF5. Snapshot (b)
occurs 1tU∞/Lsep= 5.6 after snapshot (a) and snapshot (d) occurs 1tU∞/Lsep= 3.2 after
snapshot (c). The first pair of snapshots (a,b) is uncorrelated with the second pair (c,d).
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Instead, the perturbation is positive and the reversed flow is weakened in regions A3
and A4, implying that the flow is locally reattaching and the bubble is collapsing in
these two regions. We note that regions A3 and A4 may also be regarded as a single,
connected region of positive perturbation that arches over the corner.

As discussed, the snapshots in figure 16(a,c) show significant negative perturbations
along the shock, implying that the shock is displaced upstream. In contrast, the
snapshots in figure 16(b,d) show only weak perturbations along the lower part of
the shock, which implies that this part of the shock is located near its average
position. The shock has thus moved downstream between snapshots (a,c) and (b,d),
and snapshots (b,d) correspond to the instants when the shock foot passes through
its time-averaged position while translating downstream.

It is apparent that snapshots (b) and (d) have a simpler perturbation structure
in the separation bubble and in the separated shear layer than snapshots (a) and
(c). The perturbation is positive in most of the separation bubble and shear layer
(region B1), which is consistent with a weaker-than-average reversed flow and,
consequently, a smaller separation bubble and a shear layer that is located closer to
the wall. A further point to note from figure 16(b,d) is that an additional region of
significant perturbation is visible in the reattaching, out-of-equilibrium boundary layer.
In contrast to the perturbation in the separated flow (region B1), which is positive,
the perturbation in the reattaching boundary layer (region B2) is negative.

Figure 16 thus shows that as the shock moves downstream, the dynamics of the
separation bubble is characterized by structural changes: depending on the location of
the shock, the u perturbation in the separated flow has a different structure involving
either two regions of significant perturbation (regions B1 and B2) or four regions
(regions A2–A5).

These kind of structural changes are also captured by individual DMD modes and
do not necessarily require the superposition of several modes, as may be seen by
spanwise averaging the pure oscillation based on mode LF3, which was shown in
three dimensions in figure 11. Eight phases, which cover a complete cycle of the pure
oscillation, are shown in figure 17.

At zero phase angle (figure 17a), the same structure as shown in figure 16(a,c),
but with reversed sign, is observed. The shock is located downstream of its mean
position, i.e. the u perturbation is positive along the shock. During the sequence
shown in figure 17(a–d), the u perturbation along the shock foot decreases and
eventually becomes negative, which is consistent with the shock moving upstream. It
is clear from the sequence of figures that the velocity perturbations travel tangentially
along the shock, from the boundary layer to the free stream. As the shock translates
upstream, significant u perturbations are visible in the separation bubble and the shear
layer. At zero phase angle, the perturbation field shows the previously discussed
structure consisting of four distinct regions (referred to as A2–A5 in the discussion
of figure 16). During the sequence shown in figure 17(b–d), the two regions of
negative perturbation (regions A3 and A4), which are initially of small spatial extent
and confined to the proximity of the wall, merge and grow until they fill the entire
separation bubble. This behaviour is consistent with a growing bubble. The shock
translates upstream until it reaches its most upstream location at a phase angle of
π (see figure 17e). At this phase angle, the structure in the separation bubble is the
same as that observed at zero phase angle, except that the sign is reversed. Most
of the bubble is characterized by a negative velocity perturbation as is typical for a
large bubble. However, two patches of positive perturbation have appeared near the
wall, which is consistent with a weaker-than-average reversed flow. In the sequence

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.557


Low-frequency dynamics in a shock-induced separation 465

0

2

4

6

–2–4–6 0 2 4

0

2

4

6

–2–4–6 0 2 4

0

2

4

6

–2–4–6 0 2 4

0

2

4

6

–2–4–6 0 2 4

0

2

4

6

–2–4–6 0 2 4

0

2

4

6

–2–4–6 0 2 4

0

2

4

6

–2–4–6 0 2 4

0

2

4

6

–2–4–6 0 2 4

–0.2 0 0.1 0.2–0.1

–0.2 0 0.1 0.2–0.1

–0.2 0 0.1 0.2–0.1

–0.2 0 0.1 0.2–0.1

–0.2 0 0.1 0.2–0.1

–0.2 0 0.1 0.2–0.1

–0.2 0 0.1 0.2–0.1

–0.2 0 0.1 0.2–0.1

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

FIGURE 17. Spanwise average of the pure oscillation shown in figure 11. The field of
streamwise velocity u is shown at eight phase angles: (a) zero, (b) π/4, (c) π/2, (d)
3π/4, (e) π, ( f ) 5π/4, (g) 3π/2, (h) 7π/4.

