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On the Fourier—Jacobi expansion of
the unitary Kudla lift

Atsushi Murase and Takashi Sugano

ABSTRACT

We study a theta lift from a cusp form f on U(1,1) to a cusp form L£f on U(2,1)
(the unitary Kudla lift of f). We give an explicit expression of the Fourier—Jacobi
expansion of L f in terms of periods and Hecke eigenvalues of f. As an application, we give
a criterion for the nonvanishing of Lf.

1. Introduction

1.1 Let f be a holomorphic cusp form on U(1,1). In [Kud81], Kudla constructed a holomorphic
cusp form Lf on U(2,1) by integrating f against a theta kernel on U(2,1) x U(1,1) (see also
[Kud79]). Furthermore, he showed that Lf is a Hecke eigenform if so is f, and gave a relation
between an automorphic L-function of £f and that of f. The main object of the paper is to study
the Fourier—Jacobi expansion of £f. In particular, we show that the primitive components of Lf
are expressed in terms of certain U(1)-periods of f, and that nonprimitive components of Lf satisfy
certain recursion relations if f is a Hecke eigenform. As an application of these results, we obtain
a criterion for the nonvanishing of Lf (for a nonvanishing criterion in a representation theoretic
setting, we refer to [GRS97] and [Tan99]; see the remark after Main Theorem IIT in §1.4).

1.2 To be more precise, let K be an imaginary quadratic field of discriminant D. Let G = U(2,1) =
U(S) and H=U(1,1) = U(T), where

1/vD
S = s 1 , T:<_1 1).

As is well known, (G, H) forms a dual reductive pair. Let X be the set of Hecke characters x of K
satisfying X|@1§ = w, where w denotes the quadratic Hecke character of Q corresponding to K/Q.
For x € X, let wqo(X) be the integer such that X(2ee) = (200/|200|)*>™) for 2o, € KX = C*. Fix a
positive integer [ divisible by w(K), the number of roots of unity in K. We also fix a character yg € X
with ws(x0) = —1. The character x( determines a splitting M,, of metaplectic representations
of Ga x Ha on S(K%) ® S(Ka), where S(K3) denotes the space of Schwartz-Bruhat functions
on K;'. We then construct a theta kernel

0(g,h) = xg ' (det 9)xg2(deth) > My, (g x h)(®o © po)(X,€)
XeK? teK
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with a suitably chosen test function ®y ® ¢y € S(K3) ® S(Ka) depending on [. Let f be a
holomorphic cusp form on Ha of weight [ — 1, level D and character xo (cf. §3.3). Set

Cf(g) = /H L B0 (g€ G
o\Ha

The theta lift L£f was first studied by Kudla and we call Lf the wunitary Kudla lift of f.
Kudla showed the following [Kud79, Kud81]:

(1.1) Lf is a holomorphic cusp form on Ga of weight [ and level 1;
(1.2) if f is a Hecke eigenform, so is Lf.

He also gave a relation between an automorphic L-function of £f and that of f.

1.3 In [Shi79], Shintani investigated the theory of (refined) Fourier-Jacobi expansions of
automorphic forms on G. It should be noted that Piatetski-Shapiro independently developed a
similar theory from a more representation theoretic point of view (see [Pia80] and [BPR03]). In this
subsection, we briefly recall Shintani’s theory. For details, see §§4 and 5. Let R be an algebraic
subgroup of G given by

1 VDuw® z+ \/ﬁww”/Z 1
RQ:{(w,m)t:: 0 1 w t wEK,xEQ,tEKl},
0 0 1 1
where o stands for the nontrivial automorphism of K/Q and K = {t € K* | tt = 1}. Denote
by 1 the additive character of Qa /Q determined by ¥ (r~) = exp(27v —12s ) (200 € R). Let F be

a holomorphic cusp form on Ga of weight [ on Ky = [] G(Zy) (cf. §3.1). Then F admits the
Fourier—Jacobi expansion

p<oo

F(g)= > F™g) (g9€Ga)
meQ, m>0
where

F(g) = [Q o, MmO, 2)g) d

Let a be a nonzero fractional ideal of K and take an element oy of KK, s (the finite part
of K) corresponding to a (cf. §2.2). Let F7" be the function on Rg\Ra given by F"(r) = F™(r -
diag(a?,l,a}l)) (r € Ra). Let x € X with ws(x) = —1 and suppose that x satisfies certain
conditions on its Artin conductor and epsilon factor. Then there exists a nonzero theta function
O : Ro\Ra — C, which is primitive and an eigenfunction with respect to the action of U(1) with
eigenvalues determined by x (for a more precise statement, see §4.6). It is known that Oq'y 1s unique
up to constant multiples (see Theorem 4.4). For a fractional ideal b of K with b C a, put

Cr(0;0m ) = / F(r) 0 (r) dr-
Ro\Ra

We call {Cr(b; 0", ) | m,a,b,x} the Fourier—Jacobi components of F. If b = a, the Fourier—Jacobi
component Cr(a; 9’3&) is said to be primitive. In his pioneering work [Shi79], Shintani showed the
following results (cf. §5):

(1.3) F is completely determined by its Fourier—Jacobi components;

(1.4) Fis a Hecke eigenform if and only if, for each (m, a, x), {Cr(b;©",) | b C a} satisfies certain
recursion relations;

(1.5) assume that F' is a Hecke eigenform, then F' # 0 if and only if at least one of the primitive
components of F is nonzero.
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1.4 Let Lf be the unitary Kudla lift of a holomorphic cusp form f on Ha of weight [ — 1, level D
and character xo. Let (m,a, x) be as in §1.3. Set

Q?’f(h)Z/Kl\Kl (X/x0)" (") f(em(DR) d*t (b € Ha),

where 1, is an embedding of K' into H depending on m defined by (7.6) (for the definition of
(x/x0)}, see §2.5). The function W™ s on Ha can be seen as a spherical function for (U(1,1),U(1)).
We now state the main results of the paper.

MAIN THEOREM I (Theorem 7.5). The primitive Fourier—Jacobi components of Lf are given as
follows:

Ci(a;0¢" ) = c(m,a,x) - 1(OF) - J(m,a,x, f),

where ¢(m, a, x) is a nonzero explicit constant depending only on (m,a, ),

1emn) = /K oy OO

is the period of ©', and J(m,a, X, f) is a linear combination of W, (hj,m,a) with some hj o € Ha.
(Note that J(m,a,x, f) is a linear combination of ‘CM-values’ of f, see the remark in § 7.6.)

MAIN THEOREM II (Theorem 7.6). Suppose that f is a Hecke eigenform. Then, for each (m,a, x),

{Cyp(b;07",) | b C a} satisfies certain recursion relations. This implies that Lf is a Hecke eigenform
and L(Ef,{, s) = L(&;s)L(f,&; s) for a Hecke character £ of K (Corollary 7.7).

MAIN THEOREM III (Theorem 7.8). Suppose that f is a Hecke eigenform. Then Lf # 0 if and only
if there exists a triplet (m,a, x) such that L(x;1/2)J(m,a,x, f) # 0.

Remark. Tt should be noted that Gelbart, Rogawski and Soudry [GRS97] studied the nonvanishing
of a theta lift from U(2) to U(3) in a representation theoretic setting (see also [Tan99]). To be
more precise, let o = ), 0, be a cuspidal representation of U(2), and suppose that the theta lift
of o to U(1) is zero. Then they showed that the theta lift of o given by theta integrals is nonzero
precisely when the local Howe lift of each component o, is nonzero. On the other hand, our criterion
is concerned with the nonvanishing of the theta lift of an automorphic form (an element of the
space of the automorphic representation), and is derived from the study of the Fourier—Jacobi
expansion of the theta lift.

Remark. The inner product formula for the unitary Kudla lift has been given in [MS06].

1.5 The paper is organized as follows. The first five sections are of a preliminary nature.
After fixing the notation in §2, we define automorphic forms on U(1,1) and U(2,1) in §3. In §4,
we recall several fundamental properties of theta functions on R after Shintani’s work [Shi79]
and our preceding papers [MS00, MS02]. In § 5, we review Shintani’s theory of the Fourier—Jacobi
expansion of holomorphic automorphic forms on U(2,1) and reformulate Shintani’s result
mentioned above. In §6, we study metaplectic representations of U(2,1) x U(1,1). We use a
mixed model of the metaplectic representation, which is more convenient in the calculation of
the Fourier—Jacobi components than the Schrodinger model. The intertwining operator between
two models is given in §6.6. In §7, we define the unitary Kudla lift and state the main results of
the paper (Theorems 7.5, 7.6 and 7.8), whose proofs occupy the remaining sections. The key of the
proofs is Lemma 8.3, in which we use the properties of metaplectic representations in an essential
way. By using this, we obtain a formula relating the Fourier—Jacobi components of Lf to certain
integrals of spherical functions Wmf in § 8 (Proposition 8.4). Using this and the results of § 5, we give
another proof of (1.1) in §9. In § 10, we reduce the proof of Theorems 7.5 and 7.6 to the calculation
of certain local integrals introduced in this section (see Theorems 10.1 and 10.2). The calculations
are carried out in § 11 for the primitive case and in § 12 for the nonprimitive case.
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2. Notation

2.1 An index of notation is given in Table 1. As usual, Z,Q,R and C denote the ring of rational
integers, the rational number field, the field of real and complex numbers, respectively. For z € C
and m € Q, put e[z] = exp(2mv/—12) and e[z] = e[mz]. For a finite prime p, let Z, be the
p-adic integer ring and Q, the p-adic number field. We put Z; = Hp o0 Ly Let Qa denote the
adele ring of Q. For a prime v of Q, | - |, stands for the absolute value of Q;f. When v = p < o0,
the normalized additive valuation ord,: Q; — Z is given by |a|, = p~orde (g ¢ Q;')- We denote
by |ala = [1, |av|s the idéle norm of a = (a,), € Q1. Let ¢ be the additive character of Q4 /Q
satisfying (o) = €[] (T € R). For m € Q, we put ¢, (z) = ¥(ma) for x € Qa. Let 9,
(respectively ,,,) be the restriction of ¥ (respectively v,) to Q, for each prime v of Q.

Let X be a linear algebraic group defined over Q. For a prime v of Q, X, stands for the group
of Q,-rational points of X. Denote by XA and X, ; the adélization of X and its finite part,
respectively.

Let diag(aq,...,ay,) be the diagonal matrix of degree n with the ith diagonal component a; for
i=1,...,n. For x € R, we write [z] for the integer with 0 < x — [z] < 1. If P is a condition, we put
d(P) = 1if P holds, and 6(P) = 0 otherwise. For a set C, charc denotes the characteristic function
of C.

2.2 Let K be an imaginary quadratic field of discriminant D with integer ring Ox. We fix an
embedding of K into C and let x = v/D so that Im(x) > 0. Denote by o the nontrivial automorphism
of K/Q. For z € K, we write Tr(z) and N(z) for Trgg(2) = 2+27 and Ng/g(2) = 227, respectively,
if there is no fear of confusion. We put ¢ x(z) = ¥(Tr(z)) (2 € Ka). For a prime v of Q, let
K, = K®qQ,. For a finite prime p, put Og, = Ox ®zZ,. We set Ok s = Hp<oo Ok p- By an ideal
of K, we always mean a nonzero fractional ideal of K. For an ideal a of K and a finite prime p,
we put a, = a ®o, Ok p. Let ay = a ®o, O, r = Hp<oo ap. For o = aay € KX, we denote
by id(c) the ideal a of K determined by af = afOk . Let K' = {t € K* | 1t = 1}. We put
(’)}Qf = K}."f N (’)ngf = Hp<oo O}{p where O}f,p = K; N (’)ngp. When p splits in K/Q, we fix an
identification K, with Q, ® Q,, and put II,; = (p,1) and II,» = (1,p). When p ramifies in K/Q
(namely p|D), we fix a prime element II, of K, and put m, = N(II,). When p is inert or splits in
K/Q, we take and fix a prime element 7, of Q,,.

Let 6 be an element of Of such that Ox = Z + 70,0 — §° = x and ord, Ng/g(0) = 1 for every
p ramified in K/Q. For example, we can take 6 as

_ D'+VD D,_{D if D is odd,

0
2 D/2 if D is even.

For A € M, ,(K),put A* ='A%. Let A € M,,(K)be a hermitian (respectively an anti-hermitian)
matrix of degree n, namely A* = A (respectively A* = —A). Let W = K™ be the K-vector space
of column vectors of dimension n coefficients in K. For w,w’ € W, we put A(w,w’) = w*Aw’
and Alw| = A(w,w). If A is anti-hermitian, we define an alternating Q-form (-,-)4 on W by
(w,w') 4 = Tr(w* Aw') (w,w’ € W).

For a prime v of QQ, we denote by S(K") the space of Schwartz-Bruhat functions on K.

2.3 Let
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TABLE 1. Index of notation.

Notation

2.1
2.2
2.3

24
2.5
3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
5.1
5.2
6.2
6.3
6.4
6.5
6.6
7.1
7.2
7.3
7.4
7.6
8.3
9.1
9.2
9.3
9.4
10.1
10.2
10.3

e[z]vem[zLd))ﬂ)m)vav [x]vé(P)v(jharC
K, D, OK, K,O, TI‘(Z), N(Z), ¢K(Z), K,, OKJ,, OKJ, Op, Of, id(a), 1, O}(’p, O%(,f’ 0
S7 T7 GJ H7 ]Cpaup7u{77 ]Cf7uf7u}‘7 Da J7 ,C0075/j7j7 dG(CL, t)a dG(CL), ('U), IL'), N7 RJ A7
nH(x)yﬁH(x)de(a)vw())NHvAH
dzy, dzy, doz, dv, dz,d* a, h(K'), w(K)
XvwvaO(X)7Xv7£1
A,(Ky), &1(Kys), Vi, &1 (Kp; Q271)
HY, L(&;5), L(F,&; 5)
5(;0,])75507]'/7Al—l(“})i(])vSl—l(“})i())vSl—l(“})iO;XOQ)
HIELHEL(f, &5 5)
T, r
L,V Vg, Vi Vi, p™
)‘Ku (wm,v)a Mg?m

v T
Tk TR T
N(Cl)f, R(Cl)f, Tm(a)7 T{S)l(a% Thmol(a7 X)? Pflﬂ T{S)Lprim(a)? T{S)Lprim(aﬂ X)
Ap(X)7‘I§p7€(S7X71/}m,Kp)7,u‘p(m7 a)aép
Xprim (M, @), X;im (m,a),&
R(a)
o
Io(r),1(©),C(x)
FmoETm
OF(b7®g,Lx)
HT,g®h
NTyNTypTva
M;IQO’M;E)
Z’? ﬁT?M§O7I
0.5 0,p, P0,005 0,00, o, 0
M .0
Lf
nmyHnmal'm

f
COO7 Cp, E(X)7 w67 B(X7 6)7 J(m7 a7 X7 f)
W (k)
Cm
k(x)
7, 2s.. (W, T)
Xunr(K1)7Wm(X)7Wm(X; XQQ),Tm(Cl,X),Ib(VV, T)
7)0756(X)
C=(H/U',X0), 9"

https://doi.org/10.1112/50010437X06002491 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002491

A. MURASE AND T. SUGANO

Then S (respectively \/—1_1T) is a hermitian matrix of signature (2,1) (respectively (1,1)).
Denote by G and H the unitary groups of S and T, respectively. By definition, Gg = {g € GL3(K) |
g*Sg =S} and Hy = {h € GL2(K) | h*Th =T'}. We put

b
Kp = GpNGL3(Okp), Uy = HyNGLa(Okp), Uy = { (Z‘ d> <t

cEc DOK,p}'

Then IC,, (respectively U;,) is a maximal open compact subgroup of G, (respectively H),), and U, is
an open subgroup of U,. Note that U, = LIZ’) unless p|D. We set

Ke=T[Kp U=t uj=1]1]u.

p<oo p<oo p<oo

o-{(7)ec

be a hermitian symmetric domain isomorphic to the complex two ball. The real points G of G
acts on D as follows. For g € G and Z = *(z,w) € D, there exist g(Z) € D and J(g,Z) € C*
such that g - Z~ = J(g,2) - (9(Z)); where Z~ = '(2,w,1) € C3. Then (g,2) — g¢(Z) defines a
holomorphic action of Go, on D and J: Go X D — C* is a holomorphic automorphic factor.
Let Koo = {9 € G | 90{Z0) = Zp} be the stabilizer of Zy = *(k/2,0) € D in Gw. It is known that
Koo = Goo NU(Sp) with Sy = diag(—2/D,1,1/2).

