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Abstract

Groups, all proper factor-groups of which are hypercentral of finite torsion-free rank, are studied in this
article.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 20F19, 20F14,

0. Introduction

Let G be a group and let N be a normal subgroup of G. The factor-group G/N is
said to be a proper factor-group if N # (1). The influence of properties of proper
factor-groups on properties of groups was the subject of investigation of many authors.
The classic example in this area is the following theorem of Robinson [14, Theorem
10.513: a finitely generated soluble group is nilpotent if all its finite factor-groups are
nilpotent. The set of all finite factor-groups also plays an important role in the study of
finitely presented groups and in algorithmic problems. The influence of the structure
of torsion factor-groups on the structure of some soluble groups has been studied in
[21]. But if we consider all proper factor-groups, the influence of their structure on
the structure of a group will increase powerfully.

Let J be a class of groups. A group G is called a just-non-J-group if G & J,
but every proper factor-group of G belongs to J. The structure of just-non-J-groups
has already been studied for several choices of the class J. The first research on this
topic was done by Newman [11, 12], who considered just-non-abelian groups. Later,
the class of just-non-J-groups was investigated in the cases where J is chosen to be
the class of finite groups [9, 10, 18], of polycyclic or supersoluble groups [5, 16], of
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Chernikov groups [1], of groups with transitive normality [15], of finite-by-abelian
or central-by-finite groups [17]. Franciosi and de Giovanni considered groups, all
proper factor-groups of which are nilpotent of class < ¢ [2]. Some generalization
of this situation can be found in [22]. If G is a non-monolithic group in which all
proper factor-groups are nilpotent of class < ¢, then G is nilpotent also. But if we
reject the bounding of class of nilpotency, the non-monolithic case will be much more
complicated. Groups, all proper factor-groups of which are hypercentral of finite O-
rank (torsion-free rank), are studied in this paper. Note that every simple group G ¢ J
is a just-non-J-group. Therefore, in an investigation concerning just-non-J-groups, it
is natural to consider groups which include a non-identity abelian normal subgroup,
that are groups with a non-identity Fitting subgroup.
The main results of our paper are the following theorems.

THEOREM 1. Let G be a non-monolithic group, all proper factor-groups of which
are hypercentral groups of finite O-rank. If Fit G # (1), then G is hypercentral. In
particular, if every proper factor-group of a non-monolithic group G is periodic and
hypercentral, then G is hypercentral.

THEOREM 2. Let G be a monolithic group with Fitt G # (1). Then G is a just-non-
hypercentral group if and only if G satisfies the following conditions:

(1) Fitt G = M is the monolith of G (in particular, M is abelian);

(2) M is a maximal abelian normal subgroup of G,

(3) G = MMAH where H = Ng(H) is a hypercentral group (we use A to denote the
semidirect product with the normal subgroup M );

(4) all complements to M are conjugate in G;

(5) the periodic part T of the center §(H) is locally cyclic;

(6) if M is an elementary abelian p-group for some prime p then T is a p’-group.

Moreover, if every proper factor-group of G has a finite O-rank, then M is an
elementary abelian p-subgroup and T = & (H). In particular, if every proper factor-
group of G is periodic, then G is also periodic.

1. Some preliminary results

LEMMA 1.1. Let G be a just-non-hypercentral group. Then
(1) G does not include normal non-identity subgroups R, and R, suchthat RiNR; =

(1),
(2) $(G)=(1);
(3) if G includes a finite non-identity normal subgroup F, then G is finite.
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PROOF. (1) From R, N R, = (1) we obtain the imbedding G < G/R, x G/R,,
which shows that G is hypercentral.

(2) is obvious.

(3) Suppose that G is infinite. We can assume that F is a finite minimal normal
subgroup of G. From (1) we obtain that F < Cs(F), in particular F is abelian. The
factor-group G/ Cg(F) is finite, so Cg (F) = C is infinite. Since G/ F is hypercentral,
C/FNZ(G/F)#(1). Let F #£aF € C/FNE(G/F), A = (F,a). Ifaisanelement
of an infinite order then A* = (a*) # (1) for k = |F|. Then A* N F = (1) and we
have a contradiction of (1). If |a| is finite then A is finite, in particular, A satisfies
Min-G. Since G/A is hypercentral, by [19, Theorem 1’} A has the decomposition
A = A; X A, where A| and A, are G-invariant subgroups such that every G-chief
factor of A, is G-central and every G-chief factor of A, is not G-central. Since
A# Fand A/F <¢(G/F), A; # (1). This means that {(G) # (1), and we have a
contradiction of (2). O

LEMMA 1.2. Let G be an infinite just-non-hypercentral group and let A be a maxi-
mal normal abelian subgroup of G. Assume that A # (1). Then

(1) either A is an infinite elementary abelian p-subgroup for some prime p, or A is
a torsion-free subgroup;

(2) A=Cs(A);

(3) ifA#zA€(G/A), then Cs(z) = (1).