shown in figure 17(e–h), these two patches merge and grow until a single region
of positive perturbation fills the entire bubble. This behaviour is consistent with a
collapsing bubble.

The structural changes observed in the velocity perturbation field are also visible
in the skin-friction distribution. As is apparent from figure 18, the Cf distributions
corresponding to figures 16(c) and 17(e) show three peaks: a negative peak is visible
around x/δ = −2.5. This peak appears to be linked to the region of negative u
perturbation along the shock (region A1 in figure 16) and in the shear layer (region
A2). Downstream of the negative peak, a positive peak in the Cf distribution is visible
around x/δ =−1.25. This positive peak is consistent with the first region of positive
u perturbation in the separation bubble (region A3). An additional, less pronounced,
positive peak in the Cf distribution is visible around x/δ = 1.0. This peak appears
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FIGURE 18. Perturbations of the skin-friction coefficient Cf associated with: (a) the
low-frequency reconstruction based on modes LF1–LF5 at the phase angle shown in
figure 16(c), and (b) the pure oscillation based on mode LF3 at the phase angle shown
in figure 17(e). The perturbation of Cf obtained in Priebe & Martín (2012) for collapsing
bubbles using a conditional analysis of spanwise-averaged and temporally low-pass-filtered
DNS fields is also shown.

to be linked to the second region of positive u perturbation in the separation bubble
(region A4).

3.2.2. DMD analysis of the spanwise-averaged DNS flow field
In addition to computing spanwise averages of the 3-D DMD modes, we have

also performed a DMD analysis directly on the spanwise-averaged DNS snapshots.
Figure 19 provides an overview of the results, which are very similar to those
obtained by spanwise averaging the 3-D DMD modes. The DMD spectrum for the
spanwise-averaged data is shown in figure 19(a). Consistent with the 3-D spectrum
that was shown in figure 4 and discussed in § 3.1, the 2-D spectrum contains several
energetic low-frequency modes in the Strouhal number range St< 0.1. The frequencies
of the 2-D modes are similar to those that were obtained for the three-dimensional
modes. The 2-D mode at St = 0.017, for example, corresponds to the 3-D mode
at St = 0.020 (LF1). Similarly, the 2-D mode at St = 0.056 corresponds to the 3-D
mode at St = 0.056 (LF3). In addition to similar frequencies, the mode shapes are
also similar. This may be seen by comparing figure 19(b,c), which shows the real
and imaginary part of the 2-D mode at St = 0.056, to figure 17(e,g), which shows
the spanwise-averaged snapshots of the pure oscillation of the corresponding 3-D
mode. The similar mode shapes may also be seen by comparing the Cf distribution
in figure 19(d) to that associated with the corresponding 3-D mode (figure 18b).

All of the DMD results presented thus far are based either on 3-D data or on
spanwise-averaged data. We have also applied the DMD analysis to DNS data
on individual streamwise-wall-normal planes. The analysis was repeated for several
planes located across the span of the computational domain. While this DMD analysis
returns modes at the low frequencies of interest, no clear mode structure could be
discerned. The perturbation fields (not shown here) appear less coherent than for
the spanwise-averaged data, and the perturbation structure is different from one
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FIGURE 19. DMD analysis of the spanwise-averaged DNS flow field. The DMD spectrum
is shown in (a). The real part of the mode at St= 0.056 is shown in (b), the imaginary
part in (c) and the Cf distribution associated with the mode in (d).

spanwise location to the next. The inconclusiveness of the DMD analysis based on
individual streamwise-wall-normal planes suggests that 3-D effects play a role in the
low-frequency dynamics, which is consistent with the 3-D DMD analysis presented
in § 3.1.