We define the action of Hy, on the upper half plane § = {z € C | Im(z) > 0} and the
holomorphic automorphic factor j: Hy X $ — C* in a usual way:

Let

Z_Z—w@>0}

az+b .
h<Z>—m, ](h,Z)—CZ“‘d
for h = (‘; g) € Hy and z € $. Denote by Uy, the stabilizer of zg = v/—1 € $ in H..

We put dg(a,t) = diag(a”,t,a™!) and dg(a) = dg(a, 1) for a € K*,t € K, and

1 kw? x+ gww"
(w,x) = 1 w (we K,z €Q).
1

Note that (w,z)(w',2') = (w+w',z+2'+ 3 (w,w'),) and dg(a, t)- (w,z)-dg (a, t) 7! = (atw, N(a)z),
where (w,w"),, = Tr(kw?w’). We write nt for n - dg(1,¢) if there is no fear of confusion (the scalar
matrix diag(t,¢,t) is always denoted by t13 throughout the paper). Define subgroups N, R and A
of G by Ng = {(w,z) |w € K,z € Q}, Ry = {nt|n € Ng,t € K'} and Ag = {dg(a) | a € K*}.
We see that N, N K, = {(w,z + z4) | w € Ok p,x € Zy}, where x,, = 271 Trww’ (w € K).

Put
o) = (5 7). m@=(; ) we@

_f(a® 0 % - 01
an@ = (g L) wern w=( ().
Define subgroups N and A" of H by N = {ng(z) |z € Q} and A = {dy(a) | a € K*}.

We have the Iwasawa decompositions:

and

Ga = RAAAK Ko, Ha =N AJUU..
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2.4 In this subsection, we normalize Haar measures on various groups. Let v be a prime of Q.
Let dz, be the Haar measure on Q, self-dual with respect to the pairing (z,,2)) — ¥, (x,2)).
Note that pr dr, = 1 for p < oo and that dz,, is the usual Lebesgue measure on R. Let dz,

be the Haar measure on K, self-dual with respect to the pairing (z,,2]) — ¥k (z9z)). Note that

fOK dz, = |D|Il,/2 and dzoo = 2d12zo, Where dpzo is the usual Lebesgue measure on C. For an
sP

ideal a of K, dqz stands for the Haar measure on K, normalized by vol(a) = 1.

Let dr = [[,dx, and dz = [],dz,. Then dz and dz are the Haar measures on Qa and Ka
with vol(Q\Qa) = 1 and vol(K\Ka) = 1, respectively. Let d*a =[], d*a, be the Haar measure
on K, where d*a, is the Haar measure on K, normalized by vol((’)[XQD) =1if v =p < o0, and

d*Goe = daos/ N(as). Let d*t = ], d*t, be the Haar measure on K}v where d*t, is the Haar
measure on K! normalized by VOI(O}(’I)) =1ifv=p< oo, and vol(KL) = 1 if v = 0o. Under this
normalization, we have vol(K1\K}) = h(K"')/w(K), where h(K') = #(KI\K}A/KOIO(’)}{J) is the
class number of K' and w(K) is the number of roots of unity in K.

The Haar measures on N, and R, are given as follows:
dnv - dwv dxv (nv - ('LUU,IL’U),’LUU € Kvaxv € @U)7
dry = dn,d*t, (ry =nyty,ny € Ny, t, € K.
When v = p < oo, we normalize Haar measures dg, and dh, on G, and H), by

/dgpzl, /dhpzl.
K U,

P P

When v = 0o, we normalize Haar measures dg., and dhs, on Go, and Hy, by
/ B(goo) dgoe — / / / N (000) | 220 (oo s (o0 Vo) dbise ¥ e droe (B € LH(Gio)
and

[ ethaddne = [ [ ] NG 2l @) e div s i (p € L (),

Here dko (respectively dus) is normalized by vol(K) = 1 (respectively vol(Us) = 1). Finally, let
dn = 1], dny,dr =[], dry,dg = [[,dg, and dh = [], dh, be the Haar measures on Na, Ra,Ga
and Ha, respectively.

2.5 Let X be the set of unitary Hecke characters x of K satisfying X‘@X = w, where w = wg/qg is

the quadratic Hecke character of Q corresponding to K/Q. For xy € X, let wo(x) be the integer
such that y(2so) = (Zoo/|200|)V>W) for zo € KX. Note that we(x) is always odd. For a prime
v of Q, let X, be the set of the set of unitary characters x of K with X‘fo = w,. For a Hecke

character £ of K trivial on Q}, we define a character &' of K /K by £!(27/2) = £(z2) (z € KJ).

3. Automorphic forms on U(2,1) and U(1,1)

3.1 Automorphic forms on U(2,1)

We henceforth fix a positive integer [ divisible by w(K). We first recall the definition of holomorphic
automorphic forms on G = U(S). Let 2;(K¢) be the space of smooth functions F on Gg\Ga
satisfying:

(i) F(gkkoo) = J(koo, Zo)'F(g) (9 € Ga,ky € Ky, koo € Koo);
(ii) for any gy € Ga.f, 9oo(Z0) — J(goos Z0) F (g1 goo) is holomorphic on D.

7
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Denote by &;(K) the space of F' € 2;(Ky¢) satisfying
| g i =0 (geGa).
Q\Qa

We call ;(Ks) (respectively &;(Ky)) the space of holomorphic automorphic forms (respectively
holomorphic cusp forms) of weight [ on ICy. It is known that F' € &;(Ky) is bounded on Ga.

Let ) be the set of unitary characters Q of K} /K satisfying Q\O% L= 1 and Q(zs) = 2., for

Zoo € KL . For Q € Y, let &,(Kf;Q271) be the space of ' € &;(K ) satisfying F(t13-g) = Q™1 (t)F(g)
for t € K. We then have &,(Ky) = Dacy, Gi(Ky; Q-h.

3.2 Hecke operators and L-functions for U (2,1)

For p < oo, let HE = H(Gp,K,) be the Hecke algebra of (G, K,). By definition, HE is the space
of compactly supported bi-K,-invariant functions on Gy, and the product is given by

(@ xd')(g) = / O(gz "' (z)dz (2,9 € HY).
Gy
The C-algebra Hg acts on &;(Kz; Q1) by
(F % ®)(g) = / FlgrY)o(x)de (F € &,(K;071), @ e HE).
Gp
The following facts are elementary (cf. [Shi79, Lemma 2] and [Kud81, p. 333]).
LEMMA 3.1. Let F € &;(Kz; Q7).
(i) Suppose that p is inert in K/Q. Then we have HS = C[®1,] with ®1, = charg g, (yk, and
(Fx®1,)(9) =Flgda(p™ )+ >, F(g(0,p ')
x€(ZLp—pLp)/pLyp

+ Z Z F(g(w,z + x)da(p))-

WEOK 5 /POK,p €Ly [P*Lp

(ii) Suppose that p ramifies in K /Q and let II be a prime element of K,,. Then we have Hf = C[P1,)
with @1, = charg q, @k, and

(Fx®1,)(9) = Flgda(IT)) + > F(g( " w, zpy-1,,))
’wE(OK’p—HOK’p)/HOK,p

+ Z Z F(g(w, x4 x,)dg(ID)).

wEOK,p /MO p xE€Ly [pLy

(iii) Suppose that p splits in K/Q and put II; = (p,1) and Iy = (1,p). Then we have HIC,; =
(C[q)l’p, q)g,p, q):t ], where q)i,p = Char/deg(Hi)/Cp (’L = 1, 2), q)(:;:,p = Charlcp(ﬂl/l_[g)illglcp7 and

0,p
(Fx®ip)(9) = Flgda(I; )+ > Fglw,zy)(IL;/17))
weOK p/T;OK
+ Y Flg(w,x +2,)de(l?)) (i=1,2),

'LUEOK’p/H?OKVP xEZp/pr
(F+®7 )(g) = Flg- (I /o)1) (= QI /112) F(g)).

If, for every p < oo, there exists a C-algebra homomorphism A,, of HI(,; to C such that F « ® =
A, (®)F holds for any ® € HI(,;, we say that F'is a Hecke eigenform with eigenvalues {A,}.

8
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Let F € &;(Ks;Q7!) be a Hecke eigenform with eigenvalues {A,} and ¢ a Hecke character of K.
Let L(&; s) = [[)<o0 Lp(&; s) be the Hecke L-function of {. We define an L-function

L(F,&s) = [ Lo(F.& ),
p<oo
where the local factor L, (F,&;s) is given as follows.
(i) If pis inert in K/Q, put
Ly(F,& s) = Ly(& 5)Qp(&(0)p™ ) 7,
where
Qp(X) =1 —p {Ay(P1,) —p+ 1}X + X2
(Here we make a convention that &,(p) = 0 if £| 0%, # 1. We follow a similar convention in the
later discussions.)
(ii) If p ramifies in K/Q, put
Ly(F,&s) = Ly(& 8)Qp(&(Mp~) 7,
where
Qp(X) =1 —p H{Ay(P1) —p+ 1}X + X2
(iii) If p splits in K/Q, put
Ly(F,& s) = Qup(&1)p~") 7' Qap(&2)p™")
where
Qi p(X) =1 —p_lAgX +p_1eA1X2 — eX?’,
Qap(X) =1—p "M X +p e 1A X? — X7,
with Aj = Ay(®ip) (i =1,2) and € = Ay (D7,) = Qp (11 /T12).

3.3 Automorphic forms on U(1,1)

We next recall the definition of automorphic forms on H = U(T). In what follows, we fix once and
for all an element xo of X with we(x0) = —1 (cf. §2.5). Foru= (24) € Uy, put

= Xop(a) if € pOk p,
Xo,p(u) = ! P
Xo,p(c) otherwise.
Note that ¢ € O[X<,p if ¢  pOk .

LEMMA 3.2. For any p < 00, Xo, Is a character ofuz’,.

Proof. The lemma is easily verified when p|D. Suppose that p fD. For u € Z/l; = Uy, there exists a

ty € Of p such that detu = 17 /t,. It is straightforward to see that Xop(u) = Xq, ;(tu), from which
the lemma follows. O

Define a character Xo of U} by Xo =[], Xop and put
3 (hoo, 2) = det h - j(hoo, 2)  (heo € Hoo, 2 € $).

Let Al_l(U},io) be the space of smooth functions f on Hg\Ha satisfying the following three
conditions:

(i) f(hufuce) = j'(toos 20)' ' Xo(uyp) f(h) (h € Ha,up € Up, oo € Uno);
9
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(ii) for any hy € Ha s, hoo(20) — 5'(hoos 20) 7L f(hheo) is holomorphic on $;

(iii) f is holomorphic at each cusp.

We denote by S;—1(U}, Xo) the space of f € A1 (U}, Xo) satisfying

/ Fag(x)h)dz =0 (he Hy).
Q\Qa

We call Al_l(U},io) (respectively Sl_l(u},yo)) the space of holomorphic automorphic forms
(respectively holomorphic cusp forms) of weight | — 1 on Z/{J’c of character Xg. It is known that
f € S1-1(U}, Xo) is bounded on Ha.

As in §3.1, we have Sl_l(l/l},io) = @Qeyl Sl_l(U},ZO;XOQ), where Sl_l(U},ZO;XOQ) is the
space of f € Sl_l(Z/{},io) satisfying f(tla-h) = (xoQ)(t) f(h) for t € K.

3.4 Hecke operators and L-functions for U (1,1)

For p < oo, let ﬁf = H(Hp,Uy; Xo,p) be the space of compactly supported functions ¢ on H),
satisfying ¢(ujhus) = Xo,p(ulz@)(b(h) (h € Hy,u1,uz € Uy). Then ﬁ{,{ forms a C-algebra with the
product

(@5 ) =volt) " [ ol @) de (0. € FYLh e I

and acts on Sl_l(l/{}, X0; x0f2) by

(f * ¢)(h) = vol ()™ . f(ha () de (f € Si-1 U}, Xoi xo2), ¢ € Hy).

First suppose that p is inert in K/Q. Then ﬁf = Cl[¢1 ], where ¢y, is the element of ﬁf
satisfying Supp ¢1, C U, du (p)U, and ¢1 ,(du(p)) = Xa;(p) =—1.

Next suppose that p splits in K/Q. Then ﬁf = C[¢1,p,¢27p,¢({p], where ngLp,(bQ,p,ngin are
the elements of ﬁ{,{ satisfying Supp ¢;, C Updpy (11U, ¢4 p(du(11;)) = XE;( ;) and Supp qﬁafp C
Uydy (T /T) =), = Uy (11 /Hgi¢112,¢§p(dH((H1 /T)*h)) = xo,p((Hl /TI5)*1). We note that
Drp * (;Sg’p = ¢2,. In both cases, H;I is commutative and we set Hf Hf.

Finally, suppose that p ramifies in K/Q. In this case, ﬁf is not commutative in general. Let gbf,:
be the elements of ﬁf Eatisfying Supp ¢ C Ujdpy (IIF1)U), and ¢y (dp () = Xall,(Hil). We let
Hf the subalgebra of Hf generated by (b; + ¢, . Then H;I is commutative.