PROOF. (1) Let T be the periodic part of A. Assume that 7 # (1). Lemma 1.1
yields that T is a p-subgroup for some prime p. Put 7, = Q(T) = {x € T |
x? = 1}. Lemma 1.1 implies that 7| is an infinite elementary abelian p-subgroup.
Suppose that T # T,. Since G/T, is hypercentral, T/T) N {(G/Ty) # (1). Let
T, # ¢cT), € T/Ty,N&(G/T)), then [c, g] € T, for each g € G. It follows that
1 =[c, g} =[c*, g]. Since ¢ &€ Ty, c? # 1. This means that £ (G) # (1). However,
this contradicts Lemma 1.1. Hence T = T,.

If A# T,then A =T x B for some subgroup B (see, for example, {3, Theorem
27.5]). In particular, A” is a non-identity G-invariant torsion-free subgroup. But this
contradicts Lemma 1.1. Consequently, if T 5 (1) then A is elementary abelian.

(2) is almost obvious.

(3) Consider the mapping ¢ : A — A defined by theruleagp = [a, z],a € A. Since
zA € £(G/A), ¢ is a G-endomorphism of A. In particular,Im¢ = (A, z]and Ker¢ =
C4(z) are G-invariant subgroups of A. By (2) z € Cg(A) sothat C,(z) # A. Suppose
that C4(z) # (1). Then G/C,4(z) is hypercentral and £ (G /C4(z)) N A/ C4(z) # (1).
Let Ca(z) # aCu(z) € Z(G/C4(2)) N A/C4(2). Since a € Cx(z),a, = [a,z] # 1.
Let g be an arbitrary element of G. Rewrite the Hall-Witt identity in the form

[la,z], g1'[lz”" g7 ', al¥llg,a”'1,27')" =1, x=z""
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Since gA € Z(G/A), [z7',g7'] € A, sothat [[z7!, g7 '],a] = 1. Since aC,(z) €
Z(G/Ca2)), (g, a ') € Ca(z),and [[g,a™ '],z '] = 1. It follows that [[a, z]g] = 1,
that is 1 = [a,, g]. This means that £(G) # (1). This contradicts Lemma 1.2, so (3)
is proved. O

Recall the definition of finite O-rank.

DEFINITION. We say that a group G has finite O-rank (or finite torsion-free rank)
which is equal to r, if G has a finite subnormal series (1) = Gy < G, < --- < G, =
G, r factors of which are infinite cyclic groups, and all remaining factors are torsion
groups.

We will denote the 0-rank of group G by 1¢(G).

LEMMA 1.3. Let G be a torsion-free nilpotent group of finite O-rank and let p be a
prime number. Then G has a finite subnormal series (1) = Hy < H) < H < --- <
H, = G, in which every factor H;,/H; is torsion and p-divisible, 1 <i <n — 1,
and the subgroup H, is finitely generated.

PROOF. Since the factor-group of a torsion-free nilpotent group over its center is
torsion-free also (see, for example, [13, Theorem 2.25]), we can use induction on the
class of nilpotence ¢ of the group G. If ¢ = 1 then G is an abelian torsion-free group
of finite O-rank. Let {a¢; | 1 < i < r} be a maximal Z-independent subset of G,
B =1{a; |1 <i <r). Then G/B is a torsion abelian group of finite Prufer rank, and
therefore its Sylow p-subgroup P/B is a Chemikov group. Then P/B includes the
finite subgroup H/B such that P/H is a divisible Chernikov p-group. In this case
G/H is a p-divisible group.

Let ¢ > 1 and C = ¢(G). Then G/C is a torsion-free nilpotent group of class
¢ — 1, and by the induction hypothesis G/ C has a finite subnormal series C = H, <
H; < --- < H, = G such that H,/C is finitely generated and all remaining factors
H;.\/H; are torsion and p-divisible, 2 < i < n — 1. Since H,/C is finitely generated,
H, = F - C for some finitely generated subgroup F. Since C = £(G), F is normal in
H,. By the induction hypothesis C includes the finitely generated subgroup D such
that C/D is torsion and p-divisible. Put H, = D-F. Then H, is finitely generated and
normal in H,, and H,/H, = CF/DF =CDF/DF ZC/CNDF =C/D(CNF),
so that H,/ H, is torsion and p-divisible. O

LEMMA 1.4, Let F be a field, G a hypercentral group, and let A be an FG-
module. Suppose that A includes an FG-submodule B satisfying the following
conditions:

(1) A(x—1) < Bforeveryx € G,
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(2) Bisasimple FG-submodule;
(3) Co(B) #G.

Then A includes an F G-submodule C suchthat A= B & C.