3.3. DNS on a large domain
We have performed an additional DNS on a larger domain. The spanwise domain size
is doubled from 2δ in the baseline simulation to 4δ in the large domain simulation.
The numerics and computational set-up are identical, except that the rescaling is
performed as part of the compression-ramp simulation, rather than performing
a separate auxiliary simulation. Figure 20 shows four low-pass-filtered (in time)
snapshots from the large domain DNS. The same finite-impulse response (FIR) filter
that was used to process the separation point signal in figures 1 and 13 is used here
to filter the flow field in time.

It is apparent from figure 20 that the shock is unsteady at low frequencies: in
snapshot (a), the shock is located upstream of its average position, as indicated by
the positive momentum perturbation along the shock at x/δ = 4. The shock then
moves downstream, which is shown by the slightly negative momentum perturbation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.557


468 S. Priebe, J. H. Tu, C. W. Rowley and M. P. Martín

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

1
–1–2–3–4–5

0
2 3 4 5

–6–7

1
–1–2–3–4–5

0
2 3 4 5

–6–7

1
–1–2–3–4–5

0
2 3 4 5

–6–7

1
–1–2–3–4–5

0
2 3 4 5

–6–70123

0123
0123

0123

0.1 0.3 0.5–0.1–0.3–0.5

0.1 0.3 0.5–0.1–0.3–0.5 0.1 0.3 0.5–0.1–0.3–0.5

0.1 0.3 0.5–0.1–0.3–0.5

(a) (b)

(c) (d)

FIGURE 20. DNS on a Ly= 4δ wide domain. Low-pass-filtered (in time) snapshots of the
flow are shown, visualized by contours of the streamwise mass flux ρu on three planes:
x/δ=−4, x/δ= 0 and x/δ= 4. The four snapshots are distributed over a time of 50δ/U∞,
which is the length of the DNS after the transients have passed: (a) tU∞/δ = 0.0, (b)
tU∞/δ = 18.4, (c) tU∞/δ = 28.8 and (d) tU∞/δ = 47.2.

at x/δ = 4 in snapshot (b). This is followed by upstream motion: the shock passes
through its average position (almost zero perturbation along the shock) in snapshot
(c) and is subsequently located upstream of its average position in snapshot (d). It
is interesting to note that, in contrast to the baseline DNS, the shock shows signs
of three-dimensionalizing in the free stream on the larger domain. It is apparent,
especially in figure 20(a,d), that the perturbation along the shock at x/δ= 4 varies in
intensity along the span rather than remaining uniform.

As in the baseline DNS, streamwise-elongated regions of low and high momentum
are visible in the downstream flow (see the plane at x/δ = 4 in figure 20). The
dominant spanwise length scale of the structures is approximately δ. It is apparent
from the sequence in figure 20(a–d) that the structures are unsteady at low frequencies
as in the baseline DNS: their intensity varies, and it is weaker in snapshots (b,c) than
in (a,d). The momentum cores are also unsteady in the wall-normal and spanwise
directions: one of the two negative momentum cores is located at y/δ ≈ 3.5 in
snapshot (a) and at y/δ≈ 4.0 in snapshot (d), which shows the spanwise motion. One
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of the positive momentum cores is located at (z− zw)/δ≈ 0.5 in snapshot (a), and at
(z− zw)/δ ≈ 0.8 in snapshot (b), illustrating the wall-normal motion.

4. Discussion

The 2-D DMD mode shapes described in §§ 3.2.1 and 3.2.2 are consistent with
perturbation shapes reported in Priebe & Martín (2012) based on a conditional
analysis. In Priebe & Martín (2012), several DNS of the 24◦ compression-ramp
STBLI at Mach 2.9 were analysed, including the simulation used in the present
paper. The DNS data were averaged in the spanwise direction and low-pass filtered
in time. Based on the resulting 2-D and time-dependent field, it was observed that the
structure of the downstream separated flow changes during the low-frequency motions
of the shock. The structural changes were described based on the velocity field, the
vorticity field, and in terms of the perturbation of the skin-friction coefficient Cf

through the interaction. Figures 18 and 19(d) show that the Cf perturbation observed
in Priebe & Martín (2012) is consistent with the DMD mode shape obtained here.

