ON THE HYPERPLANE SECTIONS OF BLOW-UPS OF COMPLEX PROJECTIVE PLANE

ALDO BIANCOFIORE

Introduction. Let L be a line bundle on a connected, smooth, algebraic, projective surface X. In this paper we have studied the following questions:

1) Under which conditions is L spanned by global sections? I.e., if $\phi_{L}: X \rightarrow$ \mathbf{P}^{N} denotes the map associated to the space $\Gamma(L)$ of the sections of L, when is ϕ_{L} a morphism?
2) Under which conditions is L very ample? I.e., when does ϕ_{L} give an embedding?

These problems arise naturally in the study, and in particular in the classification, of algebraic surfaces (see [8], [3], [5]).

In particular we have restricted our attention to the case in which X is gotten by blowing up s distinct points $x_{1}, \ldots, x_{s} \in \mathbf{P}^{2}$. If we denote by P_{1}, \ldots, P_{s} the corresponding exceptional curves then a line bundle L on X is of the form

$$
L \equiv \pi^{*} O_{\mathbf{P}^{2}}(d)-\sum_{j=1, \ldots, s} t_{j} P_{j}
$$

where $\pi: X \rightarrow \mathbf{P}^{2}$ is the blowing up morphism with center x_{1}, \ldots, x_{s}.
It was classically known that if

$$
L \equiv \pi^{*} O_{\mathbf{P}^{2}}(3)-\sum_{j=1, \ldots, s} P_{j},
$$

with x_{1}, \ldots, x_{s} in sufficiently general position, then L is very ample if $s \leqq 6$ and L is spanned by global sections if $s=7$.

Partial answers to questions (1) and (2) are in [1] when $t_{1}=\cdots=t_{s}=1$, in [7] when $s=9$, in [9], [10], [11] when $h^{0}(L)=5$.

Note that in our paper we obtain again the very ampleness of

$$
L \equiv \pi^{*} O_{\mathbf{P}^{2}}(4)-\sum_{j=1, \ldots, 10} P_{j}
$$

which gives the Bordiga surface in \mathbf{P}^{4}, see [13], [6], [9].
Further applications of our results can be found in [8].
In Section 0 we explain our notation and collect background material.
In Section 1 we give a modified version of the Beauville-Reider theorem.

[^0]In Sections 2 and 3 we give sufficient conditions under which L is spanned or very ample.

The similar questions in the case of a ruled surface are examined in [2].
We would like to thank A. J. Sommese for very useful discussions.
0. Background material. (0.0) Let L be a line bundle on a smooth connected projective surface X. Let $M=L-K_{X}$, where K_{X} is the canonical line bundle on X.
(0.1) In order to simplify our notations we give the following definitions: Let X and L be as in (0.0).

1 . We say that L is " 0 -very ample" if L is spanned by global sections;
2. We say that L is " 1 -very ample" if L is very ample.

Theorem 0.2. Let X, L and M be as in (0.0). Assume that

1) M is big and nef
2) $M^{2} \geqq 5+4 i, i+0,1$
3) L is not i-very ample.

Then there is an effective divisor E on X such that

$$
M \cdot E-1-i \leqq E^{2}<M \cdot E / 2<1+i
$$

Proof. See [12, Theorem 1, pg. 310].

1. Some implications of Reider's method. (1.0) Let L be a line bundle on a smooth connected projective surface X. Let $M=L-K_{X}$.

Definition 1.0.1. For every $m \in \mathbf{N}$, denote by \mathcal{D}_{m} the set of all divisors $E \subseteq X$, such that $E \not \equiv 0$ and $m E$ is effective. Moreover we set

$$
\mathcal{D}=\bigcup_{m \in \mathbf{N}} \mathcal{D}_{m} \quad \text { and } \quad \mathcal{D}_{M}=\left\{E \in \mathcal{D}_{1} \mid M-2 E \in \mathcal{D}\right\} .
$$

Theorem 1.1. (Reider): Let:

1) $M \in \mathcal{D}$
2) $M^{2} \geqq 5+4 i$
3) $(M-E) \cdot E \geqq 2+i \quad$ for any $E \in \mathcal{D}_{M}$ and $i=0,1$.

Then L is i-very ample.
Proof. This is essentially the same as in Theorem (0.2).
(1.2) Let $E \in \mathcal{D}_{1}$. Then $E=E_{1}+\cdots+E_{k}$ where $E_{j}, j=1, \ldots, k$ are all the irreducible and reduced components of E. Denote by $\mathcal{E}_{i}, i=0,1$, the set of all $E \in \mathcal{D}_{1}$ such that either $k=1$ or if $k \geqq 2$ then the following inequalities must be satisfied

$$
\begin{equation*}
\sum_{j=1, \ldots, k} E_{j} \cdot\left(E-E_{j}\right) \geqq(K-1)(2+i)+1 \tag{1.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{\prime} \cdot E^{\prime \prime} \geqq 2 \quad \text { if } E=E^{\prime}+E^{\prime \prime} \text { and } E^{\prime}, E^{\prime \prime} \in \mathcal{D}_{1} \tag{1.2.2}
\end{equation*}
$$