LEMMA 3.3. Let f € Sl_l(u},io; XoQ).
(i) Suppose that p is inert in K/Q. Then we have
(f % ¢1p)(h) = —f(hdu(p™")) - > f(ng(p~'z)) = Y f(hmg(z)da(p)).

x€(Zp—pLp)/PLp €Ly [p?Lp

(ii) Suppose that p ramifies in K/Q. Then

(f(of +0,)) () = xop@) D f(hig(Dx)dy(T)+x0,(T) Y f(hng(z)dg(ID)).

z€Lp /pLyp x€ZLp /Ly

10
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(iii) Suppose that p splits in K/Q. Then we have

(f * drp)(h) = x5 M(IT >{f<hdH £ Y fmp dH<H2>>}
TE€Lp/PLyp

<f*¢2,p><h>:xa,;mz){f(hdH LY+ Y S dH<H1>>}
T€Zp [Py

(f * ¢5,) (h) = xgp (M1 /TIo) ™) - f(hd g (T /TIo)Th) (= Q7 (1 /T1p) £ ().

If, for every p < oo, there exists a C-algebra homomorphism A, of HII,{ to C such that f*x¢ =
Ap(¢) f holds for any ¢ € H{,{, we say that f is a Hecke eigenform with eigenvalues {\,}.

Let f € Sl_l(Z/{]’c, X0; X02) be a Hecke eigenform with eigenvalues {)\,} and & a Hecke character
of K. We define an L-function

L(f.&5) = [ Lp(f.&9)

p<oo
where the local factor Ly(f,&;s) is given as follows.
(i) If p is inert in K/Q, put
Ly(f,&:8) = Rp(&(p)p™>*)

where
Ry(X) =1—{p " Np(¢1p) + 1 —p "} X + X°.
(ii) If p ramifies in K/Q, put
Ly(f.&5) = Ry(&(Mp~°) 1,
where
Ry(X) =1 —p_1/2>\p(¢; +6,)X + X7
(iii) If p splits in K/Q, put
Lp(f,&8) = Rup(&(T)p~*) " Ra(&(I2)p™*) 1,
where
Rip(X)=1—p V20, (¢1,)X +€X2, Rop(X)=1—p 2N (hap)X + ¢ 1X?
with € = Ap(qbafp) = O,(II; /TIz). Note that A\y(¢a2,) = € 'A\y(¢1,) and, hence, Ry p(X) =
Rl,p(e_lX).

Remark. Suppose that K has class number 1. For f € S_1(Uj Xo): put fam(heo(i)) =
3 (Pooy )1 f(hoo) (hoo € Hoo). Then f — fg,, gives rise to an isomorphism between Sl_l(u},yo)
and the space of holomorphic cusp forms of weight | — 1 and character w on I'g(D). Assume that
Jam(2) =302 c(n)e[nz] is a normalized newform in the sense of [Li75]. Define a twisted L-function

Z(famis) = Y _c(Na)o! Na~*,

a

a = aOg running over the nonzero integral ideals of K. A straightforward calculation shows that

L(f,1;8) = C(25)Z(fam; s +1—1) H(l —p 2 (1 = e(p)nlp )

p|D

Here, for p|D, 1, is an element of K such that 1,0 is a prime ideal of K dividing p.

11
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4. Theta functions

4.1 The space of theta functions
In this section, we recall several facts about theta functions on R (for details, see [MS02, §2]).
For m € Q*, let T™ be the space of smooth functions © on Rg\Ra satisfying:
(i) ©((0,2)r) = Y (z)O(r) (x € Qa,7 € RA);
(i) for any r € Ra, too — O(rts) is KL -finite.

Let p' be the smooth representation of Ra  on T™ given by right translations. Define an inner
product ((-,-))g on T™ by

4.2 Lattice model

In this and the following subsections, we recall the definition of metaplectic representations on a
lattice model (for the details, see [MVWS87, ch. 2, 1. 4], [MS00, §1] and [MS02, §2]). Let m € Q*

and £ = (mD)™'Z + 27'kZ be a lattice in K. For a rational prime p, let V" be the space of
P, € S(K,) satisfying
Dy(zp +1p) = ¢m7p(%<zp7lp>n + %(lmlgn)@p(%)
for z, € K, and I, € L, = L ®z Zp. Let V' be the space consisting of functions on K, = C of the
form P(zs)e[27 imkzaoZa0) (respectively P(zs)e[—27tmkza0Za]) if m > 0 (respectively if m < 0),
where P is a polynomial in z,,. Define an inner product (-,-), on V" by
(D, D), :/ Dy (2,)P (20)d" 2y (Do, DL € V),

where d™z, is the Haar measure on K, self-dual with respect to the pairing (z, w) +— ¥, ({2, w)x)
(note that d™z, = |N(m/£)|71/2 dzy).
Let V™ be the restricted tensor product of V] over primes v of Q with respect to {®q,}, where
Do, € V" is given by
Dop(2p) = Charﬁp(zp)l/’m,p(%zm ZZ>H) (2p € Kp).

We denote by V/3 the completion of V™ with respect to the inner product

(<I>,<I>’):/K (2)® () d™z,

where d"z =[], d™z,. Let p™ be a unitary representation of Na on V/3 defined by
P (w, 2)®(2) = Ym(5(z, W) + 2)P(z +w) (P € V5, (w,2) € Na, 2 € Ka).

Then p™ is irreducible.

4.3 Metaplectic representation of K}&

Let x € & and v be a prime of Q. Let Ag, (¢¥,,) be the Weil constant attached to (K /Qy, ¥m.v)
(cf. [Wei64, Théorem 2]). By definition, we have

/ w(Z)wv(mZZ")dZZAKU(Qbm,v)\mIJl/ P(2)vho(—m ™" 227) dz

v v

for ¢ € S(K,). Here the Fourier transform ¢ of ¢ is defined by
5 = [ el (w2 do (€ K,)

v

12
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For t, € K, we define an endomorphism MY (t,) of V% as follows. If t, = 1, we put MY (t,) =
IdewQL. Suppose that t, # 1. For & € V™ we put

1—-1t,

ME™(1,)8(2) = A, wm,v)—lxv( >|N<1 )7

1 K o\ m -
X/}{v¢m,v<§Tr<1_tv>wvwv>P (wy, 0)®(2) d"w, (2 € Ka).

It is known that MY (t,) preserves V™ and extends uniquely to a unitary operator of V5.
For t = (t,), € K}, we put MY (t) = @, MY (t,). Then MY™ defines a unitary represen-
tation of K on V/% satisfying MY™ (t)p™ (w, x)MY™ (t71) = p™(tw,z) (t € Kx,(w,z) € Na).
Hence, we can extend My™ to a unitary representation of Ra on V/a by

M ((w, 2)t) = p™(w,z) o MP™(t)  ((w,r) € Na,t € Kj).

4.4 Theta series
For x € X and ® € V'™, we set

Tolr) = 3 (MET(I@)(X) (r € Ra).
XeK
The theta series 07" is absolutely convergent and belongs to T™. Let TY" = {9;2’@ | & e V™)
PROPOSITION 4.1 ([Shi79, Proposition 2]; see also [MS02, Theorem 2.22]). We have the following.
(i) We have an orthogonal decomposition
" = P Ty
XEX

ii) For y € X and ®, 9" € V™ we have ((07¢,0" s, Wr = cm(P®,®’) with a positive constant ¢,
X80 VX, @
depending only on m.

4.5 Holomorphic theta functions
For k € Z, set T™F = {© € T™ | O(rts) = th O(r)(r € Ra,too € KX)} and TPF = T N Tk,
Let T}, be the space of © € T™0 such that

Weoo f@mf(woo) =e,, [—gwmm] O((weo,0)r¢)

is holomorphic on C for any ry € Ra_ . We call T, the space of holomorphic theta functions.

LEMMA 4.2. We have the following.

(i) We have
b TF oirm>o,
" k2 (weo (x)+1)/2
TX - mk
b T irm<o
k< (woo (x)—1)/2
(ii) We have
$ T ifm >0,
glol = XEX Woo (X)=—1
{0} if m < 0.
13
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Proof. If m > 0, the assertions (i) and (ii) are direct consequences of Lemma 2.14 and Propo-

sition 2.26 in [MS02]. Suppose that m < 0. Observe that V™ = V™™ and that p™(w,z)® =
p~(w,z)® for ® € V™. This implies that MY"(r)® = Mf{’__lm(r)i (r € Ra) and, hence,

07's = 0;@1”5. It follows that

— “mk &
woTT- @ T @ mt
k2 (—woo (X)+1)/2 k<(weo (x)—1)/2
which proves assertion (i). To show assertion (ii), let © € T}, and ry € Ra s. It is easily verified

that fe (W) is holomorphic, bounded on C and tends to zero when |we| — oo. This implies that
fo,r; (o) is identically equal to zero and, hence, © = 0. O

4.6 Primitive theta functions

Let a be an ideal of K. Define an open compact subgroup N(a); of Na ¢ by

N(a)y = {(w,a:) € Nay ‘ wear,x+ gww“ € afa‘;}

={(w,z +2y) € Nay|w € ay,x € ayaf}

(recall that @, = 27! Tr(f)ww?). We put R(a); = {nt | n € N(a)s,t € O%(,f}‘ Let T™(a) =
{© € T™ | p'(r9)® = O for any ro € R(a)¢} and T}! (a) = T{; N T™(a). It is easy to see that
The (a) = {0} unless m > 0 and m N(a) is integral. We henceforth assume that m > 0 and m N(a)
is integral. Then

hot(a) = D o1 (@ X);
XEX ,weo (x)=—1

where T7?) (a, x) = T (a) N TY.

To define the primitive part of T} (a), let b be an ideal of K with a C b. Define an endomorphism
Py, of T1 (a) by

PO = p(np)@dyny (O € Ti(a)),
N(b)y
where dyny is the Haar measure on N4 ¢ normalized by vol(N(b)s) = 1. Note that P} = 0 unless
mN(b) is integral. Let
hmol,prim(a) ={0 € T (a) | Pg©® = 0 for any ideal b of K with b 2 a}

and

gf)l,prim(a’ X) = Tﬁ})l,prim(a) a T;n

We call T (a, x) the space of holomorphic primitive theta functions with respect to (a, x).

hol,prim

THEOREM 4.3 (Shintani [Shi79, §2.11] and Glaubermann-Rogawski [GR89, Theorem 4.2]; see
also [MS00, Corollary 6.5 and [MS02, Theorem 3.4]). The space Ty ;.. (a,x) is at most one-
dimensional.

4.7 Artin conductor and epsilon factor

Let p < oo and m € Q. For x € &), we put A,(x) = Min{a >0 | X‘(1+ﬂ3g)00§p = 1}, where

T - POk p if p splits in K/Q,
r the maximal ideal of Ok ), otherwise.

14
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Let €,(s, X, ¥m,x,) be Tate’s epsilon factor [Tat79, § 3|, where ¥y, , = ¥m o Trg, /g, It is known
that €,(1/2, X, ¥m,k,) = £x(k7'). Let a be an ideal of K, such that p,(m,a) := ord, mN(a) > 0.
Denote by X, prim(m, a) the set of x € A}, which satisfies

pip(m, a) if 9, = 0,
Ap(x) = 1 2(pp(m,a) +9,) if 6, > 0 and p,(m,a) >0,
26, or 20, — 1 if 9, > 0 and pp(m,a) = 0.

where 6, = ord, D.

4.8 Epsilon dichotomy
Going back to the global situation, we let m € Q*, a an ideal of K and y € & with ws(x) = —1.
Assume that m > 0 and m N(a) is integral. For p < oo, we write x, for the p-component of . Set
Xprim(m, a) = {x € X | wso(X) = —1, Xp € Xp prim(m, ap) for every p < oo}
and
Xl (m, a) = {x € Xorim(m, a) | €5(1/2,Xp, Y 1c,) = Xp(r~ ") for every p < oo}
The following result gives a criterion for the existence of primitive theta functions.

THEOREM 4.4 (]MS00, Corollary 6.7] and [MS02, Theorem 3.8]). For y € X, the space T}" (a, )

hol,prim
defined in § 4.6 is one-dimensional if and only if x € X, (m,a).

prim
Remark. Theorem 4.4 is a refined form of ‘epsilon dichotomy’ for U(1) (for epsilon dichotomy for
unitary groups, we refer to [Moe91], [Rog92] and [HKS96]).

Let & be the set of the triplets (m,a,x), where m is a positive rational number, a an ideal of
K with mN(a) € Z and x € Xptim(m, a). By Theorem 4.4, we have dim T, . (a,x) = 1 for
(m,a,x) € E.

4.9 The structure of TTy,(a)
We keep the notation and assumptions of §4.8.

THEOREM 4.5 ([Shi79, Proposition 2]; see also [MS02, Theorem 3.9]). We have a direct sum

decomposition:
hmol(a) = Z Z gél,prim(a/’X))
@ ER(a) xyeX T, (m,a’)

prim

where R(a) is the set of ideals a' of K containing a with m N(a') integral.

Remark. Let a1,as € R(a) and x1 € X5 (m,a1), x2 € X, (m, az). Then T, o (a1, x1) and

Thmol’prim(ag, X2) are orthogonal to each other if at least one of the following conditions is satisfied
(see [MS00], §10):
(i) x1# x2;
(i) mN(a1) # mN(az);
(iii) there exists a prime factor of m N(a;) which splits in K/Q.

4.10 Exceptional case
Suppose that p ramifies in K/Q and define an endomorphism Q,, of T}?(a) by

Qp@(r):/n O(r(w,2,)) dy 1w (O € Ty (a))

—1
p 9p

15
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(for the definition of dyj=1q W, see §2.4). Note that Q) coincides with Pfrla if p1p(a,m) > 0. We say
P P
that x, € &, is ordinary (respectively exceptional) if Ap(xp) = 26, (respectively A,(xp) = 26, — 1).

PROPOSITION 4.6 [MS02, Theorem 3.8]. Let x € X

; prlm( a) and © € T} prlm(a X). Suppose that
p ramifies in K/Q. Then

0 if x, is ordinar
Q0 = . X . .y,
© if x, is exceptional.

4.11 Periods of theta functions
For ©® € T™, we put

To(r) :/ O(tr)d*t (r € Ra)
KWK}
and
1(0) = Io(1) :/ o(t) d*t.
KI\KL

We call 1(©) the period of ©. The following fact is proved by Yang [Yan97, Theorem 0.3] (see also
[MS02, Theorem 5.2]).