In addition, the present 2-D DMD modes are qualitatively similar to linear
instability modes that have been reported in the literature for the reflected shock
case. As mentioned in § 1, Touber & Sandham (2009) performed a global linear
stability analysis of a reflected shock interaction at Mach 2.3. The analysis was based
on the mean flow obtained from LES, and an unstable, exponentially growing mode
was obtained. The same mode was also found by Pirozzoli et al. (2010). The Cf

perturbation associated with the linear instability mode is qualitatively similar to the
present DMD modes, which may be seen by comparing figure 18 in the present paper
to figure 15 in Touber & Sandham (2009). In both cases, the Cf perturbation shows
three dominant local extrema: the first is located upstream of mean separation (at
x/δ ≈−2.5 in figure 18); the second is located further downstream in the separated
flow region (at x/δ ≈ −1.25 in figure 18) and is of opposite sign compared to the
first; and the third extremum, which is also of opposite sign compared to the first, is
located near reattachment (at x/δ ≈ 1.0 in figure 18).

The similarity between the DMD modes reported here and the linear instability
mode reported in the literature is not only confined to wall quantities, such as the
skin friction, but also extends into the flow field. This may be seen by comparing
the perturbation fields in figures 16, 17 and 19(b,c) in the present paper to the
corresponding stability results in the literature (figure 14 in Touber & Sandham
(2009) and figure 7 in Pirozzoli et al. (2010)). A similar structure is observed,
consisting of a first region of significant perturbation along the shock (denoted as
region A1 in figure 16), a second region of significant perturbation along the separated
shear layer (region A2) and two regions in the separated flow (regions A3 and A4),
which we recall are of opposite sign compared to the perturbation region in the shear
layer. In the stability results, as in the present DMD results, the distinction between
regions A3 and A4 is not always clear, and they may also be regarded as a single
connected region. Region A5, which is observed in the present results at the corner,
is not discernible in the linear stability results reported in the literature. This region
could be more pronounced in compression-ramp interactions than in reflected shock
interactions due to the presence of the corner.

While our DMD analysis is fundamentally different than a linear stability analysis,
the similar shapes of the linear stability modes reported in the literature (Touber &
Sandham 2009; Pirozzoli et al. 2010) and the DMD modes reported here suggest
that the low-frequency dynamics observed in the present STBLI could be due to the
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saturation of a linear instability in the flow. This would be an interesting dynamical
feature that could guide efforts to develop reduced-order models. For instance, in the
2-D flow past a cylinder, the global unstable modes are well known, but the instability
mechanism carries the flow to a periodic orbit (vortex shedding) that does not retain
any features of the unstable modes (Noack et al. 2003). Instead, a different set of
global modes dominates the flow field. The nature of this transition from the linear
regime to the nonlinear one is present in many reduced-order models of the cylinder
flow.

Several works in the literature have found evidence for Görtler-type vortices in
STBLIs. Settles et al. (1979) performed oil flow visualizations in a 24◦ compression-
ramp interaction at Mach 2.85. The oil flow pattern indicated a spanwise variation
of the separation length. Settles et al. (1979) attributed the spanwise variation to the
concave streamline curvature in the interaction leading to the formation of Görtler-type
vortices. Loginov et al. (2006) performed a LES of a 25◦ compression-ramp STBLI at
Mach 2.95. They observed streamwise-elongated regions of low and high temperature
on the ramp. The spanwise length scale of these structures was approximately δ,
the incoming boundary layer thickness. Loginov et al. (2006) demonstrated that near
separation and reattachment the Görtler number and the streamline curvature were
above the critical values in their simulations. As a result, they suggested that the
observed flow structures were due to Görtler-type vortices in the interaction.