Lemma 1.2.3. If any $E \in \mathcal{E}_{i} \cap \mathcal{D}_{M}, i=0,1$, verify the inequality
(1.2.4) $\quad(M-E) \cdot E \geqq 2+i$
then (1.2.4) holds also for any $E \in \mathcal{D}_{M}$.
Proof. Let $E=E_{1}+\cdots+E_{k} \in \mathcal{D}_{M}$. where $E_{j}, j=1, \ldots, k$, are all the irreducible and reduced components of E. Then $E_{j} \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$. Assume that $E \notin \mathcal{F}_{i}$. Then $k \geqq 2$. If (1.2.1) is not satisfied then

$$
\begin{aligned}
(M-E) \cdot E & =\sum_{j=1, \ldots, k}\left(M-E_{j}\right) \cdot E_{j}-\sum_{j=1, \ldots, k} E_{j} \cdot\left(E-E_{j}\right) \\
& \geqq k(2+i)-(k+1)(2+i) \geqq 2+i, \quad i=0,1,
\end{aligned}
$$

i.e., (1.2.4) holds. Assume now that (1.2.2) does not hold. We proceed by induction on k. Let $k=2$. If (1.2.1) is not satisfied then we are in the above case and thus (1.2.4) holds. Suppose that (1.2.1) is satisfied. Since for $k=2$ (1.2.1) implies (1.2.2) then (1.2.4) is satisfied by assumption. We now assume that for any $k^{\prime} \leqq k-1$ the statement is true. Since (1.2.2) is not satisfied there are $E^{\prime}, E^{\prime \prime} \in \mathcal{D}_{1}$ such that $E^{\prime}+E^{\prime \prime}=E=E_{1}+\cdots+E_{k}$ and $E^{\prime} \cdot E^{\prime \prime} \leqq 1$. Then E^{\prime} and $E^{\prime \prime}$ satisfy (1.2.4) and we have

$$
(M-E) \cdot E=\left(M-E^{\prime}\right) \cdot E^{\prime}+\left(M-E^{\prime \prime}\right) \cdot E^{\prime \prime}-2 E^{\prime} \cdot E^{\prime \prime} \geqq 2+2 i .
$$

Thus E satisfies (1.2.4).
Lemma 1.3. Let $E \in \mathcal{E}_{i}, i=0,1$. Then $g(E) \geqq 0$, where

$$
g(E)=1+\left(E+K_{X}\right) \cdot E / 2
$$

Proof. Let $E=E_{1}+\cdots+E_{k} \in \mathcal{D}_{1}$ where $E_{j}, j=1, \ldots, k$ are all the irreducible and reduced components of E. Assume that $g(E)<0$. Then $k \geqq 2$. Moreover, since

$$
g(E)=\sum_{j=1, \ldots, k} g\left(E_{j}\right)-(k-1)+1 / 2 \sum_{j=1, \ldots, k} E_{j} \cdot\left(E-E_{j}\right)
$$

where $g\left(E_{j}\right) \geqq 0$ we have

$$
\sum_{j=1, \ldots, k} E_{j} \cdot\left(E-E_{j}\right)<2(k-1) \leqq(k-1)(2+i)
$$

which implies $E \notin \mathcal{E}_{i}$. Thus we have a contradiction.
Remark 1.3.1. Let $E \in \mathcal{D}_{1}$. Then

1) $(M-E) \cdot E=L \cdot E-2 g(E)+2$
2) If $g(E)=0$ then $E \in \mathcal{E}_{i}$ if and only if E is smooth. Moreover if L is i-very ample then $L \cdot E \geqq i$.

Lemma 1.3.2. Let $E \in \mathcal{D}_{M}, g(E)=1$ and L be very ample. Then $L \cdot E \geqq 3$.
Proof. Since L is very ample then $L \cdot E \geqq$. If $L \cdot E=1$ then E is a line relative to L while if $L \cdot E=2$ then E is a conic relative to L. In both cases we have a contradiction since $g(E)=1$.
(1.4) Let $E \in \mathcal{D}_{M}$. Since

$$
\begin{equation*}
M^{2}=4 E \cdot(M-E)+(M-2 E)^{2} \tag{1.4.1}
\end{equation*}
$$

then $E \cdot(M-E) \geqq 2+i$ if and only if $M^{2} \geqq 5+4 i+(M-2 E)^{2}$. Moreover from (1.4.1) assuming

$$
\left\{\begin{array}{l}
M^{2} \geqq 5+4 i \tag{1.4.2}\\
(M-E) \cdot E \leqq 1+i
\end{array}\right.
$$

then
(1.4.3) $\quad(M-2 E)^{2} \geqq 1$.

Lemma 1.4.4. Let $E \in \mathcal{D}_{M}, i=0,1$. Assume that

$$
\text { (1.4.5) } E^{2} \geqq 0 \text { and }(M-2 E) \cdot E \geqq 0 .
$$

and that (1.4.2) holds. Then one of the following is satisfied

1) $i=0, E^{2}=0, M \cdot E=1$
2) $i=1, E^{2}=0, M \cdot E=1,2$
3) $i=1, E^{2}=1, M \equiv 3 E$.

Proof. From (1.4.2) and (1.4.5) it follows that

$$
0 \leqq E \cdot(M-2 E) \leqq 1+i-E^{2}
$$

which combined with Hodge Index Theorem, (1.4.5) and (1.4.3) gives

$$
\begin{equation*}
E^{2} \leqq E^{2} \cdot(M-2 E)^{2} \leqq(E \cdot(M-2 E))^{2} \leqq\left(1+i-E^{2}\right)^{2} \tag{1.4.6}
\end{equation*}
$$

Moreover
(1.4.7) $\quad M \cdot E>2 E^{2}$.

In fact if $M \cdot E=2 E^{2}$ then, by Hodge Index Theorem, $M-2 E \equiv \lambda E$ for some $\lambda \in \mathbf{Q}$. Thus $E^{2}=0$ and again, by Hodge Index Theorem, we get $M \equiv \mu E$ for some $\mu \in \mathbf{Q}$. Thus $M^{2}=0$ which contradicts (1.4.2). Applying now (1.4.6) and (1.4.7) we get the statement.