THEOREM 4.7. Let (m,a,x) € € and © € T{y, ;. (a,x) — {0}

(i) We have
1(©)]* = C(x)L(x: 3)(©, O R,
where
co=gmp I Gredmp

P/{/DvAp(Xp)>0

and ((,)r is defined in §4.1. (Recall that w is the quadratic Hecke character of Q associated
with the extension K/Q, w, the p-component of w and m, a prime element of Q,,.)

(ii) We have I1(©) # 0 if and only if L(x;1/2) # 0.

4.12 The following result will be needed in the next section.

PROPOSITION 4.8. Suppose that p splits in K/Q and p,(m,a) = 0. Let x € le;lm
© € TPy prim (@, X)- For t € K} — O}{’p, we have

/ @(r(w,ajw)t_l) do,w = [N(1 — t)|;1/2xp<

(m,a) and

) (r € Ra).
N

Proof. First note that we may (and do) let 6 = (1,0) and z,, = 3N(w). Take &' = ®, P, € V™ s
that © = 6", It is sufficient to show that

K,m — — 1_t_l
/MX’ (w, )t 1)q>;dapw:|N(1—t)lpl/2xp< - ><I>;,. (4.1)
ap

To simplify the notation, we omit the superscript m and the subscript p, and write M, for My"™
Let V(a) ={® €V | p(w,2,)P = P(w € a)} ={P € V | P,® = &}, where

P.d = /,o(w,a:w)q)daw.
a

16

https://doi.org/10.1112/50010437X06002491 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002491

ON THE FOURIER—JACOBI EXPANSION OF THE UNITARY KUDLA LIFT

Observe that V(a) is one-dimensional since p(m,a) = 0 (cf. [MS00, Proposition 5.10]), and that
both @}, and the integral of (4.1) belong to V' (a). This implies

//\/lx((w, z)t )0 dow = (1)),

with v(£) = Tr(PeMy (t71)]y(a))- To calculate (t), recall that ®(z) = (p(2,0)®, ®)(® € V, 2z € K),
where ®(z) = charz(2)Y, ({2, 27)x) € V. It follows that M, (t~1)®(z) is equal to

(p(2, )My (1), B0) = (&, My (1)p(—2,0)80) = (1) /K mi(z )@ () d",

where

_ _ 41
er(t) = () (NG = 2 = (A v 2

and
0= [ (-5 T(155 ) N oA O
= [ (=55 ) N+ 2 = e 2 )T )

This implies that

PaM, (™ H(2) = cx(t)/ Na(z, 2 )P(2) d™ 2
with "
Nea(z,2') = /¢m <%<2, W)y + ﬂcw> ne(z +w, 2') dgw.
We thus have '

7(t) = ex(t) / Mra(z, 2) d™

o [

1
X ¢m<<z,w — w’>ﬁ + Ty — = Tr(l t> N(w’) + §<w’7w>,€> d™w' d™z dyw

)30 (0 / z/zm< _1 ;)r udl N(w)> dow
/¢m<1 ok = _1t)+ y N(w)> .

Since
1—k—(14+r)t 1
2(1—t) EZP fOI'tQOK,p,
the last integral is equal to 1 and we have proved v(t) = ¢, (t). O

5. Fourier—Jacobi component

5.1 Fourier—Jacobi expansion

In this section, keeping the notation of §4, we recall several basic facts about Fourier—Jacobi
expansion of automorphic forms on G = U(S) after [Shi79] (see also [MS02]).

17
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Let F' be a smooth function on Gg\Ga /K. Then F admits the Fourier-Jacobi expansion
F(g)=>_ F™(g),
meQ

where
Fg) = [ F((0.2)g)m (o) do
Q\Qa
For o € K, we define a function F* on Rg\Ra by
F'(r)=F"(rdg(c)) (7 € Ra).
Note that FJ* € T (a) with a = id(«) (for the definition of id(«), see §2.2).

PROPOSITION 5.1. Let F' be as above. Then F is in &;(Ky) if and only if the following four conditions
are satisfied:

(5.1) F(gkoo) = J(komZO)_lF(g) (koo € Koo);

(5.2) F™ =0 if m < 0;

(5.3) for any m € Q,m >0 and a = asoary € KX, we have FI" = ol e, [(r/2) (oo 0o — DIFY:
5.4)

(5.

Proof. The necessity is easily verified. Suppose that the conditions (5.1)-(5.4) are satisfied.
For gr € Ga,f, we put Fy,(900(Z0);9f) = J(goo,ZO)lF(gfgoo)(goo € Goo). It is sufficient to show
that Z — Fy,(Z;gs) is holomorphic on D for any gf € Ga . We may (and do) suppose that
g = rydg(af)(ry € Ra g, ap € Kg’f). For Z = "(z,w) € D, put g, = (w,z)dg(\/y) with
z=x+ (k/2)(y + ww) (x,y € R,y > 0). Then gz(Zy) = Z. By (5.2) and (5.3), we obtain

Fan(Z;95) = J(9,,20)' F(979,)
Sy YRR lrs(w,0)enls

meQ,m>0,mN(a)EZ

= X w0 en| 5w 1)enl)

meQ,m>0,m N(a)EZ

for any m € Q,m > 0 and ay € Kif, we have Fy € T{L).

The condition (5.4) implies that each term in the sum is holomorphic in Z and we are done. O

5.2 Primitive and non-primitive components
Recall that £ is the set of the triplets (m, a, x), where m is a positive rational number, a an ideal of K
with mN(a) € Zand x € X, (m,a). We put y,(m,a) = ord, m N(a). For F € 2,(Ky), (m,a,x) € €

prim

and an ideal b of K, we put

Cr(b; 07y ) = (F5", OF ) B,
where ©7", € T i,(a,x) — {0} and " = Fg with §y € Kj ;.id(B8f) = b. Note that OF, is
unique up to constant multiples by Theorem 4.4 and that F¢" does not depend on the choice of 3.
In view of Theorem 4.5, F' is determined by {Cr(b; O’ ) | (m,a,x) € £,b C a}, which we call the
Fourier—Jacobi components of F. If b = a (respectively b G a), the component Cp(b; Oh) is said
to be primitive (respectively non-primitive).

LEMMA 5.2. Let F € 2;(K;; Q1) and write © for Oty

(i) Suppose that p is inert in K/Q. Then Cr(pFa;0) = 0 unless k > 0.
(ii) Suppose that p ramifies in K/Q. Then Cr(IT¥a;©) = 0 unless k > 0.

18
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(ili) Suppose that p splits in K/Q. If p,(m,a) > 0, we have C’p(l‘[lfll_[é”2 a;0) = 0 unless ky, ke > 0.
If pip(m,a) = 0, we have Crp(TI1'T152a; ©) = 0 unless k; + ko > 0.
(iv) Suppose that p splits in K/Q and p,(m,a) = 0. Then we have

(p"/2x ()~ 1 (I1y /TIp ) k2 - Cp(TTFF20:©) i ky

0 and ko
Cp(I' 1152 0; ©) =
(e {<p1/2x<m>ﬂ<m/n2>>kl-0F<H’51+’%;@> if k1 <0

0,
and ko > 0

<
Z

NV

Proof. The assertions (i)—(iii) are easily verified. To prove assertion (iv), we may (and do) as-
sume that ki + ko > 0. Suppose that k1 > 0,k < 0, and put t = Hl_k?l_lé”2 and g = H’f1+k2a.
By Proposition 4.8, we have

<<FI%1H§%’ ®>>R

— / F™(rdg(8, 1)t 113)0(r) dr = Q(t) / F™(rdg(B))0(rt=1) dr
Ro\Ra

:Q(t)/ dr/ F™(r((0,a0y),0)dg(5)) dy O(r((0, agz),0)t~1) dx
R@\RA Zp Ly

= Q(t) / F™(rdg(B))dr | O(r(w,zy)t=1) d
Rg\Ra

ap

1
=Q<t>|N<1—t>|—1/2x-1(1 t ) /R PG (3BT
Q A

= ("X (1)~ (11 /112))" k1 +2 g O R

This proves assertion (iv) in the case where k1 > 0 and ko < 0. The proof in the remaining case is
similar and omitted. O

5.3 Shintani’s criterion

In this subsection, we recall a criterion due to Shintani [Shi79, §3] for F' € &;(Ks;Q71) being a
Hecke eigenform in terms of its Fourier—Jacobi components. (For the definitions of Hecke operators
P; p, see §3.2.)

PROPOSITION 5.3. Suppose that p is inert in K/Q.
(i) We have F x ®1, = A,F with A, € C if and only if the following recursion relations hold for
any (m,a,x) € £ and k > 0:
pre(k + 1) + {0(k + pp(m,a) > 0)p — 1 — Ay}e(k) +e(k — 1) =0,
where we put c(k) = Cp(p*a; O, ).
(ii) Suppose that part (i) holds. Then we have

o

m.a) = 0)p—3
> cfhx* — ALY 2 o)

k=0
where Qp(X)=1-p2(Ap —p+1)X + X2
PROPOSITION 5.4. Suppose that p ramifies in K/Q.

(i) We have F x @1, = A,F with A, € C if and only if the following recursion relations hold for
any (m,a,x) € € and k > 0:

p*c(k + 1)+ {6(k > 0 or x is exceptional) - p — 1 — A, }e(k) + c(k — 1) = 0,
where we put c(k) = Cr(IT*a; O )-

19
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(ii) Suppose that part (i) holds. Then we have

> 1+ 6(x is ordinary)p=tX
c(k)X* = -¢(0),
> e N (0)

where Q,(X) =1—p YA, —p+ 1)X + X2
PROPOSITION 5.5. Suppose that p splits in K/Q.

(i) We have F'x®;, = A; ,F with A;, € C (i = 1,2) if and only if the following recursion relations
hold for any (m,a,x) € € and ki, kg > 0:

ALP . C(k‘l, /6‘2) = pQC(k‘l, /6‘2 + 1) +pQ_1(H1/H2) . C(k‘l + 1, /6‘2 — 1) + C(k‘l — 1, ]{?2),
Aoy - c(k, ko) = pPe(ky + 1, ko) + pQIIy /TIp) - e(ky — 1, kg + 1) + c(ky, ky — 1),
where we put c(ky, ko) = Cp(ITF TI52q; O )-
(ii) Suppose that part (i) holds. Then we have

> R(X1,X3)

c(ky, ko) XM Xxk2 =
kl%zo 5, B2l 3 Q1(p™1X1)Q2(p~ 1 X2)

-¢(0,0),

where
Q1(X) =1 —p A pX +p QI /TIp) Ay , X* — Q(IT; /TT2) X,
Qa(X) =1—p A1, X +p ' Q7N (I /TIp) Ag , X — Q1 (11 /TIp) X2,
R(Xy,Xp) = (1—p 2X1Xp) [] (1= 6(up(m,a) = 0)x " (IL)p*/2X;).

i=1,2

THEOREM 5.6 [Shi79, §3]. Suppose that F' € ,(K;Q7!) is a Hecke eigenform. Then F = 0 if and
only if Cp(a; ©f’,) = 0 for any (m,a,x) € €.

Proof. This follows from Lemma 5.2, Propositions 5.3—5.5 and Theorem 4.5. ]

6. Metaplectic representation

6.1 In this section, we let F' be either the p-adic number field @, or the real number field R. When
F = Q,, let K be a quadratic extension of F' or F'® F'. When F' = R, let K = C. Denote by o the
nontrivial automorphism of K/F. For z € K, put Tr(z) = z + 27 and N(z) = 2z7. Denote by | - |
the normalized valuation of F. Let 1 be the additive character of F' given by

() e[—(the fractional part of z)] if F' = Q,,
€Tr) =
ez] it F=R.

Recall that dx (respectively dz) is the Haar measure on F' (respectively K') self-dual with respect
to the pairing (z,2") — (xz’) (respectively (z,2") — (Tr(272"))). Denote by Ai (1)) the Weil
constant attached to (K/F,1) (cf. §4.3). We have Ak () = v/—1if F = R.

Let I’ = Q. Denote by Of the integer ring of F' and let

) the integer ring of K if K is a field,
"\ oroor if K=FaF.

Let X be the set of characters of K* whose restriction to F'* coincides with w = wg /p, the character
of F* corresponding to K/F' by local class field theory.
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6.2 Dual reductive pair

Let H = U(T) be the unitary group of a non-degenerate anti-hermitian matrix

KkIT
T = T
—k7IT
Define a homomorphism of G x H to H by
h
(g,h) — g®h = (gijl2)1<i <3 - h (9= (gij) € G,h € H).
h

Note that the kernel of the homomorphism is {(t13,t7!15) | t € K'}.

6.3 Heisenberg group and representation

Let (-,-)r and (-,-)1 be the F-alternating forms on W = K? and W = K5 attached to T and T,
respectively (see §2.2). Let Ny and Nt be the Heisenberg groups attached to (W, (-,-)r) and
(W, (-, -)T), respectively:

Np =W x F,(w,z)(w',2") = (w+ w', 2 + 2’ + (w,w')7),
Nt =W F, (w,z)(w,2') = (w+w',z+2" + %(w,w’)T).

Define a smooth representation pp (respectively pr) of Np (respectively Nt) on V = S(K)
(respectively V = S(K?) @ S(K)) as follows:

pr((12) o)) = ~To(uf2) = § Tewfwa) + o )l + o)

for wy,we,z € K,z € F,p € S(K);

e zzg ) @822

— <_% Tr(k ™ T (w1, ws3)) — Tr(s T (w1, Z)) + a:> X ®(Z + w3)(pr (w2, 0)9)(2)

for w; € K? (i =1,2,3),z € F,® € S(K?),¢ € S(K),Z € K%,z € K. Then pr and pr are irre-
ducible, and any smooth irreducible representation of N (respectively Nr) with central character
(0,x) — 1 (x) is equivalent to pr (respectively pr).

6.4 Metaplectic representations

Let xo € X. We can define a splitting Mio (respectively Mgo) of metaplectic representation of
H = U(T) (respectively H = U(T)) attached to (pr,x0) (respectively (pr,Xx0)) as in [Mur01].
The following two lemmas are proved by a straightforward calculation and we omit their proofs.
We note that M;O is a mixed model of the metaplectic representation of H.

LEMMA 6.1. Let ¢ € S(K) and z € K. Then

MZ (dr(@)e(=) = x5 (@ N(@)]2p(az) (a € KX),
MT, (npr(5)o(2) = w(bzz")p(z) (b€ F),
T (wo)p() = i ()3 (2),
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where

— [ (w2 du.
K

LEMMA 6.2. Let ® € S(K?),9 € S(K),Z € K? and z € K. Then
M, (13 @ h)(® @ ¢)(Z, 2) = xo(det h)®(h™' Z) (M5, (h)@)(2)  (h € H),
M (w,2) @ 12)(® © 9)(Z, 2) = ¢(x - £ T[Z)D(Z)(pr(—wZ,0)p)(2) (v K,z € F),
M7, (da(a,t) @ 12)(® © 9)(Z, 2) = Xy (a)xo(t)N(a)| p®(aZ)p(t'2) (a € K*,t € K'),

1
ML(| 1 | en)@e @) = 32e)
-1
where
o(2)= | (Te(x'T(2,2))®(2")dZ .

K2
Here dZ' is the Haar measure on K? self-dual with respect to the pairing (Z,2') + (Tr(k™!
T(z,2")).