Figure 21 shows the streamline curvature δ/R and the Görtler number GT along
two mean flow streamlines for the present DNS. Streamline 1 passes close to the wall
(z/δ=0.2 at x/δ=−4.0) and streamline 2 passes farther away from the wall (z/δ=0.6
at x/δ =−4.0). The Görtler number is defined as (see Loginov et al. 2006, Smits &
Dussauge 2006)

GT = (θ/δ)3/2

0.018(δ∗/δ)

√
δ

R
, (4.1)

where R is the radius of curvature of the streamline, δ is the boundary layer
thickness, δ∗ is the boundary layer displacement thickness and θ is the boundary
layer momentum thickness. As is apparent from figure 21, the peak streamline
curvature occurs near separation and is δ/R ≈ 0.17 for streamline 1 and δ/R ≈ 0.26
for streamline 2. The peak Görtler number is GT ≈ 1.07 for streamline 1 and
GT ≈ 1.33 for streamline 2. Near reattachment, the peak streamline curvature is
δ/R ≈ 0.075 for streamline 1 and δ/R ≈ 0.055 for streamline 2. The peak Görtler
number near reattachment is GT ≈ 0.70 for streamline 1 and GT ≈ 0.62 for streamline
2. According to Smits & Dussauge (2006), the critical value for δ/R in Mach 3
flow is approximately 0.03 (under the assumption that Reynolds number effects,
which are weak, are ignored). As noted by Loginov et al. (2006), the critical Görtler
number in laminar flow is 0.6. While the validity of the Görtler stability criterion is
unclear in a turbulent and separated flow (Loginov et al. 2006; Smits & Dussauge
2006), the high values of δ/R and GT observed here suggest that the present flow is
centrifugally unstable and that Görtler-type vortices provide a likely explanation for
the streamwise-elongated regions of low and high momentum that are visible in the
3-D DMD modes.

As can be seen from e.g. figures 5, 6, 11, and 12, the spanwise length scale of these
regions is approximately δ, which is in agreement with the value reported in Loginov
et al. (2006). The spanwise wavelength of a pair of momentum perturbation regions
is thus 2δ, and this value agrees with the natural spanwise wavelength of streamwise
vortex pairs in STBLI flows, which was determined by Schülein & Trofimov (2011).
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FIGURE 21. Streamline curvature δ/R and Görtler number GT along two mean flow
streamlines: (a,b) streamline 1 passing through x/δ = −4.0 and z/δ = 0.2 and (c,d)
streamline 2 passing through x/δ =−4.0 and z/δ = 0.6.

Using small vortex generators, they artificially introduced disturbances upstream
of compression-ramp STBLIs and studied the properties of the streamwise vortices
formed in the interaction. They found that streamwise vortices with a natural spanwise
wavelength, which is independent of the properties of the upstream forcing, are
formed. For compression ramps at Mach 3 and with a ramp angle of 25◦, i.e. at
conditions that are almost identical to those investigated here, the natural spanwise
wavelength is close to 2δ. Schülein & Trofimov (2011) found this value to be
insensitive to the Reynolds number and to depend on downstream properties such as
the ramp angle and interaction strength.

It should be noted that in e.g. Settles et al. (1979) and Loginov et al. (2006), the
Görtler-type vortices and their effects (such as the spanwise variation of the separation
length, and the regions of low and high momentum or temperature) are observed in the
time-averaged flow. Loginov et al. (2006) mention the possibility that these structures
could be unsteady. In the present work, we observe unsteady regions of low and
high momentum, suggesting that the Görtler-type vortices present in the interaction
are unsteady.

Floryan (1991) reviews experiments of Görtler vortices in low-speed, turbulent flows
and describes the following types of unsteady behaviour typically observed:
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(i) If steady, artificial disturbances are introduced in the incoming boundary layer,
the Görtler vortices are visible in the time-averaged flow and tend to be relatively
steady about preferred spanwise locations. In the context of STBLIs, examples
in this category are the compression-ramp experiments of Schülein & Trofimov
(2011). They place small vortex generators in the incoming boundary layer,
leading to a steady spanwise modulation of the inflow.

(ii) In the absence of artificial upstream disturbances, the streamwise vortices are
often still visible from time-averaged measurements. The reason for this is
that even low-amplitude, steady disturbances in the incoming boundary layer,
as may be generated by small model roughness or leading edge features,
are often sufficient to set preferred locations for the vortices. In STBLIs, as
in low-speed flows, most experiments probably fall into this category. The
compression-ramp LES of Loginov et al. (2006) also falls into this category.
They observe streamwise structures in the time-averaged flow, which they are
able to link to low-amplitude (≈ 0.03U∞), steady disturbances in their inflow.