Lemma 1.4.8. Let $M^{2} \geqq 5+4 i$ and let $E^{2} \geqq-1$ for any $E \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$ such that $g(E)=0$. If there is $E \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$ such that $g(E)=1, E^{2}=0$ and $1 \leqq M \cdot E \leqq 1+i$, then L is not i-very ample.

Proof. We have

$$
M \cdot E=(M-E) \cdot E=L \cdot E-2 g(E)+2=L \cdot E .
$$

If $i=1$ the statement follows from (1.3.2). If $i=0$ then $M \cdot E=L \cdot E=1$. Let

$$
E=E_{1}+\cdots+E_{k} \in \mathcal{E}_{i} \cap \mathcal{D}_{M},
$$

where $E_{j}, j=1, \ldots, k$ are all the irreducible and reduced components of E. We study the two cases $k=1$ and $k \geqq 2$. Let $k=1$. If E is smooth it follows immediately that L is not spanned. If E is not smooth then there is a singular point $P \in E$. Since if P is a base point we are done, we can suppose that P is not a base point. We have

$$
\operatorname{dim}|L-P|=\operatorname{dim}|L|-1
$$

Furthermore $D^{\prime} . E \geqq 2$ for any $D^{\prime} \in|L-P|$. Hence $|L-P|=|L-E|$. If $D \in|L|-|L-P|$ then $Q \in D \cap E$ is a base point. Thus also in this case L is not spanned. Let $k \geqq 2$. Since

$$
\begin{aligned}
1=g(E) & =\sum_{j=1, \ldots, k} g\left(E_{k}\right)-(k-1)+1 / 2 \sum_{t=1, \ldots, k} E_{t} \cdot\left(E-E_{t}\right) \\
& \geqq \sum_{t=1, \ldots, k} g\left(E_{t}\right)+1
\end{aligned}
$$

then $g\left(E_{t}\right)=0$ for $t=1, \ldots, k$. Moreover

$$
0=E^{2}=\sum_{t=1, \ldots, k} E_{t}+\sum_{t=1, \ldots, k} E_{t} \cdot\left(E-E_{t}\right) \geqq-k+2 k=k>1
$$

which gives a contradiction.
2. Rational surfaces. (2.0) Let x_{1}, \ldots, x_{s} be distinct points on \mathbf{P}^{2}. Let π : $X \rightarrow \mathbf{P}^{2}$ expresses X as \mathbf{P}^{2} with x_{1}, \ldots, x_{s} blown up. Denote by $P_{j}=\pi^{-1}\left(x_{j}\right), j=$ $1, \ldots, s$ the corresponding exceptional curves. We set

$$
L=\pi^{*}\left(O_{\mathbf{P}^{2}}(d)\right) \otimes\left[P_{1}\right]^{-t_{1}} \otimes \cdots \otimes\left[P_{S}\right]^{-t_{s}} \quad \text { and } \quad M=L \otimes K_{X}
$$

where $t_{1}, \ldots, t_{S} \in \mathbf{N}$. Without loss of generality we can assume that $t_{1} \geqq \ldots \geqq$ t_{S}. If

$$
r \in\left|\pi^{*}\left(O_{\mathbf{P}^{2}}(1)\right)\right|
$$

then

$$
L \equiv d r-\sum_{j=1, \ldots, s} t_{j} P_{j} \quad \text { and } \quad M \equiv(d+3) r-\sum_{j=1, \ldots, s}\left(t_{j}+1\right) P_{j}
$$

Throughout the rest of the paper we will suppose X, L and M being as in (2.0).
Lemma 2.0.1. Let $M^{2}>0$ and $d \geqq 0$. Then $M \in \mathcal{D}$.
Proof. From the Riemann-Roch Theorem it follows that

$$
h^{0}(\alpha M) \geqq \chi\left(O_{X}\right)+(1 / 2)\left(\alpha^{2} M^{2}-\alpha M \cdot K_{X}\right)>0
$$

for $\alpha \gg 0$, since

$$
h^{2}(\alpha M)=h^{0}\left(K_{X}-\alpha M\right)=0
$$

(2.1) Denote by \mathcal{D}^{*} the set of all divisors

$$
E \equiv y r-\sum_{j=1, \ldots, s} \alpha_{j} P_{j}
$$

on X such that $y \geqq 0$ and $\alpha_{j} \leqq y$. Then $\mathcal{D}^{*} \supseteq \mathcal{D}$. Moreover if we write

$$
\mathcal{D}_{M}^{\prime}=\left\{E \in \mathcal{D}_{1} \mid M-2 E \in \mathcal{D}^{*}\right\}
$$

then $\mathcal{D}_{M}^{\prime} \supseteq \mathcal{D}_{M}$. Let now

$$
E \equiv y r-\sum_{j=1, \ldots, s} \alpha_{j} P_{j} \in \mathcal{E}_{i} \cap \mathcal{D}_{M}, i=0,1
$$

and let

$$
M-2 E \equiv x r-\sum_{j=1, \ldots, s} \lambda_{j} P_{j},
$$

i.e., $x=d+3-2 y, \lambda_{j}=t_{j}+1-2 \alpha_{j}$. Since $E, M-2 E \in \mathcal{D}^{*}$ then

$$
0 \leqq y \leqq(d+3) / 2 \quad \text { and } \quad\left(t_{j}+1-x\right) / 2 \leqq \alpha_{j} \leqq y
$$

Remark 2.1.1. In view of (1.4.3), if $M^{2} \geqq 5+4 i$ and if $(M-E) \cdot E \leqq 1+i$, then $x \geqq 1$.