LEMMA 6.3. Suppose that F' = Q, and let ¢q, be the characteristic function of Og. Then we have
M (w)pop = Xo(u)po, for u € U, (for the definition of Xy, see §3.3).

Proof. Put Vo = {¢ € V | pr(l,a(l))¢ = ¢ for any | € L'}, where a(w) = 3 Tr(w{ws) for w =

Y(wy,we) € W and L' = t(\/ﬁ_l(’)K, Ok) is a lattice of W. It is easily verified that Vj = Cypg, and
ML (u)Vo € Vy for u € Uy. Thus, ML (u)pop = cyo(w)pop (u € Uy) with cy,(u) € C*. A direct
calculation shows that c,,(ng (b)) = 1(b € Of),cy,(ME(b)) = 1(b € DOF) and ¢y, (dg(a)) =
Xp ' (a)(a € OF). This immediately implies that c,,(u) = Xo(u)(u € Uy). O

Remark. This lemma gives another proof of Lemma 3.2.

6.5 Intertwining operator

We now describe a relation between our mixed model and the Schrédinger model used in [Kud81].
+ _

Define a linear isomorphism i: K® x K3 — K® by i(27,27) = *(2f, 21,25, 25 ,24,25) (25 =
Y2, 25, 25) € K3). We then have (i(zF,27),i(wt, w™))p = Tr(S(zt,w™) — S(z~,wh)). Let pr
be the smooth irreducible representation of N on S(K?) corresponding to a complete polarization
W = i(K?, {0}) @ i({0}, K2):
Frli(wt,w),2)f(2) = d(@ — Tr S(w*, 2) — § Tr S, w) f(z +w”)

for wt,z € K3,z € F,f € S(K?). Let ./WEO: H — GL(S(K?)) be the metaplectic representation
attached to (pr,x0). Then we have
M3, (9 ® 12) f(2) = xo(det ) f(g™"'2) (9 € G),
M3 (13 ® dir (@) £ (2) = xo* (@) [N(@)[}* f(az)  (a € K),
ﬂﬁau®nmwﬁ@w:w SENf(z) (beF),
MR, (1 @ wo) f(2) = Arc (¥) F(2),

where

F2) = | (TrS(z,w)f(w)dsw

K3
22

https://doi.org/10.1112/50010437X06002491 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002491

ON THE FOURIER—JACOBI EXPANSION OF THE UNITARY KUDLA LIFT

(dsw is the Haar measure self-dual with respect to the pairing (w,w") — 1 (Tr S(w,w"))). Note that
M7 is used in [Kud81] to construct the theta kernel. Define I: S(K?) @ S(K) — S(K?) by

(P ®o)(z / Y(Tr(s™ 1 25u))® << >>du ©(z2) (z="(21,20,23) € K?).
23
We easily see that I o pp(w,z) = pr(w,x) ol (w € W,z € F), which directly implies

IoME (h)=ME (h)ol (heH).

6.6 Test functions
When F' = Q,,, we set &g, = charO% and ¢q, = charp,.. When ' = R, we set

N ) JREE

©0.00(2) = e[vV—12z] (2 €C).

Set &9 = Q, Po,» € S(Ki) and @9 = @, Yoo € S(Ka). A straightforward calculation shows the
following.

V1

(2171 + 2272) | (21,22 € C),

LEMMA 6.4. We have I(®g, ® o) = |D|11,/2charo§( for p < oo, and
P

!
2 1
I(®p00 ® 900700)('3(21, 29,23)) = 2V — (TZl + z3> [\/—1{—5212_1 + 2975 + §Z3z_3H .

Using Lemma 6.4, we obtain the following result.
PROPOSITION 6.5. We have the following.
(i) Let F = Q. Then we have
M (k@ u)(Pop ® o) = xo(det k)x§(det u)Xo(u) ' Rop @ o, (k€ Ky u €U)).
(ii) Let F' =R and put A = wso(x0). Then we have
M (k@ u)(Po,00 @ 0,00
= (det k)" (k, Zo) ! (det u) BM /27 (0, 20) 7100 oo @ o 00 (k € Kooyt € Uso).

7. Main results

7.1 Theta kernel

We now go back to the global situation. Recall that we have fixed a xo € X with we(x0) = —1.
Let M;fo be the metaplectic representation of Ha on S(K3) ® S(Ka) given by

- ®M§O,v (hv) (h = (hv)v € HA),

where the local components M;fw are defined in §6.4. Define a theta kernel on Go x Ha by

0(g,h) = xp ' (det g)xg*(deth) >~ My (9@ h)(®o ® @0)(X,€)
XeK2¢eK

for g€ Ga,h € Ha (cf. §6.6).
LEMMA 7.1. We have
0(vgk koo, 7 hupuss) = Xo(ug) ™' (Koo, Zo) ™5 (s, 20)'~10(g, )
for v € Gg,9 € Ga,kf € Kf, koo € Koo,y € Hg,h € Ha,uy € u},uoo € Us.
23
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Proof. The left Gg x Hg-invariance is proved by a Poisson summation formula in the usual way.
The remaining part directly follows from Proposition 6.5. U

7.2 The unitary Kudla lift
For f € Sl_l(Z/{f,S{O) (cf. §3.3), we put

Cf(g) = /H TG (g € Ga) (7.1)
o\Ha

The integral is absolutely convergent since f is rapidly decreasing on Hg\Ha. The theta lift (7.1)
was first studied by Kudla [Kud79, Kud81] and we call Lf the unitary Kudla lift of f. Lemma 7.1

implies
Lf(vgkykos) = J (koo Zo) " Lf(9) (7.2)
for vy € Gg,9 € Ga, ks € Kf, koo € Koo. In [Kud79], it is proved that
Lf € &,(Ky) (7.3)

for f € Sl_l(u},yo) by showing that the lifts of Poincaré series in Sl_l(l/l},io) are holo-
morphic. Later we give another proof of (7.3) by studying the Fourier-Jacobi expansion of Lf
(see Theorem 7.4). Note that

Ci(t1s-9) = 0\ (Lf(g) (€ Kh g€ Cn) (7.4
for f € 81 (U, Xo; x0L2), since O(t13 - g, h) = xo(t)0(g,t12 - h) for t € Kj.

Remark. Although the realization of the metaplectic representation here is different from that
in [Kud81], the theta kernels coincide up to a constant multiple in view of §§6.5 and 6.6.

7.3 For m € Q*, put

m= (") (75)

(for the definition of 6, see §2.2). Let H,, = {h € H | hijy, = nm} be the stabilizer subgroup of n,,
in H.Fort=27/2€ K' (z =2 +yb € K*,z,y €Q), we put

_Lt( oz mN@y
m(t) = z <—y/m x + Tr(@)y) ‘ (7.6)

The following fact is easily verified.
LEMMA 7.2. We have the following.

(i) Fort € K', we have v,,(t) € H,,, o and det i, (t) = t.
(ii) The mapping vy, defines an isomorphism of K' onto H,,, o.
(iii) We have {X € K? | k7 'T[X] =m} = {y "0 | v € Hy,,.0\Ho}-

7.4 Spherical functions
Let f € Sl_l(Z/{]’c,S{O). For m € Q* and x € X, set

G = [ G0 D e OR (e ) (1.7

(for the definition of (x/x0), see §2.5).
24
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7.5 Holomorphy and cuspidality of the unitary Kudla lift
The following fact is proved in §§9.2 and 9.4.
PROPOSITION 7.3. Let f € S;—1(U}, Xo) and F' = Lf.

(i) If m <0, we have F™ = 0.
!

(i) For any m € Q,m > 0 and any o = ascay € K, we have FJ' = o
and FJ € Ty

en[27 k(ooling — 1)]F£;’

(For the deﬁn1t1ons of F™ and F), see §5.1.)
THEOREM 7.4 [Kud79, Theorem 5.3]. For f € S;—1(U}, Xo; X0€2), we have Lf € S (K Q7h).

Proof. This follows from Propositions 5.1 and 7.3 and (7.4). O

7.6 Main results: primitive components
Let (m,a,x) € € (cf. §4.8). Take and fix an element hy,000 f Hoo With humg o0 (20) = mb. Set

l _ me | . _
Coo = 4mv/—1 (mlk|)!2e [—]j/(hme,omZo)l L

2
1 if 6, = 0, 1, (m, a) = 0,
¢y = Pl (M) =8p/2 1 —wy(mp)p~t if 6, = 0, up(m,a) > 0,
2p
—— if ¢ )
T it 6, >0

Note that ¢, = 1 except for a finite number of p. Denote by E(x) the set of finite primes p such
that p|D and X, is exceptional (cf. §4.10). For € = (€)),cp(y) € 10,1} EX) | we put

ST e <w0,p:<_§ é)er>, Bl = ] 0" (mo)"

PEE(X) PEE(x)
We set
Jm.a,x. f)= Y. BlOW(du(a; ) wihme,o),
ec{0,1}EC0

where we choose ay € K 5 s so that id(ay) = a.

Remark. Suppose that K has class number 1. Let fg,, be as in the remark in §3.4. Then we have,
for any hy € Hp ¢,

W hfhmg()o Za]fdm T]

where a; € C (depending only on m, x, hy) and 7; € Kﬂf) (depending only on m, hy). It follows that
J(m,a,x, f) is a linear combination of CM-values of fg,,. A similar assertion holds (with suitable
modifications) when hyx > 1.

THEOREM 7.5 (Main Theorem I). Let (m,a,x) € £,0 € T, prlm(a x) and f € Sj—1(Uy, Xo)-
Then the primitive component (cf. §5.2) of the unitary Kudla lift Lf is given by

Crp(0) = coo [] &+ X0 (ap) N(ap)*? - 1() - J(m, a,x, f).

p<oo
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7.7 Main results: non-primitive components

THEOREM 7.6 (Main Theorem II). Let f € S;_1(U,, Xo; x0€2) be a Hecke eigenform with eigenvalues
{Ap}. Let p be a finite prime, (m,a,x) € € and © € T{y, . (a,x). We write pi, for pip(m, a).

(i) Suppose that p is inert in K/Q. Set c(k) = Cs(p*a; ©). Then
phe(hk +1) + {5k + sy > O)p — 7% — pAp(B1p)}elk) + ek — 1) = 0
holds for k > 0.
(ii) Suppose that p ramifies in K/Q. Set c(k) = Cr¢(IT*a;©). Then
pPe(k+1) — {p1/2)\p(qz5; +¢,) +p- (k=0 and x is ordinary)}c(k) + c(k — 1) =0
holds for k > 0.
(iii) Suppose that p splits in K/Q. Set c(ky, ky) = Cgf(Hlflﬂgz a;©). Then
pPe(kr, ka4 1) — (pY 2N\ (hap) + p)elkr, ko) + pQ~ (I /To)e(ky + 1, kg — 1) 4 ¢(k1 — 1, k2) = 0
and
pPe(kr 4 1, ko) — (02 Np(d1,) + p)e(kr, ko) + pQIT /Tlo)e(ky — 1, kg + 1) + ¢(k1, ky — 1) = 0
hold for kyi,ko > 0.
Combining Theorem 7.6, Propositions 5.3-5.5 and Theorem 5.6, we obtain the following results.
COROLLARY 7.7. Let f € S;—1(U,, Xo; x0S2) be a Hecke eigenform with eigenvalues {\p}.

(i) The unitary Kudla lift Lf is a Hecke eigenform with eigenvalues {A,}, where A, is given as
follows.

(a) Ifp is inert in K/Q, we have Ay(®1,) = pAy(p1,) +p? — 1.
(b) If p ramifies in K/Q, we have Ap(®1,)p) = p1/2)\p(gz5; +¢,)+p—1
(c) If p splits in K/Q, we have Ay(®1,) = p'/?\,(¢2,) +p and Ay(Pa,,) = p/2\p(d1,) + .
(ii) For a Hecke character £ of K, we have
L(Lf,& ) = L(& s)L(], & 8)-
(For the definition of L-functions, see §§ 3.2 and 3.4.)

Remark. Corollary 7.7 was proved by Kudla [Kud81, Corollary 1] by using Eichler commutation
relations.

THEOREM 7.8 (Main Theorem IIT). Let f € S;—1(U,y,, Xo; x0f2) be a Hecke eigenform. The unitary

Kudla lift Lf does not vanish if and only if there exists (m,a,x) € £ such that

L(x; %) J(m,a,x, f) #0.
Proof. This follows from Theorems 5.6, 7.5 and 4.7. U

8. Integral expression of the Fourier—Jacobi components

8.1 Let f € Sl_l(u}, X0)- The object of this section is to give an integral expression of the Fourier—
Jacobi components of L£f. By Lemma 6.2, we have

Lf(w,z)tda(a)) = xq (¢)|N(a “Ldet W) (k T [X
J((w, z)tda(a)) = xq  (£)[N( )|A/H@\HAX61;,56KXO (det h)ep( [X]x)
x ®o(ah ™ X) (M, (h)pr(—wh™ X, 00 My (t12)90) (&) f (h) dh

for (w,z) € Na,t € K and a € K (for the definition of Mi} and pr, see §§6.4 and 6.3).
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8.2 The constant term
PROPOSITION 8.1. We have (Lf)? =

Proof. Let ¥ =%(1,0) € K? and N’ = N Since {X € K? | T[X] =0} = {y ' |7 € No\Ho},
we have

(LF)°((w,0)tdg () = xo ' (£)N ()| a /H D> xg(det yh) Do (a(vh) ')
Q
XY (ML (W) pr(—w(yh) M, 0) MY (12)0)(€) £ (R) dh.

Since b — 3 cc M (h)p(€) is left Hg-invariant for any ¢ € S(K), we obtain
(L)°((w, 0)tdg (o)
i ON@a [ g deth)Boah ) 3 (or(—un 0)ME, (th)g) €)1 (1) dh

No\Ha ceK
=Xo ()IN(e)]a / Xo ' (det h)®o(ah™ b)Y 9 (Te(w?€)) (MY, (th)o) () () dh
No\Ha ceK
=X ()IN(a)|a / g (et R)@o(ah ) Y w(Te(wE)) (MY, (th)go) (€)er (=N (€): h) dh.
ek

Here we set
st = [ b fmue)de (b Ha)
Q\Qa
for b € Q and h € Ha. We have c¢f(—N(§);h) = 0 for £ € K by holomorphy and cuspidality of f.
This implies that (£f)°((w,0)tdg (o)) = 0 and we are done. O

8.3 Non-constant terms
Let m € Q* and 8 € K. Then (Lf)}' € T™(b) N T with b = id(8). Let x € X. For © € T,

we set
o) = IN)axg (et Wo(ah~'n,) [ (M, (o) (—w)Tolwzad (5:1)
(for the definition of Ig, see §4.11).