(iii) In the absence of sufficiently strong and steady disturbances in the inflow, the
streamwise vortices do not have any preferred locations. Consequently, they are
unsteady and cannot be detected using time-averaged measurement techniques.
The dynamics observed in the present work falls into this category. Floryan
(1991) provides additional examples in low-speed turbulent flow. We are not
aware of any previous direct observations of unsteady large-scale streamwise
structures in STBLIs, although Schülein & Trofimov (2011) have suggested that
such unsteady structures are present in one of their experiments: by polishing
the model surface in order to remove small residual roughness at the leading
edge and on the model surface, they were able to show that for a very low
steady disturbance environment, the streamwise vortices eventually disappear
from their surface oil flow visualizations. This behaviour is consistent with the
flow transitioning from category (ii) to (iii): the vortices become unsteady when
the level of steady disturbances is sufficiently low.

Floryan (1991) and Schülein & Trofimov (2011) suggest that when the streamwise
structures become unsteady (category (iii)), they still show a dependence on
disturbances in the inflow, except that such disturbances will now be predominantly
unsteady, rather than steady as in categories (i) and (ii). In order to investigate any
possible upstream influence on the streamwise-momentum regions observed here,
we have computed the correlation between the streamwise momentum fluctuations
upstream of the interaction and those downstream using the low-frequency DMD
reconstruction. As is apparent from figure 22, the correlation at zero time lag is
0.236. When considering the correlation with time lag, the maximum value is 0.497
at a time lag of tU∞/δ ≈ 13.0, which corresponds to the turbulent convection time
between the two locations considered. Note that by adding additional low-frequency
DMD modes and considering e.g. the reconstruction that is based on all of the DMD
modes up to a Strouhal number of St= 0.2, a very similar peak correlation of 0.475
at tU∞/δ ≈ 13.0 is obtained.

We thus observe a non-negligible correlation between motions in the upstream
boundary layer and the dynamics of the low- and high-momentum regions in the
interaction. This observation is consistent with the literature on Görtler vortices,
which shows that the underlying centrifugal instability tends to be weak and that
some dependence on (steady or unsteady) disturbances in the incoming flow is usually
present (Floryan 1991). In addition, this observation may be related to previous works

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.557


Low-frequency dynamics in a shock-induced separation 473

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

R

FIGURE 22. Correlation coefficient R with time lag 1t between the streamwise mass flux
in the incoming boundary layer and in the downstream flow. The correlation is computed
based on the DMD reconstruction that includes only the relevant low-frequency modes
(LF1–LF5). The upstream location is at x/δ=−4, and the downstream location is at x/δ=
4. Both locations lie on the same mean flow streamline, which is chosen to pass through
the middle of the log layer in the incoming boundary layer (it passes through z/δ = 0.2,
or z+ = 70, at the upstream location x/δ =−4).

that have shown an upstream influence on the STBLI dynamics (Ganapathisubramani
et al. 2007, 2009).

Based on the findings, we propose the following physical mechanism for the
low-frequency unsteadiness in supersonic shock wave/turbulent boundary layer
interactions: in sufficiently strong interactions, the concave streamline curvature near
separation and reattachment leads to a centrifugal instability. Görtler-type vortices
are formed in the interaction, which induce the streamwise regions of low and high
momentum that are visible in the 3-D DMD modes. The downstream, separated flow
is unsteady at low frequencies, since the Görtler-type vortices (and the momentum
perturbations that they induce) are unsteady, as is apparent from the DMD analysis.
It is this unsteady flow that constitutes the downstream boundary condition for the
shock and thereby drives the shock motion. The upstream boundary layer also plays
a role. As typically observed in Görtler vortex flows, disturbances in the upstream
boundary layer influence the development of the vortices downstream, although we
emphasize that the key physics – namely, the concave streamline curvature leading
to the formation of Görtler-type vortices – occurs in the downstream flow.

5. Conclusions
The DMD method is applied to a previously reported DNS (Priebe & Martín 2012)

of a Mach 2.9, 24◦ compression-ramp STBLI in order to investigate the low-frequency
unsteadiness that is characteristic of this type of flow.