Lemma 2.1.2. Let $M^{2} \geqq 5+4 i$ and let $E \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$ such that $E^{2} \geqq 0$. If $E \cdot(M-E) \leqq 1+i$ then one of the following is verified:

1) $i=0, E^{2}=0, M \cdot E=1$
2) $i=1, E^{2}=0, M \cdot E=1,2$
3) $i=1, E^{2}=1, M \equiv 3 E$.

Proof. By (1.4.4) we have to prove only that $E \cdot(M-2 E) \geqq 0$. If

$$
E \cdot(M-2 E)=x y-\sum_{j=1, \ldots, s} \alpha_{j} \lambda_{j}<0
$$

then from (1.4.3) it follows that

$$
\begin{aligned}
x^{2} y^{2}<\left(\sum_{j=1, \ldots, s} \alpha_{j} \lambda_{j}\right)^{2} & \leqq\left(\sum_{j=1, \ldots, s} \alpha_{j}^{2}\right)\left(\sum_{j=1, \ldots, s} \lambda_{j}^{2}\right) \\
& \leqq\left(y^{2}-E^{2}\right)\left(x^{2}-1\right)
\end{aligned}
$$

i.e.,

$$
0<E^{2}-E^{2} x^{2}-y^{2}=E^{2} x^{2}-\sum_{j=i, \ldots, s} \alpha_{j}^{2} \leqq 0
$$

Hence we get a contradiction.
Lemma 2.1.3. Let $M^{2} \geqq 5+4 i$ and let
(2.1.4) $\quad E_{M} \equiv[(d+3) / 2] r-\sum_{j=1, \ldots, s}\left[\left(t_{j}+1\right) / 2\right] P_{j}$.

If E_{M} is effective then

$$
\begin{equation*}
E_{M} \cdot\left(M-E_{M}\right) \geqq 2+i \tag{2.1.5}
\end{equation*}
$$

if and only if one of the following holds:

1) $M^{2} \geqq 6+4 i$
2) $d+3$ is even
3) if η is the number of $j \in\{1, \ldots, s\}$ such that t_{j} is even then $\eta \geqq 1$.

Proof. From (1.4.1) it follows that
(2.1.6) $\quad E_{M} \cdot\left(M-E_{M}\right)=(1 / 4)\left(M^{2}-\left(M-2 E_{M}\right)^{2}\right)$.

Let $h=d+3-2[(d+3) / 2]$ then

$$
\begin{equation*}
\left(M-2 E_{M}\right)^{2}=h-\eta \tag{2.1.7}
\end{equation*}
$$

Thus, using (2.1.6) and (2.1.7), it follows that (2.1.5) is satisfied if and only if at least one among 1), 2), and 3) holds.

Lemma 2.1.8. Let $M^{2} \geqq 5+4 i$ and let $x \geqq 1$. Consider

$$
E \equiv y r-\sum_{j=1, \ldots, s} \alpha_{j} P_{j} \in \mathcal{E}_{i}, i=0,1 .
$$

Then:

1) If $y=0$ then $\sum_{j=1, \ldots, s} \alpha_{j}=-1$ and $\alpha_{j} \leqq 0, j=1, \ldots, s$
2) If $y \geqq 1$ then $\alpha_{j} \geqq 0, j=1, \ldots, s$
3) If $y \geqq 2$ then $\alpha_{j} \leqq y-1, j=1, \ldots, s$
4) If $E \wedge \equiv y r-\sum_{j=1, \ldots, s} \beta_{j} P_{j}$ where $\beta_{j}=\operatorname{Min}\left\{\alpha_{j},\left(t_{j}+1\right) / 2\right\}$ then $E^{\wedge} \in \mathcal{E}_{i}$ and

$$
\begin{equation*}
E^{\wedge} \cdot\left(M-E^{\wedge}\right) \leqq E \cdot(M-E) \tag{2.1.9}
\end{equation*}
$$

Moreover if $(M-2 E) \in \mathcal{D}^{*}$ then also $\left(M-2 E^{\wedge}\right) \in \mathcal{D}^{*}$.
Proof. 1) Since E is effective and $E \neq 0$ then $\alpha_{j} \leqq 0$. Moreover if

$$
\sum_{j=1, \ldots, s} \alpha_{j} \leqq-2
$$

then $g(E)<0$ and from (1.3) it follows that $E \notin \mathcal{E}_{i} .2$) If $\alpha_{j}<0$ for some $j \in\{1, \ldots, s\}$ then $E_{1}=P_{j}$ and $E_{2}=E-E_{1}$ are effective divisors such that $E_{1} \cdot E_{2} \leqq O$ and again $E \notin \mathcal{E}_{i}$. 3) If $\alpha_{j}=y$ for some $j \in\{1, \ldots, s\}$ then $g(E)<0$ and therefore by (1.3) we have $E \notin \mathcal{E}_{i} .4$) It is easy to see that (2.1.9) is verified. It remains to prove that $E^{\wedge} \in \mathcal{E}_{i}$. If $\alpha_{j}=1$ for $j=\{1, \ldots, s\}$ then $\beta_{j}=\alpha_{j}$ and $E=E^{\wedge}$. Assume that $\alpha_{t} \geqq 2$ for some $t \in\{1, \ldots, s\}$ then:
(2.1.10) $E+P_{t} \in \mathcal{E}_{i}$.