LEMMA 8.2. For © € T, we have
wer o= [ m o ()£ (1) dh.
Hpp 0\ Ha

Proof. By Lemma 7.2 and an argument similar to that in §8.2, we have

(L5 (w,0)t) = XEl(t)IN(ﬁ)IA/ Xo | (det h)@o(Bh g

HUm;Q\HA

X Y (Tr(mhEw”) — may)(My, (th)po) (€ — w) f(h) dh

£eK

for w € Kp and t € K}A. The left Rg-invariance of © implies that

O((w,0)t) = ¥(5 Tr(mrw?))O((w — €,0)t)
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for £ € K. We thus have
(L5 Ohr

(tdet h)®o(Bh™ nm) f(h
= IN(s |A/WQ\HA/K\KA/Kl\K1 (1 et h)Bo(5h ™) (1)

x2w< s —§)(w—E)a>(M§o(th)wo)(£—w)mdxtdwdh

{eK

_ -1 e -1
LG A A gy 0 QPO ) 10
X (Mio(th)goo)(—w)(%((w,acw)t) d*tdw dh

_ —1 —1
= IN@)a | o /. A /. e X IO ) )
x (M (R) o) (—t 1 w)O ([t w, 2,-1,,)) d*t dw dh

:/ . Bo(h)f(h)dh. O
nm,Q\ 1A

LEMMA 8.3 (Key lemma). Let v be a prime of Q. Let ¢ € S(K,) and © € T}'. Then, for t € K
and r € Rp, we have

| M )) 0BT Tz dw = (00 (71) | (—w)BTiw ) du

v v

Proof. If t = 1, the assertion is trivial. Suppose that ¢ # 1. Take ® € V™ such that © = 075
(cf. §4.4). It is sufficient to show the equality

/ (Mg, (tm (1)) (~w) MY ™ (r (w, 20,) ) ® duw = (XXo)l(t_l)/ p(—w) MY (rt(w, 2))® dw. (x)

v K’U

Take an element z+y6 of K0 with z,y € Q, (y # 0) such that ¢t = (z+y0)? /(x+yd). Observe that

Tlm(t) = 12) = 2 —?:yﬂ <_TZ_1 _me;(9)> Tz fye(A*)_l <8 m?12> A~

mo?  mo
A=),
and that we can take {(,, = *(m#,1)} as a basis of K2/Ker(t,,(t) — 12). Note that i, (t){m = tCm.
In view of [Mur01, Theorem 1.8], we have

(M, (tm(8)) ) (—0)
= ’Y(t) / ¢ <%<ng7 me(t)<m>T> pT(Z(12 - Lm(t))Cma O)QO(—ZU) dz

with

= (t) / Um <—— Tr(kt)zz% + Tr(07(1 — t7)2w) — m(l_t)z> o(—w+2(1—1t))dz,

where

3(6) = N1~ )18, () (2

= IN(ma(1 = )/ * e, (o) "X 0<ﬁ>

K
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It follows that the left-hand side of (x) is equal to

/U/U¢m<——T1" Kt)227 + Tr(07(1 — 17)27w) — (1) —xw>

X p(—w 4+ z(1 — ) ) MY (r(w, 0))® dz dw

= o NG =2 [ o

« AKU(wm,U)/ ¢m< (2,12, >M§’m(r((1—t)z,O)(w,xw))<1>dzdw

XXo( ﬂt>/vs0 —w) MY (rt(w, 24,)) P dw.

Since (xx0)((1 —t)/k) = (xx0) (¢ 71)(t € K}), we are done. O

PROPOSITION 8.4. Let m € Q*,3 € K5,x € X and © € T},

(i) We have APg(tm(t)h) = (x/x0)' (t T )AZo(h) (t € Kp,h € Ha).
(ii) For f € Sl_l(Z/{f,Xo), we have

(LS)EONr = /H o MW (),

where W', is defined by (7.7) and the Haar measure dx on H,, a is normalized by
Ji

Proof. The proposition is a direct consequence of Lemmas 8.2 and 8.3. ]

P@)dr = [ pln®)at (€ I (H,,0)).

nm,A

9. Holomorphy and cuspidality

9.1 Real spherical functions
For m € Q* and k € Z, let W2 (k) be the space of smooth functions W on H,, satisfying:

(1) W (tm(t)hu) = tF5' (u, 20) ' 7'W(R) (t € KL h € Hooyu € Us);
(il) W (h{z0)) := j'(h, z)"'W (R) is holomorphic on $.

9.2 Inverse Cayley transform
Let D = {w € C | |w| < 1} be the unit disc in C. We define the inverse Cayley transform Cy,,: D — $

by
0—0°
Culw) = § o g
u ifm<o0
1—w

(w € D). The following fact is easily verified.
29
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LEMMA 9.1. Lett € K} ,w € D and W € W7 (k). Then we have

C(t~tw) if m >0,

Lm(t)<0m(w)> = {O (tw) if m<0

F1 =1
11%10 if m >0,
7 o). Clw)) = § 1~
T ifm <0,
i 1—t1w = .
" T W (Ch(w)) if m >0,
W (tm (t)(Cm(w))) = 1 — o\ 1
ot (A28) W(Cutw)) if m <o

LEMMA 9.2. Let W € WX (k) and z € .
(i) If m > 0, we have
~ c(z —ml)~F(z — meo)k—Hif kg <0,
{0 itk >0
with ¢ € C.
(ii) If m < 0, we have
~ c(z —mO)~F(z —mo)FHL if k> 11,
{0 ifk<l—1
with ¢ € C.

Proof. First assume that m > 0. Put W*(w) = (1 — w)l_lW(Cm(w)) for w € D. Then W* is
holomorphic on D and satisfies W*(t~w) = t*W*(w) for t € K! by Lemma 9.1. It follows that
W*(w) = 6(k < 0)w™* with ¢ € C. Since w = (z—mf)/(z—mb7) and 1 —w = m(0—07)/(z—mb?),
we have proved assertion (i). The assertion (ii) can be proved similarly. O

9.3 Global spherical functions
In this subsection, we let f € Sl_l(Z/{]’c, Xo) and m € Q*. Recall that, for x € X, W;’ff is defined by
(7.7).
PRrROPOSITION 9.3. We have the following.
(i) If m >0 and woo(x) < —1, we have W, = 0.
(i) Ifm <0 and weo(x) > 1 —2I, we have W', =

Proof. Observe that heg = W (hyhoo) belongs to Wi (—(weo(x) + 1)/2) for any hy € Ha .
Then the proposition directly follovvs from Lemma 9.2. U

ProproSITION 9.4. We have the following.

(i) Ifm >0, we have (Lf)F € Tiy, (B € Ky).

(ii) If m < 0, we have (Lf)™ =
Proof. By (7.2), we have (Lf) € T™0. Suppose that m > 0. By Lemma 4.2(i), we have
0 = D, cx w1 T?’O. On the other hand, Propositions 8.4 and 9.3 imply that (Lf)j' €
D erwn)>-1 Ty, We thus have (LAF € Byexwa()=—1 Ty? = TP, (see Lemma 4.2(ii)).

The assertion (ii) can be proved similarly. O
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9.4 Calculation of local integrals at oo

From now on, we assume that m > 0. Let © € T} and fix an 7y € Ra . We put 7(7s0) = Io(r7o0)
for roo € R

LEMMA 9.5. For z € §), we have

Proof. Since

w s F(w) = e [—% N(w)} 7(w,0)

is holomorphic on C, the integral of the lemma is equal to

[ el +m0) New)(w) du = 70) [ el(z+m)Nw)ldw = 2=Lr(1)
C C

and we are done. O

For Bs € KX and W € WI2(0), set
Lo (W)

= N(Bx) / / Xo - (det )@ o (Booh™ ) (ML () 0,00 ) (—w)W (R)T (W, %) dw dh.
Hyp oo \Hoo JC
Here we note that
h— Xgl(det h)q)om(ﬂooh_lnm)W(h) /(C(Mio(h)goo,oo)(—w)T(w, Ty ) dw

is left H,, ~o-invariant. This fact is verified by using Lemma 8.3 and the fact that 7 is left
Kolo-invariant.

PROPOSITION 9.6. We have
Tp (W,7) = o | SN(8) = 1) 70T W i)

(for the definitions of ¢, and hpg o, see § 7.6).

Proof. To simplify the notation, we suppress oo from the notation. Since H,, is compact and
vol(Hy,,) =1, Zg(W, 7) is equal to

/ / x5 (det 1) oo (Bh 1) (M, () g0,00) (— ) W ()7 (a0 ) o .
Observe that the integrand of the above integral is, as a function of h, right Us.-invariant, since

Ppoo(u™12) = j'(u, 20)1@0700(2) and M?O(u)goo,oo = j(u, 20) 1000 for u € Uso. Thus, Zg(W, ) is
equal to

27 N(B) /R /0 h /C y ™ B0 o0 (B g (V5 00pt (— ) 1)
x (ML (np(2)du(vy))eo)(—w)W (ng (2)da (Vi) T(w, 2) dw d*y da
— QWN(BW/R/O /Cy_l{\/@_l(—x—kme") — V=1
e [¢2_—1 Ny +y ' N(—2 +mb7)}| -y %e[(x + v=1y) N(w)]

x yUV2W (2 + V=1y)T(w, 7o) dw d”y dz.
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By Lemma 9.2, we have W(ZL‘ +V—1ly) = (mm)l_1W(m0) (x4 /=1y — m#°)~*! and, hence,
Zy(W, ) = 20 N(D)B (o) W(mt) [ [ o+ VTy = me)
R J0

[

Using Lemma 9.5, we obtain

T5(W,7) = 2mV/=1(mr) " N(B)3' - ()W (mh) - I,

Ny +y Nz + m@”)}} [ elte+ VT NG ) oy

where

t= [ oo YN v N s mor| ey = (TN e, [

Since W(m@) = 7 (hmo,c0, zo)l_IW(hmgm), we have

Z5(W,7) = 20/~ L)!~ ) /2) 5 (o s 20~ el 20| SON9) = 1) [FTDW ()

which proves the proposition. U

By Propositions 8.4 and 9.6, we have proved the following result, from which Proposition 7.3
follows.

PROPOSITION 9.7. For m > 0, = ¢ € K5 and © € T}, we have
(L1 ONr

= Cxo ﬁéoem [S(N(ﬁoo) - 1):| |N(ﬁf)|A Xal(det hf)(I)O,f(ﬁfhfl"?m)wglf(hfhm&oo)

/(Hnm)A,f\HA,f

% / (ML, (hg)po,r)(—w) e (w, zy) dw dhy.
KA’f

10. Local integrals at finite primes

10.1 Local integrals
In this section, we reduce the calculation of the Fourier—Jacobi components of Lf to that of certain
local integrals. Until the end of the paper, we fix a finite prime p and often suppress the subscript p.
We write F' and K for Q, and K, respectively. Let ordp: F* — Z be the additive valuation of
F normalized by ordp(m) = 1. Let pp = 7Op be the maximal ideal of O and put § = ordp D.
We denote by X' the set of characters of K* with x|px = wg/p. Let € be the set of (m, a, x), where
m € F*, ais an ideal of K with p := ordp(mN(a)) > 0 and yx € X satisfying the following two
conditions:

I if 6 =0,

(i) A(x) = Ap(x) = ¢ 2(n +9) if §>0and pu> 0,
20 0r26 —1 ifd>0and p=0,
where Ap(x) is defined in §4.7;
(i) €(1/2,x,%m, i) = x(K").
Let Xunr(K') be the group of unitary characters Q of K* = {t € K* | tt° = 1} with Qo1 = 1.
For x € X, let W™ (x) be the space of C-valued smooth functions W on H satisfying

W (tm(t)hu) = (x/x0)" (£)X0 ()W (h) (10.1)
32
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for t € K'h € Hu € U' = {(2%) € U | ¢ € DOk} (for the definition of ¢, see (7.6)).
For Q€ Xunr (K1), let W™ (x; x0f2) be the space of W € W™(x) satisfying W (t15-h) = (x0Q)(t)W (k)
for t € K.

For (m,a,x) € &, let 7™ (a, x) be the space consisting of C-valued functions 7 on R satisfying
the following four conditions.

(10.2) We have 7(trro(0, 7)) = ¥y (x)7(r) (t € K',r € R,79 € R(a),x € F).
(10.3) If o’ is an ideal of K with o’ 2 a, then

/ 7(rn)dn = 0.
N(a’)

(Recall that N(d') = {(w,z +zy) € N |w e d,x € d'd?}.)
(10.4) Suppose that K/F' is ramified. Then

0 if x is ordinary,
7(r(w, zy)) diy-1,w = . .
M-la 7(r) if x is exceptional.

(For the definition of dp-1,w, see §2.4.)
(10.5) There exists a lattice Lo of K such that, for any lattice L of K with L D Lo, we have

7(rt) = Mg (¥m) X <1% >|N (1—1) 1”/%( w, tw) > (r((1 — w,0)) d™w
for t € K' —{1}.
Let (m,a,x) € £ and b be an ideal of K. For W € W™ (x) and 7 € 7" (a, x), we set

To(W,7) = [N(B)|F /H > /K X0 (det h)®o(Bh™ ) (M, (R)po) (—w)W (h)T(w, 3, ) dw dh,

where (3 is an element of K* such that b = SOk. Note that the right-hand side of Iy(W,7) does
not depend on the choice of (3.

Remark. Going back to the global situation, let (m,a,x) € &, f € S_1(U},Xo) and © €
Thmol’prim(a, X) (cf. §7.6). Then, for every p, the restriction of W™ o to Hy belongs to W™ (xp)-
If f e Sl_l(U},QO;XOQ), we have W. f‘Hp € W™ (xp; (x0€2)p). We also note that the restriction of
Ie to R, belongs to 7™ (ay, xp)-

10.2 Local main results
The proofs of Theorems 7.5 and 7.6 are reduced to those of the following results.
THEOREM 10.1. Let (m,a,x) € €. Then, for W € W™ (x) and 7 € T™(a, x), we have
_ 3/2) p(Y2, )
(W, ) = xg (@) IN(@) 3% DI w0 - 7(1)
x {W(dm(a™)) +5e(x) p AT MmO W (da (e wo)}-

Here « is an element of K* with a = aOk,

1 if6 =0 and =0,
vo = pt x 1—wK/F(p)p_1 if 6 =0 and p > 0,

2

=P if 5> 0

1+p
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and
1 if p|D and x is exceptional,
de(x) =

0 otherwise.