The analysis is performed on 3-D snapshots of the flow. The DMD spectrum
shows several modes in the range of low frequencies of interest (St < 0.1). These
low-frequency modes share a similar structure, consisting of streamwise-elongated
regions of low- and high-momentum perturbations, which originate at the separation
shock foot and extend downstream into the separated flow and further into the
reattached flow on the ramp. In addition to these perturbations in the downstream
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flow, the low-frequency DMD modes show significant perturbations along the shock,
which are consistent with streamwise excursions of the shock about its average
location.

In order to characterize the unsteadiness captured by the individual DMD modes,
the behaviour of the phase angle is investigated. Three distinct types of unsteadiness
associated with the streamwise-elongated regions of low and high momentum are
observed: these regions move in the spanwise direction, they move in the wall-normal
direction and their perturbation strength varies in time. It is also shown that the
behaviour of the phase angle along the shock is consistent with perturbations travelling
tangentially along the shock, from the shock foot outwards. The unsteadiness captured
by the individual DMD modes is further described by computing the pure oscillation
based on one of the low-frequency modes and tracking the cores of the low- and
high-momentum regions in time.

The reconstruction of the dynamics based on all of the low-frequency DMD
modes up to a Strouhal number of St = 0.1 accurately captures the low-frequency
dynamics seen in the original DNS data. Specifically, the reconstructed separation
point signal closely reproduces the low-pass-filtered signal from DNS. The many-mode
reconstruction shows a similar flow structure and similar dynamics as the individual
DMD modes, in the sense that the unsteadiness of the shock is linked to unsteady
regions of low and high momentum in the downstream separated flow.

We thus conclude that the low-frequency shock unsteadiness in the present STBLI
may be represented by the superposition of a number of low-frequency DMD
modes, all of which capture unsteady, streamwise-elongated regions of momentum
perturbation in the downstream separated flow. Görtler-like vortices, which have been
observed in previous STBLI studies in the literature (Settles et al. 1979; Loginov
et al. 2006; Smits & Dussauge 2006), provide a likely physical explanation for
the presence of the streamwise-elongated regions of low and high momentum. The
properties of the streamwise-momentum regions observed here, such as their spanwise
wavelength, agree with the values reported in the literature (e.g. Schülein & Trofimov
2011). The fact that the streamwise-momentum regions are found to be unsteady is
consistent with the occurrence of unsteady Görtler vortices in low-speed turbulent
flows (Floryan 1991); it is also consistent with the observation, reported in Schülein
& Trofimov (2011), that the signature of the Görtler vortices in STBLIs disappears
from time-averaged measurements when the level of steady inflow disturbances is
reduced to very low values.

Since the 3-D DMD results show that the shock remains essentially two-dimensional
and spanwise uniform during the low-frequency motions, we have also investigated
the low-frequency dynamics in two dimensions. The spanwise average of the
reconstruction based on all of the relevant 3-D modes shows that the separation bubble
undergoes structural changes during the low-frequency shock motions. Examples of
these structural changes are shown to resemble the structural changes that were
previously observed in Priebe & Martín (2012) based on a conditional analysis.
A qualitative similarity also exists with the linear stability results reported in the
literature for the reflected shock case (Touber & Sandham 2009; Pirozzoli et al.
2010), which suggests that the low-frequency dynamics could be due to the saturation
of a linear instability in the flow.

The 2-D dynamics may also be obtained by applying the DMD method directly
to the spanwise-averaged DNS snapshots. This approach is of interest since it is
computationally cheaper than performing a 3-D DMD analysis and then spanwise
averaging the resulting modes.
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Since the time duration captured in the present DNS (approximately 200δ/U∞)
is relatively short compared to the low-frequency phenomenon under investigation,
and since this low-frequency phenomenon is broadband, the question arises whether
the dynamics observed here is representative of all of the dynamics that would
be observed over a much longer time duration, or whether the present dynamics
constitutes an ‘unusual event’. Further work on much longer time series is therefore
required to investigate the statistical significance over long times of the coherent
structures and their unsteadiness observed here. Further work is also required
to investigate whether these structures are present and relevant in other STBLI
configurations, and how they vary as the flow conditions (the Mach number, the
Reynolds number, the wall temperature condition and the shock intensity) are varied.
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