To prove (2.1.10) we have to prove that $E+P_{t}$ satisfies (1.2.1) and (1.2.2). Let $E_{k+1}=P_{t}$ and $E=E_{1}+\cdots+E_{k}$. Then

$$
\begin{aligned}
\sum_{j=1, \ldots, k+1} E_{j} \cdot\left(E+P_{t}-E_{j}\right) & =\sum_{j=1, \ldots, k} E_{j} \cdot\left(E-E_{j}\right)+2 P_{t} \cdot E \\
& \geqq(k-1)(2+i)+1+2 \alpha_{t} \geqq k(2+i)+1 .
\end{aligned}
$$

Thus (1.2.1) is satisfied. Let E^{\prime} and $E^{\prime \prime}$ be effective divisors on X such that $E=E^{\prime}+E^{\prime \prime}$. To show that $E+P_{t}$ verifies (1.2.2) it is enough to prove that
(2.1.11) $\left(E^{\prime}+P_{t}\right) \cdot E^{\prime \prime} \geqq 2$.

If $E^{\prime \prime} \cdot P_{t} \geqq 0$ then (2.1.11) is verified since $E^{\prime} \cdot E \geqq 2$. Assume that $E^{\prime \prime} \cdot P_{t}<0$. Let $F^{\prime}=E^{\prime}+P_{t}$ and $F^{\prime \prime}=E^{\prime \prime}-P_{t}$. Then F^{\prime} and $F^{\prime \prime}$ are effective divisors such that $F^{\prime}+F^{\prime \prime}=E$ and therefore $F^{\prime} \cdot F^{\prime \prime} \geqq 2$ since $E \in \mathcal{E}_{i}$. We have

$$
\begin{aligned}
\left(E^{\prime}+P_{t}\right) \cdot E^{\prime \prime} & =F^{\prime} \cdot\left(F^{\prime \prime}+P_{t}\right)=F^{\prime} \cdot F^{\prime \prime}+F^{\prime} \cdot P_{t} \quad \text { and } \\
E^{\prime} \cdot P_{t} & =\alpha_{t}-E^{\prime \prime} \cdot P_{t}-1 \geqq 2
\end{aligned}
$$

Thus (2.1.11) is again verified and consequentelly (2.1.10) is satisfied too. By (2.1.10) and by induction on

$$
n=\sum_{j=1, \ldots, s}\left(\alpha_{j}-\beta_{j}\right),
$$

we obtain that $E^{\wedge} \in \mathcal{E}_{i}$. Moreover since

$$
\left(M-2 E^{\wedge}\right) \cdot P_{j}=\rho_{j}=t_{j}+1-2 \beta_{j}
$$

then

$$
\rho_{j}= \begin{cases}\lambda_{j} & \text { if }\left(t_{j}+1\right) / 2 \geqq \alpha_{j} \\ 1 & \text { if }\left(t_{j}+1\right) / 2<\alpha_{j} \text { and } t_{j} \text { is even } \\ 0 & \text { if }\left(t_{j}+1\right) / 2<\alpha_{j} \text { and } t_{j} \text { is odd. }\end{cases}
$$

It is easy to check that $\rho_{j} \leqq x$.
Denote by T_{i} the set of all

$$
E \equiv y r-\sum_{j=1, \ldots, s} \alpha_{j} P_{j} \in \mathcal{E}_{i} \cap \mathcal{D}_{M} \quad \text { such that } 1 \leqq y \leqq(d+2) / 2
$$

and

$$
\begin{aligned}
\operatorname{Max}\left\{0,\left(t_{j}+2 y-d-2\right) / 2\right\} & \leqq \alpha_{j} \\
& \leqq \begin{cases}1 & \text { if } y=1 \\
\operatorname{Min}\left\{y-1,\left(t_{j}+1\right) / 2\right\} & \text { if } y \geqq 2\end{cases}
\end{aligned}
$$

Theorem 2.2. Let $i=0,1$ and let:

1) $d \geqq 0$
2) $M^{2} \geqq 5+4 i$
3) $(M-E) \cdot E \geqq 2+i$ for any $E \in T_{i}$ such that $E^{2}<0$.

Then L is i-very ample unless there is $E \in T_{i}$ such that either $E^{2}=0$ and $1 \leqq M \cdot E \leqq 1+i$ or $i=1, E^{2}=1$ and $M \equiv 3 E$.

Proof. The theorem is a direct consequence of (1.1) and of (2.1.2). In fact since $d \geqq 0$ and $M^{2} \geqq 5+4 i$, by (2.0.1), we have $E \in \mathcal{D}$. Moreover applying
(1.2.3), (2.1.8) and (2.1.1), it follows that the condition 3) of (1.1) is satisfied if ($M-E$) $\cdot E \geqq 2+i$ for any $E \in T_{i}$. The theorem now follows applying (2.1.2).