THEOREM 10.2. Let (m,a,x) € € and Q € Xy (K'). For W € W™ (x;x0Q) and 7 € T™(a, ),
we have the following.

(i) If K/F is an unramified quadratic extension, we have
PLype1a(Wo7) = P Lypea(W 5 1, 7)
+{8(k +p > 0)p~" = 1 Ta(W,7) + p L1 o(W,7) = 0
fork >0
(ii) If K/F is a ramified quadratic extension, we have
PTra(W, ) = p~ P I (W s (67 +67),7)
—6(k = 0 and x is ordinary)Zyr,(W,7) + p ' Tir—1,(W,7) = 0
fork >0
(i) If K = F @ F, we have
PLpriapge, (W, 7) = —1/2IH1;1H§%(W*¢1,7)
~ Iigsangtag(Wo7) o Zygiama s (W 65 7) 4 07 T (W 7) = 0
and
Pyt (W) = 07 2T s (W5 6, 7)
- IHTIHS%(VV’ ) —I—IH;IHHH;;Tla(W x ¢y, 7) +p T Tk JWor) =
for ki, ko > 0.
10.3 We close this section with an elementary fact, which is needed in the proof of Theorem 10.2.
Let C*°(H/U', Xo) be the space of smooth functions f on H satisfying f(hu) = Xo(u)f(h) (h € H,

u € U'). Then the Hecke algebra H (cf. §3.4) acts on C°°(H/U',Xo) on the right in a natural
manner. For ¢ € HY, put ¢ (h) = xo(det h)¢(h~'). Note that ¢ is also in H.

LeEMMA 10.3. For f, f' € C®(H/U',Xo) and ¢ € H!, we have

/ Ldet h)(f * 6)(h) ' (h) dh = /H x5 (det B F(R) (S * 6" ) () dh

11. Calculation of local integrals at finite primes: primitive case

11.1 Until the end of the paper, we keep the notation of §10, and let (m,a,x) € E,W € W™(x)
and 7 € 7™(a, x). Take and fix an aw € K* such that a = aOg. To simplify the notation, we write
n and ¢ for 1, and ¢,,, respectively. We also write d(a),n(z) and n(x) for dg(a), ng(z) and ngy(z)
respectively, if there is no fear of confusion. Let H, = {h € H | hn = n} and put L, = Op + Hp';;
for k € Z,k > 0. In this section, we prove Theorem 10.1.

11.2 Inert case

In this subsection, we consider the case where K/F is inert. Note that &/ = U’ in this case.
Set hy = d(r~'a™!) (I € Z). We need the following Cartan-type decomposition of H.
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LEMMA 11.1. We have the following.
(i) We have H = ;> _y, /o) Hyluld (disjoint union).
(ii) Forl € Z with |l > —[u/2], we have
1 if 21 =0
vy := vol(H,hU) = p* ™ x ! =0
0 if 2l+p>0.

Proof. The first assertion is easily verified. To prove the second, observe that
H,hUd = U 1(27/z)Ud  (disjoint union).
2€05% /(0O%NLat,)
Since [0 : (0% N Ly)] is equal to p*(1 +p~') if k > 1 and 1 if k = 0, we are done. O
LEmMMA 11.2. For W € W™(x), we have Supp (W) C U, Hylld.

Proof. There is nothing to prove if © < 1. Assume that p > 2 and —[u/2] <1 < 0. It is sufficient to
show that W (h;) = 0. Since A(x) = p, there exists an x € Op such that x(1 + m*~1x6) # 1. Put

1+t lag”

te = K.
N R ) <
Then ¢(t,)h; = hju, where

- 1 1 mN(a)r* 21 N(9)x
YT 0 \—(mN(@) 2 14 Te(0)nh
Since u = (u;5) € U and uz; € 1Ok, we have

(x/x0) (1 + 7 a)W (hy) = W (u(tz) ) = W (hyu) = Xo(u)W (h) = xo ' (1 4+ 7 20)W ().

This implies that W (h;) = 0. O

In view of Lemmas 11.1 and 11.2, Z,(W, 7) is equal to

« S v o’ Ja wlmN(a)H" e alat 1/2 7 la )T (w, x w
IN( )\F; W (hi)xo(a”/ )‘1’0< — >Xo( )IN( )¢ /KSOO( )T(w, z) d

=mmmwmm¥%wm/ﬂaaww

= X H(@)IN(@) [ W (d(a 1)) (D).

This completes the proof of Theorem 10.1 in the inert case.

11.3 Ramified case

In this subsection, we consider the case where K/F is a ramified quadratic extension. Recall that 6
is a prime element of K. Set h; = d(IT"'a~!) for [ € Z.

LEMMA 11.3. We have the following.
(i) We have

H=|J Hnt'u U Hyhn(a)wed,
1Z>—p IZ—p acprp/DOFR

where wg = (_? é)
(i) We have Hyh_,n(a)wold’ = Hyh_,wold’ for a € pp.
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Proof. For h,h' € H, we write h ~ h' if b’ € H,hd'. 1t is easily verified that H = Uss - Hylald
and Hyhd = {h € H | I'a - h™1n € 0% —1IO%}. Let h = hu(l > —p,u = (u;;) € U). To prove
part (i), it suffices to show that

h if 0%
hoe € U (11.1)
hin(a)wy for some a € pp  otherwise.

First suppose that u1; € O. Then h ~ hyn(c) with ¢ = ul_llugl € Op. If we put

em N(a)7!
1 —cTr(f)mN(a)r!

z=1+yl withy= € O,

we have
- _ 1 (1+emN(ad)mly mN(ad)rly
h e~z /z)hln(c)hl; < 0 1+ Te(6)y hy.
Next suppose that u1; € IOk (and, hence, ug; € O). Then hn(—uy usz)d(—(ug;) ™) = hn(a)w
with a = u11u2_11 € pr, which completes the proof of (11.1). To prove part (ii), let a € pr and put
amt
— 14yl withy=——"
- Tye withy mN(ad)
We then have y € O and
o 27 m7IN(a) trtyzt
L(27/z)h_ym(a)wy = h_,wo <0 (z)_l 4 > ,
which implies h_,n(a)wo ~ h_,wo. O
LEMMA 11.4. We have the following.

(i) Forl > —pu, we have
2p
ol(Hyht') = ——pT*.
vol(HyhiUt') 1 —I—pp
(ii) We have
2
1(Hyh_ ="
vol(Hyh_,wold") T
Proof. 1t is easily verified that

H,hU' = U (L(27 /2) " U o(T12)7 /(T12)) ') (disjoint union)
ZEO}X(/(O}X(QLM+1+5)

for [ > —p, and

Hyh_wod = U (e(27 /2)h—wold" U o((12)7 /(I12)) h—,wold")  (disjoint union).
2€0%/(0xNLs_1)
The lemma now follows from [OF : (O% N Ly)] =p* (k> 0) and U : U'] = p°(1 +p~1). O

LEMMA 11.5. Let W € W™(x).

(i) If x is ordinary, we have

Supp (W) C U H,ht' U U U Hyhm(a)wold'.
>0 121 a€pp/DOF

(ii) If x is exceptional, we have

Supp (W) c | JH,pt' U ) | Hyhn(a)wold' U Hyhowold'.
>0 121 a€pp/DOFR
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Proof. There is nothing to prove when y is exceptional. Assume that x is ordinary. We first show
that W(h;) = 0if —u < 1 < 0. Take a y € Op such that ordrpy = p+ 0 — 1 and x(z) # 1 with
z =14 6y. Then (27 /z)h; = hju, where
" 1 1 mim N(af)y
T2 \~y/m'mN(a) 1+Tr(0)y )

< 0, we have u € U’ and, hence, (x/x0)(2)W (h) = xg'(2)W (k). This implies that

If —p <1
= 0. A similar argument shows that W (hmn(a)wg) =0if —pu <1< 0 and a € pp. O

To prove Theorem 10.1, we first observe that ®g(ah~'n) = 0 if h = h (I > 1) or h =
hin(a)wg (I > 1,a € 7Op). In view of Lemmas 11.4 and 11.5, we obtain Zq(W,7) = I} + dc(x) 12,
where

Iy = IN@)lrxo(a” ) = W () | ME, (ho)go(—w)lumy ) du,
By = [N(@)lrxo(a” /o) =W (hauo) | M, (oo —) w2, do

Since /\/l o (ho)po(—w) = 0(a)|N(a)|;1/2900(a_1w) and vol(a) = |N(a)|pp~9/2, we have

B = 1= (e )W () xo(@IN@}? [ T, do
2 e 5/2 —1 3/2 Ry
= 1+pp“ (@)IN(a)[p "W (ho)7(1).
We next have M (howo)go(—w) = xo(a)|N(« )F 2092 Ak (¥)po(IP e~ w) and, hence,
I = % 51 (@) IN(@) [ 202X ke ()W (o) /H TR

To complete the proof of Theorem 10.1, it now remains to show the following.

LEMMA 11.6. Suppose that x € X

prim

/H_%T(“”mw)dw = Ak ($m)X(0)IN(a)|pp*7(1). (11.2)

Proof. Put tg = 6°/6 € K'. By (10.5), taking a sufficiently large lattice L' of K, we have

T(rte)zxK(wm)‘GC >|N(1—t)”2/ ¢m< (w, t9w>> (r(w(l — tg),0)) d™w

M) ONmO) L [ w(gTr(lfte)ww">f<r<w,o>>dw
= Ak ()" XL O] rp 2 /L (1 (w, 2)) do,

where L = (1 —t9)"!L'. We may (and do) suppose that L D II%a. Since y is exceptional, the last
integral is equal to

//1-[10 r(w, zy) (W', 2y)) dig-1q0" dw
= [ m(r(w,zy)) Yo (=Tr(07ww')) dp-1 g’ dw = r(r(w, 2)) duw.
e, /

We thus have e
[, ) do = A Ol r(t0) = A () XON (@)L 2r(0),

which proves the lemma. O

(m,a) is exceptional. For T € T™(a, x), we have
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Remark. When § = 1, the left-hand side of (11.2) is independent of the choice of 6 and equal to
IN()|p'/?7(1) by the assumption that y is exceptional. This implies that Ag (¢, )x(#) = 1 (we can
show this fact directly). Note that, if 6 > 2, the left-hand side of (11.2) depends on the choice of 6.

11.4 Split case

In this subsection, we consider the case where K = F'@ F, and let II} = (7, 1),IIy = (1, 7). We may
(and do) take § = (1,0). Then z,, = 3 N(w) for w € K. Let Z = {t15 | t € K'} be the center of H.

For | € Z, we put by = d(II;'a™).
LEMMA 11.7. We have H = ;5 _, ZH,U.

Proof. For h,h' € H, we write h ~ h' if i € ZH,hid. We first show that, for any h € H, there
exists an | € Z such that h ~ h;. By Iwasawa decomposition of H, we have h = n(x)d(a)u for some
r € F,a € K*,u € U. We may (and do) assume that = # m~!. Putting y = (1 — mx)~! € F*,
we have

n(z) = u(y,y~1))d((1,y7 ) (11.3)
and, hence, h ~ d(a’) for some a’ € K*. Our claim immediately follows from this. It is now sufficient
to show that hy ~ h_, if | < —p. Put ¢ = (1 — 7lm N(«))~! € F*. Note that ordpy’ = —(I + p).
By (11.3), we have hy ~hja(1) =a(r! N(a))h; ~d((1,1/y" ) hi~d((1/y', 1))k Nd(l_[lfr“)hl =h_,. O

LEmMA 11.8. For l > —u, we have
ifl=—
prr(1—p7Y) ifl > —p.

Proof. Let | > —u and put X = ZoH, o, where Zy = {tls | t € O} } and H, o = {u(t) | t € Ok}
Then v; = vol(X). Since t(t)n° =t -n° (t € K'), we have

X={heH|Oa hinda 1y e 0% - (I,0% UI,0%)}.

v :=vol(ZH,\ZH,hU) =

It follows that X =Y U Ul+“ Y. (disjoint union), where
Y = {n(z)dy)u |z € 7'N(@) " Op,y € I a1 OF u € U},
Vi, = {n(x)d@)u | z,—z +m € 7" N(a) ' OF,y € I 50O u € U}.

The lemma now follows from

1—-pt f1<k<l+p—1,
vol(Y) =1, wvol(Y}) = p* x P ' tH O
1—2p7 " ifk=14p.
LEMMA 11.9. For W € W™(x), we have Supp(W) C > ZHyhild.
Proof. This is proved by an argument similar to the proof of Lemma 11.2. O

By Lemma 11.9, we have

LW,7) = [N(@)lr 33 g (det d (11 1150 ) o(ad (1511 Ha)y)
keZ 1=0

x W(d(I e _1))/K(M§O( (I 50 1) o) (—w) 7 (w, ) dw.
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For k € Z and | > 0, we have ®¢(ad(II¥™'1;%a)n) = d(k = | = 0). By this and Lemma 11.8,
we obtain

To(W,7) = Xg (@) IN(@) |20 - W(d(a™)) /K oo w)r(w, 2,) du

1—p ' ifu>0,

= xo (@IN(e) (7MW (d(a™)) x p* {1 if o= 0.

This completes the proof of Theorem 10.1 in the split case.

12. Calculation of local integrals at finite primes: non-primitive case
12.1 In this section, we let Q@ € Xy (K!) and W € W™(x;x0Q) (cf. §10.1), and prove
Theorem 10.2. We keep the notation of §11.

12.2 Inert case

In this subsection, we consider the case where K/F is inert. For k € Z, we have
Towg(W,T) = |N(7r’fa)\F/ / Xo * (det R)W (h) Ay, (w, )T (w, x4 dw dh,
H\H JK

where Ag(w,h) = @0(7rkah_177)(/\/l£0 (h)o)(—w). In view of Lemma 10.3 and the fact that ¢y = ¢y,
we have

oW 5 ¢1,7) = \N(Wka)\p/ / Xo - (det R)W (h) A} (w, h)T(w, 2, ) dw dh,
H\H JK
where
A (w, h) = =®o(r*ad(m)h~n) (M7, (hd(z ")) o)(—w)

— Y wenr g )M, (e a)) o) ()
a€(Op—7mOFp)/mOF

- Y ®(rtad(r n(—a)h )My, (hn(a)d(r))eo)(—w).

acOp /m20Fp

It follows that

P LaisigW,m) = 0 Tong(W 5 1, 7) + {8(k + 1> 0)p~ ! = 1Tk (W, T) + p k1o (W, 7)

= |N(7*a |F/ / Xo * (det W)W (h) By (w, h)7(w, x,) dw dh,

where

Bi(w, h) = Agpr(w, h) — p~ Ay (w, h) + {6(k + pu > 0)p~" — 1} Ag(w, h) + A1 (w, h).
Set

By, = / By (w, h)T(w, ) dw.