Theorem 2.3. Let

1) $2 \geqq t_{1} \geqq \cdots \geqq t_{s}$
2) $M^{2} \geqq 5+4 i, i=0,1$

Then L is i-very ample if for any y such that $1 \leqq y \leqq(d+2) / 2$ and for any $D \in\left|O_{\mathbf{P}^{2}}(y)\right|$, the following in equality holds:

$$
\begin{equation*}
\sum_{j \in \wedge_{\Delta}} t_{j} \leqq y(d+3-y)-2-i \tag{2.3.1}
\end{equation*}
$$

where $\left.\wedge_{\Delta}=\left\{j \in[1, \ldots, s] \mid x_{j} \in D\right]\right\}$.
Proof. The statement follows easily from (2.2) and the fact that (2.3.1) is equivalent to

$$
\begin{equation*}
E \cdot(M-E) \geqq 2+i \tag{2.3.2}
\end{equation*}
$$

for any $E \equiv y r-\sum_{j=1, \ldots, s} \alpha_{j} P_{j}$ such that $1 \leqq y \leqq(d+2) / 2$ and $0 \leqq \alpha_{j} \leqq 1$.
Remark 2.3.3. When $t_{1}=\cdots=t_{s}=1$, the above theorem improves the result in [1]. In particular if $d=4$ we get that $L \equiv 4 r-\sum_{j=1, \ldots, s} P_{j}$ is i very ample if $s \leqq 11-i, i=0,1$. This bound is sharp (see [1]). Hence when $s=10, \phi_{L}$ embeds X in \mathbf{P}^{4} provided that at most 3,7 and 9 of the x_{j} lie respectively on a line, a conic and a cubic. In this case (X, L) is called "Bordiga Surface" (see [9], [10], [11], [6], [13]).

Theorem 2.4. If

$$
\begin{equation*}
d \geqq i+\sum_{j=1, \ldots, s} t_{j}, i=0,1 \tag{2.4.1}
\end{equation*}
$$

then L is i-very ample.
Proof. We have to proof that:

1) $M^{2} \geqq 5+4 i$
2) $(M-E) \cdot E \geqq 2+i$ for any $E \equiv y r-\sum_{j=1, \ldots, s} \alpha_{j} P_{j} \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$. If $s=0$ then (2.4.1) is trivially true. Assume that

$$
\sum_{j=1, \ldots, s} t_{j} \geqq s \geqq 1
$$

Since

$$
\begin{aligned}
M^{2}=(d+3)^{2}-\sum_{j=1, \ldots, s}\left(t_{j}+1\right)^{2} & \geqq(4+2 i) \sum_{j=1, \ldots, s} t_{j}+(3+i)^{2}-s \\
& \geqq(3+2 i) \sum_{j=1, \ldots, s} t_{j}+(3+i)^{2} \\
& \geqq 12+9 i>5+4 i,
\end{aligned}
$$

1) is proved. We want now to prove 2). We have

$$
(M-E) \cdot E=y(d+3-y)-\sum_{j=1, \ldots, s} \alpha_{j}\left(t_{j}+1-\alpha_{j}\right)
$$

If $y=0$ then $(M-E) \cdot E \geqq 3$. If $y=1,2$ then $0 \leqq \alpha_{j} \leqq 1$ and

$$
(M-E) \cdot E \geqq(y-1) \sum_{j=1, \ldots, s} t_{j}+y(3+i-y) \geqq 2+i
$$

Thus we assume $y \geqq 3$. If $y \geqq 3$ then by (2.1.8) we may assume

$$
\begin{aligned}
& \alpha_{j} \leqq \operatorname{Min}\left\{y-1,\left(t_{j}+1\right) / 2\right\}, j=1, \ldots, s \quad \text { and } \\
& (M-E) \cdot E \geqq-y^{2}+(3+i) y+\sum_{j=1, \ldots, s}\left(y t_{j}-\alpha_{j}\left(t_{j}+1 \alpha_{j}\right)\right)
\end{aligned}
$$

We need to consider two cases:
a) $\left(t_{j}+1\right) / 2<y-1$ and
b) $y-1 \leqq\left(t_{j}+1\right) / 2$.

In case a)

$$
y t_{j}-\alpha_{j}\left(t_{j}+1-\alpha_{j}\right) \geqq t_{j}\left(t_{j}+4\right) / 2-\left(\left(t_{j}+1\right) / 2\right)^{2}>0
$$

In case b)

$$
y t_{j}-\alpha_{j}\left(t_{j}+1-\alpha_{j}\right) \geqq y t_{j}-(y-1)\left(t_{j}+2-y\right)=y^{2}-3 y+2+t_{j}>0
$$

If $\left(t_{1}+1\right) / 2 \geqq y-1$, then

$$
\begin{aligned}
(M-E) \cdot E & \geqq-y^{2}+(3+i) y+y t_{1}-\alpha_{1}\left(t_{1}+1-\alpha_{1}\right) \\
& \geqq i y+2+t_{1} \geqq 2+i
\end{aligned}
$$

Assume now $\left(t_{1}+1\right) / 2<y-1$, then

$$
\left(t_{j}+4\right) / 2 \leqq y, j=1, \ldots, s
$$

By (2.1.1) we may assume $y \leqq(d+2) / 2$. Thus we have

$$
\begin{aligned}
(M-E) \cdot E & \geqq(d+4) y / 2-\sum_{j=1, \ldots, s}\left(\left(t_{j}+1\right) / 2\right)^{2} \\
& \geqq y(i+4) / 2+\left(\sum_{j=1, \ldots, s}\left(2 t_{j} y-\left(t_{j}+1\right)^{2}\right)\right) / 4 \\
& \geqq y(i+4) / 2+\left(\sum_{j=1, \ldots, s}\left(2 t_{j}-1\right)\right) / 4 \geqq 2+i
\end{aligned}
$$

Remark 2.4.2. The bound (2.4.1) is sharp. It can be improved only under the condition that not all the points $x_{j}, j=1, \ldots, s$, lie on a line.

Remark 2.4.3. We like to point out that the above theorem is very useful in the investigation of the existence of surfaces whose minimal model is \mathbf{P}^{2}, see [8]. However if

$$
d<i+\sum_{j=1, \ldots, s} t_{j}
$$

where $i=0,1$ in order to be able to answer to the question if L is i - very ample it is necessary a study of the position of the points x_{1}, \ldots, x_{s}. A contribution to this problem is given in the following section.