To prove Theorem 10.2, it suffices to shovf the following result in view of Lemma 11.2.
ProrosiTiON 12.1. For k,l > 0, we have By, ; = 0.
Proof. For | € Z, set ¢;(w) = @o(r'a~ w). Let | > 0 and k € Z. Observe that

Ap(w, by) = 8(k = 1)(—p) x0()[N(a) [/ 2 ¢ (w)
39

https://doi.org/10.1112/50010437X06002491 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002491

A. MURASE AND T. SUGANO

and that
Aly(w, b)) = (=1)' P xo(@)N(@) |52 {6(k = 1+ Dy (w) — p '3k = 1+ 1)1 (w) + p~ 2L (w)},
where
Ii(w) = > (=N (@) T N(w)a)dy (w),
a€(Op—mOp)/mOFp
aE =10 N ()07 — tk—1-1,4
Lw) = 3, ‘1’0< ) Nﬂ(kﬁf_l )w<—w—2lN<a>—1N<w>a>¢l_1<w>.

aEOF/ﬂ'QOF
A straightforward calculation shows that
I (w) = pdri1(w) — di(w),
Iy(w) = 6(k+1+p > 0)[6(k =1+ D)p°di(w) + 6(k = Dpdi(w) + (k =1 — 1)1 (w)]
and, hence, that
A (w, hy) = (=1 xo0(@)IN(@) |2 x 3k + 1+ > 0)[3(k = Dp~" 1 (w)
+6(k =1+ D)1 +p Her(w) +6(k =1 —1)p~ ¢ (w)].
This implies that, for k,1 > 0,

By(w, ly) = (—p)'x0(@)[N(@)[/26(1 = k + 1){d1(w) — p~21_1(w)}

and, hence,
Biu = (=p) xo(@)IN(@)| 56k = 1 = 1)(Ji = p7J1-0),
where
Jp = / Gy (W) (w, T
Since J; = p~#|N(a)|p7(1) for I > 0, we have proved that By ; = 0. O

12.3 Ramified case

In this subsection, we consider the case where K/F' is a ramified quadratic extension. For k € Z,
we have

Tiea(W.7) = p*[N()| /H y /K xo ! (det ) Ay, (w, )W (h) (s ) deo dh,

where Ag(w,h) = @O(Hkah_ln)(/\/lgo(h)gpo)(—w) (w € K,h € H). By Lemma 10.3 and the fact
that (¢%)Y = ¢T, we obtain

TirgW 5 (97 +67),7) = p FIN(a) \F/ / Xo *(det h) A} (w, W)W (h)T(w, &, ) dw dh,

where

A(w,h) = xo(M) Y Ap(whn(@d() + g ) Y Ap(w, Aa(De)d(I)).

CGOF/TCOF CEOF/TCOF
It follows that

PLiiria(Wor) = p~ P Tpg (W (67 + 67),7)
—6(k =0 and y is ordinary)Zye, (W, 7) + p ' Tyn-1,(W, 7)

= p ¥ |IN(a)| dh/ dw xg * (det h)W (h) By, (w, h)T(w, 24 ),
H,\H K
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where
Bi(w,h) = Ay (w,h) —p~ 2 A, (w,h) — 6(k = 0 and Y is ordinary) Ay (w, k) + Ap_1(w, h).

Set ¢y(w) = po(II~ '~ w) for | € Z.

LEMMA 12.2. Let k > 0.

(i) Forl >0, we have
By(w, ht) = xo(Ia)p'?IN(@)| 5 *[8(k = L or 1 = 1){g1(w) = p~"¢1-1(w)}
—0(l = k=0 and x is ordinary)po(w)].
(ii) Forl >0 and a € pp, we have

Bi(w, hyn(a)wg) = {—Bl pla NI o tw))gp_s(w) ifk = l': 0 and x is ordinary,
0 otherwise,
where f; = p=0/2N(a) [ xo(I'a) A (4).
Proof. First observe that Ag(w,h;) = (1 < k)XO(Hla)pl/2|N(a)|;1/2qbl(w). Using the formulas

3 ML (o) po(w) = po(TT )

CGOF/TCOF

and
Z ML (@(r ! De))po(w) = @o(ITw),

CEOF/ﬂ'OF

we obtain
Hk+(l—l)amN(a)90 — 1kl B
Al (w, hy) = xo(I) Z 0 ( [k M (hi_an (7 e))go(—w)
CEOF/TI'OF
Hk+(l+1)amN(a)90
-1 T — -1
o Z o (‘Hk_1+l"m N(a)Dch” + I+t Muo(ham(mDe))o(~w)
CEOF/WOF

= ol a){ ok > 1= DINET a2 1 (w)

Fok> L DNI e Y MY (eI w)
c€OL /TOF

+o(k =1+ 1)IN(H‘I‘1OF1)I}~/2 Z M, (ﬁ(ﬂ‘ch))so()(—H‘l‘la‘lw)}
CEOF/TI'OF
= xo(I'a)p"/2|N(a) ;1/2{5(k; =lorl—Dptoi_1(w)+2-6(k>1+1)¢(w)}

The assertion (i) is now proved by a straightforward calculation. Next let h = hmn(a)wy (I > 0,
a € pr). A similar argument as above shows that Ay (w,h) = d(k > 1)3; - ¥(a NI~ o w)) g5 (w)
and A (w,h) = {6(k > 1+1)+8(k = 1—1)}p"?3 - ¢(a N(IT"'a~'w))¢_s(w). The second assertion
immediately follows from these. O

PROPOSITION 12.3. Let 7 € T™(a, x).
(i) For k,l >0, we have

/ By (w, hy)T(w, 24) dw = 0.
K
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(ii) For k> 0,1 > 1 and a € pp, we have
/K By (w, hyn(a)wo)7(w, x,) dw = 0.
(iii) Assume that x is exceptional. Then, for k > 0, we have
/K By (w, howo )7 (w, ) dw = 0.
Proof. For l € Z, set

J = / O (w)T(w, ) dw.
K
In view of (10.2) and (10.4), we have

J— p 92 IN(a)|pT(1) if1=0o0r ‘u =0, y is exceptional and [ = —1’,
0 otherwise

for [ > —1. By Lemma 12.2, for k,l > 0, we have
| Butw, oz du
K

= Xo(Hla)pl/2|N(a)|;1/2{5(k: =lorl—1)(J;—p tJ;_1) —6(l = k =0 and x is ordinary).Jo}
=0,

which shows assertion (i). The assertions (ii) and (iii) directly follow from Lemma 12.2(ii). O

In view of Lemma 11.5 and Proposition 12.3, we have completed the proof of Theorem 10.2 in
the ramified case.

12.4 Split case
In this subsection, we consider the case where K = F' @ F' and use the notation of §11.4.

LEMMA 12.4. Let kq, ko € Z.
(i) We have

IHkIHkQ (VV,T) :p_kl_kQ\N(aﬂp/ / Xal(deth)w(h)Akl,kQ(wah)T(w7:1:w)dwdh7
1 T a Hy\H JK

where Ay, p,(w, h) = ¢O(Hlflﬂl2€2ah_177)(/\/l§0(h)goo)(—w).
(ii) We have

Ly o, (W 61, 7) = p M1 752 N() | / / Xo ' (det W)W () Ay, g, (w, h)T(w, 2) dw dh,
1 Hata H,\H JK

where

AL, (W, h) = xalam{@0<H’f1H§2ad<Hz>h—1n><M§0<hd<H51>>¢o><—w>
+ > @o<H’f1H§2ad(Hﬁ)n(—c)h-ln)(Mio<hn<c>d<nl>>soo><—w>}.
c€Op /O

(iii) We have

Ty o (W 2, 7) = p M 752N(0) | / / Xo ' (det YW (R) A, 1, (w, B)T(w, x,) dw dh,
1 HaTa H,\H JK
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where

A2, (w.h) = xalum{%(H’fln’?ad(m>h—1n><M§0<hd<H;1>>soo><—w>

+ ) @o(Hlflﬂ?ad(Hz_l)n(—C)h_ln)(M§0(hn(C)d(Hz))wo)(—w)}-

CEOF/TCOF
(iv) We have

IH,;IH,;%(WW(?,T) = p MR2N(a)|p /HU\H/KXgl(deth)W(h)Afth(w,h)T(w,a:w)dwdh,
where
A, g (W, h) = xo(Th /TIg) = &0 (T TI52 (1 /Tl * k™ ) (M (hd (T /TI9) ™)) 0 ) (—w).
(v) We have
PLpsipgha (W) = 1/21H1;1H§2a(W*¢1,T) = Tpappreg (W)
It V00, 7) 07 Tt prar (W2 7)
= —p RN (a)|p / / Xo ' (det h)W (R) By, g, (w, h)7(w, 2,) dw dh,
H,\H JK
where
By, gy (w, h)
=p PAL g (W, )+ Apy gy (w,h) = Agyir oy (0, B) = Ay gy (w, h) = Af ) (w, B).
(vi) We have
Pt gttt o (Wor) = 02T e (W 6, 7) = T (W1 7)
+Inllcl+lnl;2*la(w*¢07 ) +p 'L, mh ke (W )

_ _phi—ka N () [ / / X&' (det YW (h) Bl 4, (w, hyr(w, 2) duw dh,
H,\H JK
where
Bllﬁll,kg (w7 h)
p—1/2A%17k2 (w7 h) + Akl,kQ (w7 h) - Ak17k2+1(w7 h) - Akl—l,kQ (w7 h) A];H-l ko— 1(w7 h)

Proof. The first assertion is obvious from the definition. The assertions (ii)—(iv) follow from
Lemma 10.3 and the fact that ¢) = ¢o, ¢y = ¢1 and (¢F)" = &7 . The last two assertions are
direct consequences of assertions (i)—(iv). O

By Lemma 11.9, we have

Swp(W)c | Hyhul,
l1,l2€Z,l1+1220

where hy, ;, = d(IT; "I, 2a~1). Set

Biey kg i 12 = / By ks (w, hll,lQ)T(w7:E'w) dw,
K

Biy oty = /K By, ey (W, hyy 1) 7 (w0, ) duw.
To prove Theorem 10.2, it suffices to show the following.
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PROPOSITION 12.5. For ky, ko,l1,ls € Z with k1 > 0,ky > 0,11 + 15 > 0, we have Bkl,kg,ll Iy = =0 and
B;ﬁtl ko,l1,lo = 0

12.5 Proof of Proposition 12.5

To simplify the notation, we set
¢l17l2 - (H llH l2 )
J(l,12) = / 1y 15 (W) T (W, ) duw,
P11 = [ )N do = [ o) -z, d
K K
for Iy, Iy € 7. Note that J(I1,ls) = J'(In,1o) if Iy +ls + 1 > 0.

LEMMA 12.6. For ki, ko,ly,lo € Z with k1 > 0,ky > 0,11 + 15 > 0, we have
By st = 02 2y (15 ) IN(a) |2

—J(ll,ZQ)—I-p 1J(l1—1,l2) ifk‘l :ll—l /-6‘2 l2,
X —J(ll — 1,15+ 1) +p_1J’(ll — 1712) ifky > 1, ke = 1o,
0 otherwise

and

l 1 1/2
8;617k2,l1712 = p(l1+12)/2X0(H11H22O‘)|N( )|F /

—J(ll,ZQ)—I—p_lJ/(ll,lQ—l) ifkr =211, ke =15 — 1,
X —J(ll—l—l,ZQ—1)—|—p_1J(l1,l2—1) if kv =11, ke > 1o,
0 otherwise.

Proof. By the definitions of Ay, 1, and Afl ko We have

Ay ey (W, by 1) = (k1 > Iy, by > 1)p "2 23 (1R ) [N (@) [ 1, 1, (),
AL o w iy 1) =0k > 1 — 1,k > I+ )p" 223 (P15 0) IN(0) [ 61, -1 41 (w),
A (Wi hiy 1) =6(k1 2l + 1, ko 2 1o — 1)p(l1+l2)/2X0(Hl1Hl2@)|N(04)‘;v1/2¢l1+1,12—1(w)
for ki, ko,l1,ls € Z. Next suppose that ki, ko, l1 + I3 = 0. By using the formula
> ML (a(re)go(w) = p{eo(ITy  w) + o(IT; 'w) — o(r'w)},
c€Op/mOFp
we obtain
Al o (w, By, 1)
= p“ﬁl?*”/? o(IF T2 Q)IN(@)] 5% x [3(k1 > I,k > b + 1) {61, 15 (w) + b1, 11511 (w)}
ok =l — 1,k = Do) ér, 10, (w) + p 0 (kL = 1, kg = 1) (N(w)) iy 1,1, (w)]
and
AR (W, hyy )
= pt D 2y (M T Q)N (@) 5 % [0k > b+ 1, ks > o) {1, 15 (w) + 1, 41.4,-1 (w)}
+p ok =11, ko = 1o — D)oy, g1 (w) +p~10(ky =1 + L ko = la — )b (N(w)) bty 11 (w)].
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A straightforward calculation shows that
By oy (w0, 1y) = p 22 o (TP TR ) [N ()12
X [0(ky =1 — 1, ko = lo){—¢u, 1, (w) +p~ 1105 (w) }
+0(ky =l ko = b)) { = —1,141(w) + p~ " m (N(w)) 1, —1,1, (w) }]

and
By, ey (w, by 1) = U2 3o (T ) [N () 7172
X [8(k1 = b, kg = Lo — D){=u, 1, (w) + p~ P (N(w)) iy 1,1 (w)}
+0(ky =l k2 = lo){ =10 1(w) + P iy 1,1 (w)}].
These immediately show the lemma. O

To complete the proof of Proposition 12.5, it is sufficient to show the following.

LEMMA 12.7. Let l1,lo € Z with l1 + 1o > 0.
(i) Ifly > 1, we have J(I1,l2) = p~1J (I3 — 1,15).
(i) Ifly > 1, we have J(I1,l2) = p~tJ'(I1,15 — 1).

Proof. Suppose that [ + 1o > 0 and ls > 1. Take a = (a1, a9) € K* such that a = aOg. We then

have
J(1ly,12) :/ T(w, x4 ) dw
M 2a
ety [ ) (00,00 dudu
M 2a Jrl2=1a0p
lb—1_ -1 1 1
=72 onlg Tl w+ (0,u), —wywe — —wiu | dudw
Hllll_llfa 2= lasOp 2 2
1
= |7r12_1a2|;1/ / T((wl,wg +u), ——w (w2 + u)> du dw
min2a Jalz-1a,0p 2
:p_l/l lo—1 T(w, _xw)dw
02 a
- p_l']/(lh 12 - ]-)7
which proves assertion (ii). The proof of assertion (i) is similar and we omit it. O
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