3. General position.

Definition 3.0. We say that x_{1}, \ldots, x_{s} are in general position with respect to L if for any $E \in\left|O_{\mathbf{p}^{2}}(y)\right|$ such that:

1) E is irreducible and reduced
2) $1 \leqq y \leqq(d+2) / 2$
3) $\mu_{j}\left(E_{j}\right) \leqq\left(t_{j}+1\right) / 2, i=1, \ldots, s$.

Then

$$
\begin{equation*}
(1 / 2) \sum_{j=1, \ldots, s} \mu_{j}(E)\left(\mu_{j}(E)+1\right) \leqq h^{0}(E)-1=y(y+3) / 2 \tag{3.0.1}
\end{equation*}
$$

where $\mu_{j}(E)$ denotes the multiplicity of E at x_{j}.
Remark 3.0.2. If $2 \geqq t_{1} \geqq \cdots \geqq t_{s}$ then $\mu_{j}(E) \leqq 1$ and (3.0.1) becomes

$$
\begin{equation*}
\sum_{j=1, \ldots, s} \mu_{j}(E) \leqq y(y+3) / 2 \tag{3.0.3}
\end{equation*}
$$

which means that there are no more than two points on a line, no more than five points on a conic, no more than nine points on a cubic, etc.

Lemma 3.1. Let x_{1}, \ldots, x_{s} be in general position with respect to L. Let

$$
E \equiv y r-\sum_{j=1, \ldots, s} \alpha_{j} P_{j} \in \mathcal{E}_{i}
$$

be such that $y \leqq(d+2) / 2$ and $\alpha_{j} \leqq\left(t_{j}+1\right) / 2, j=1, \ldots, s$. Then

$$
\begin{equation*}
(1 / 2) \sum_{j=1, \ldots, s} \alpha_{j}\left(\alpha_{j}+1\right) \leqq y(y+3) / 2 . \tag{3.1.1}
\end{equation*}
$$

Proof. If $y=0$ then

$$
\sum_{j=1, \ldots, s} \alpha_{j}=-1 \quad \text { and } \quad \alpha_{j} \leqq 0, j=1, \ldots, s
$$

hence (3.1.1) holds. Assume that $E=E_{1}+\cdots+E_{k}$, where $E_{t}, t=1, \ldots, k$ are all the irreducible and reduced components of E. Since $E_{t}, t=1, \ldots, k$ satisfies (3.1.1) we can assume $k \geqq 2$. We claim that also E verifies (3.1.1). In fact if E does not satisfies (3.1.1) we get a contradiction since

$$
\begin{aligned}
0>y(y+3) & -\sum_{j=1, \ldots, s} \alpha_{j}\left(\alpha_{j}+1\right)=\sum_{j=1, \ldots, k} E_{t} \cdot\left(E_{t}-K_{X}\right) \\
& +\sum_{j=1, \ldots, k} E_{t} \cdot\left(E-E_{t}\right) \geqq(k-1)(2+i) \geqq 2+i .
\end{aligned}
$$

Note. (3.1.1) is equivalent to
(3.1.2) $E \cdot\left(E-K_{X}\right) \geqq 0$.

Proposition 3.2. Let $M^{2} \geqq 5+4 i$ and let that x_{1}, \ldots, x_{s} be in general position with respect to L. Consider

$$
E \equiv y r-\sum_{j=1, \ldots, s} \alpha_{j} P_{j} \in \mathcal{E}_{i} \cap \mathcal{D}_{M}
$$

such that $g(E) \geqq$. If $E \cdot(M-E) \leqq 1+i$ then either $g(E)=1, E^{2}=0$ and $1 \leqq M \cdot E \leqq 1+i$ or $i=1, g(E) \leqq 2, E^{2}=1$ and $M \equiv 3 E$.

Proof. Since (3.1.2) and $g(E) \geqq 1$ imply that
3.2.1. $\quad E^{2} \geqq g(E)-1 \geqq 0$
the statement follows easily from (2.1.2).
Lemma (3.2.2) Let $M^{2} \geqq 5+4 i$ and let x_{1}, \ldots, x_{s} be in general position with respect to L. If there is an $E \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$ such that $g(E)=1, E^{2}=0$ and $1 \leqq M \cdot E \leqq 1+i$, then L is not i-very ample.

Proof. We have

$$
M \cdot E=(M-E) \cdot E=L \cdot E-2 g(E)+2=L \cdot E .
$$

Thus when $i=1$ the statement follows from (1.3.2). Assume that $i=0$. Then $M \cdot E-L \cdot E=1$. Moreover if there is $F \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$ with $g(F)=0$ then, since x_{1}, \ldots, x_{s} are in general position with respect to $L, F^{2} \geqq-1$. So the statement follows from (1.4.8).

Theorem 3.3. Let:

1) $M^{2} \geqq 5+4 i$
2) x_{1}, \ldots, x_{s} are in general position with respect to L
3) for any $E \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$ such that $g(E)=2$ then either $E^{2} \neq 1$ or $M \not \equiv 3 E$. Then L is i-very ample if and only iffor any $E \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$ such that $0 \leqq g(E) \leqq 1$ we have $L \cdot E \geqq 2 g(E)+i$.

Proof. The statement follows from (1.3.2), (3.2) and (3.2.2).
Theorem 3.4. Assume that:

1) x_{1}, \ldots, x_{s} are in general position with respect to L
2) $M^{2} \geqq 5+4 i, i=0,1$
3) for any $E \in \mathcal{E}_{i} \cap \mathcal{D}_{M}$ such that $g(E)=2$ either $E^{2} \neq 1$ or $M \not \equiv 3 E$.

Then L is i-very ample if $d \geqq 3 t_{1}+1$.
Proof. Assume that $d \geqq 3 t_{1}+1$ and that there is

$$
E \equiv y r-\sum_{j=1, \ldots, s} \alpha_{j} P_{j} \in \mathcal{E}_{i} \cap \mathcal{D}_{M}
$$

such that $g(E)=0,1$ and
(3.4.1) $L \cdot E \leqq 2 g(E)-1+i$.

Then $y \geqq 1$. Moreover by the general position hypothesis on x_{1}, \ldots, x_{s} it follows that
(3.4.2) $\quad E \cdot K_{X} \leqq g(E)-1 \leqq E^{2}$.

Therefore

$$
\left(L \cdot E+t_{1} E \cdot K_{X}\right)=y\left(d-3 t_{1}\right)+\sum_{j=1, \ldots, s} \alpha_{j}\left(t_{1}-t_{j}\right) \geqq y\left(d-3 t_{1}\right) .
$$

Combining (3.4.1) and (3.4.2) we get that

$$
\left(L \cdot E+t_{1} E \cdot K_{X}\right) \leqq\left(2+t_{1}\right)(g(E)-1)+1+i .
$$

Hence

$$
d \leqq 3 t_{1}+(A / y)
$$

where

$$
A=\left(2+t_{1}\right)(g(E)-1)+1+i .
$$

If $g(E)=0$ then $A<0$. If $g(E)=1$ then $y \geqq 3$ and $A=1+i$. In both cases we get $d \leqq 3 t_{1}$ which gives a contradiction.

Remark 3.4.1. Let X, L and M be as in Theorem (3.4). Assume that $t_{1} \leqq 2$. Then L is i-very ample if $d \geqq 7$. If $1 \leqq d \leqq 6$ a direct computation shows that L is i-very ample if it satisfies the conditions in the following table I :

i	d	L is i-very ample if
0,1	1	$p=0$ and $q \leqq 1-i$
0,1	2	$p \leqq 1-i, 1 \leqq 2-i$ if $p=1-i$
0,1	3	$p \leqq 1, q \leqq i-1$ if $p=2-i$
1	4	$p \leqq 1$
0	4	$p \leqq 4, q=0$ if $p=4$
1	5	$p \leqq 4$
0,1	6	$p \leqq 8-i, q \leqq i$ if $p=8-1$

where $p, q \in \mathbf{Z}_{+}$are such that $p+q=s$ and $t_{1}=\cdots=t_{p}=2, t_{p+1}=\cdots=$ $t_{s}=1$. Conversely if L is not as in table I, L is not i-very ample. (Remember that we are supposing $M^{2} \geqq 5+4 i$). For example, consider

$$
L_{i}=6 r-2 \sum_{j=1, \ldots, 7} P_{j}-(2-i) P_{8}-P_{9}, i=0,1
$$

and let

$$
E \equiv 3 r-\sum_{j=1, \ldots, 9} P_{j} \in \mathcal{D}_{1}
$$

Then $g(E)-1, L \cdot E=1+i, E^{2}=0$. Therefore, from (3.3) it follows that L_{i} is not i-very ample.

Note. After this paper was written, R. Weinfurtner, a student of K. Hulek, has generalized our results to the case of infinitesimally near points.

References

1. E. Bese, On the spannedness and very ampleness of certain line bundles on the blow-ups of \mathbf{P}^{2} and F_{r}, Math. Ann. 262 (1983), 225-238.
2. A. Biancofiore, On the hyperplane sections of ruled surfaces, Preprint.
3. A. Biancofiore and E. L. Livorni, On the iteration of the adjunction process in the study of rational surfaces, Ind. Univ. Math. J. 36 (1987), 167-188.
4. On the genus of a hyperplane section of a geometrically ruled surface, Annali di Mat. Pura ed Appl. (IV), 147 (1987), 173-185.
5. On the iteration of the adjunction process for surfaces of negative Kodaira dimension, Manuscripta Math. 64 (1989), 35-54.
6. G. Bordiga, La superficie del 6° ordine con 10 rette nello spazio R_{4} e le sue proiezioni nello spazio ordinrio, Rom. Acc. L. Mem. 3 (1887), 182-203.
7. C. Ciliberto and E. Sernesi, Curves on surfaces of degree $2 r-\delta$ in \mathbf{P}^{r}, Preprint.
8. E. L. Livorni, On the existence of some surfaces, Preprint.
9. C. Okonek, Moduli reflexiver garben und Flachen vom kleinen Grad in \mathbf{P}^{4}, Math.Z. 184 (1983), 549-572.
10. Uber 2-codimensionale Untermannigfaltigkeiten vom Grad 7 in \mathbf{P}^{4} und \mathbf{P}^{5}, Math. Z. 187 (1984), 209-219.
11. Flachen vom Grad 8 in \mathbf{P}^{4}, Math. Z. 191 (1986), 207-223.
12. I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. 127 (1988), 309-316.
13. T. G. Room, The geometry of determinantal loci (Cambridge University Press, 1938).
14. A. J. Sommese, Hyperplane sections of projective surfaces I. The adjunction mapping, Duke Math. J. 46 (1979), 377-401.
15. A.J. Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278 (1987), 593603.

Via Roma,
L'Aquila, Italy

[^0]: Received August 17, 1988. This research was partially supported by M.P.I. of the Italian Government.