PROOE. We can assume that C5(A) = (1). Let 1 # z € £(G). Then the mapping
¢ :a— a(z—1),a € A,isan FG-endomorphism and Ker ¢ = Ann,(z—1) = C,(2),
Img = A(z — 1). It follows from (1) that A(z — 1) < B. Since B is a simple FG-
submodule, A(z—1) = B. If we assume that B(z—1) = (0}, then we have B < Ker¢,
therefore B = A(z — 1) = A/ Kerg. But in this case, B(x — 1) = (0) for any
x € G. This is a contradiction of condition (3). Hence A(z — 1) = Bz —1). It
follows that A = Ann,(z — 1) + B. Since B = B(z — 1), Ann,(z — 1) N B = (0) so
that A = B @ C where C = Ann,(z — 1). ]

DEFINITION. Let G be a just-non-hypercentral group, A a non-identity normal
abelian subgroup of G, Z;(A) = {B | B is a non-identity G-invariant subgroup of
A}. Let M = N%;(A). Then either M = (1) (non-monolithic case) or M # (1). In
the second case M is called the monolith of group G.

Lemma 1.4 implies that either A is an elementary abelian p-group or A is torsion-
free. Consequently, we must consider the following situations: non-monolithic case
of characteristic p, non-monolithic case of characteristic 0, and the monolithic case.

2. Non-monolithic case of characteristic p

Everywhere in this section (except Proposition 2.4), G is a just-non-hypercentral
non-monolithic group and A is a maximal normal abelian subgroup of G. We also
assume that A is an elementary abelian p-group for some prime p. Lemma 1.1 implies
that A is infinite.

LEMMA 2.1. The factor-group G/ A is torsion-free. In particular, if every proper
Jactor-group of G has finite 0-rank, then G/ A is a nilpotent torsion-free group of finite
0-rank.

PROOF. Let P/A be a Sylow p-subgroup of G/A. Suppose that P/A is a non-
identity. Then P/ANE(G/A) # (1). Let gA # A, gA € P/ANE(G/A). Then
g is a p-element and the subgroup (g, A) is nilpotent (see, for example, [14, Lemma
6.34]). It follows that C,(g) # (1). However, this is a contradiction of Lemma 1.2,

Let Q/A be a Sylow p’-subgroup of G/A. Suppose that @/A # (1). Then (1) #
R/A=Q/ANZ(G/A). Let B € Z;(A). Since G/B is hypercentral and A/ B is the
Sylow p-subgroup of R/B, R/B = A/B x §/B where S/B is a Sylow p’-subgroup
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of R/B. Since S/B = R/A, R/B is abelian so that [R, R] < NZ;(A) = (1). Thus
R is an abelian normal subgroup of G. But A < R and A # R, so we obtain a
contradiction with the choice of A. This contradiction shows that G/ A is torsion-free.

If G/A has a finite O-rank, then it is nilpotent (see, for example, [14, Theorem
6.36]). O

Now we need some module-theoretical concepts.

DEFINITION. Let J be a principal ideal domain, A a J-module, a € A, and let
Anng(a) = {x € J | ax = 0}. An element a is called J-torsion if Ann,(a) # (0).
The set t;(A) of all J-torsion elements of A is a J-submodule of A. The submodule
t;(A) is called the J-torsion part of A. If A = #,(A) then A is called the J-torsion
module. If t,(A) = (0), then we say that A is J-torsion-free.

Let I beanidealof J. Put A; = {a € A | al” = (0) for some n € N}. ltis easy
to see that A, is a J-submodule of A. This J-submodule is called the /-component
of module A. Let Spec(J) be the set of all maximal ideals of J. If a € ¢,(A),
then Ann,(a) = P --. P/ for some P,..., P, € Spec(J), ky,... .k € N. Put
[,4a) ={P, ..., B}, [1,(A) = Ugera)11,5(a).

As in the case when J = Z, we can prove that t,(A) = @peAp, ©® = I1,(A).
We can consider A as Z H-module where H = G /A is a hypercentral group.

LEMMA 2.2. (1) Let A # xA € {(G/A), then A (as F,(x)-module) is F,{x)-
torsion-free.
(2) If B is a non-identity G-invariant subgroup of A, then C;(B) = A.

PROOF. (1) Since |xA| is infinite, by Lemma 2.1, |x| is infinite too and F,{(x) is
a principal ideal domain. We consider A as F,H-module where H = G/A and
use additive notation for A. Let T be the F,(x)-torsion part of A and suppose that
T # (0). Since xA € {(G/A), the I-component of A is a F,, H-submodule for every
ideal I of F,(x). Lemma 1.1 yields that I1,(A) = {P} for some P € Spec(F,(x}).
Put7T, ={a € T | aP = {0)} and assume that T # T,. The factor-group G/7, is
hypercentral, therefore, £ (G/T\)NT /T, # (1). LetaTl, # T\,aT, € T/T\N{(G/ TY).
Then Anng,(,,(aTy) = (x — 1) Fp(x) = Py. Since I1g,((T) = Mg, (T/T)), P = P.
However, in this case, Annp,(, (T1) = Pi. Inother words, Ty < Ann,(x—1) = Cy(x),
which is a contradiction of Lemma 1.2. Hence T = T,.

Suppose that T # A. As in the abelian groups case, we can provethat A =T @ C
for some F,(x)-submodule C. Let B = AP. Then B = CP < C, in particular,
BNC = (0). Since xA € £(G/A), B is a G-invariant subgroup of A and we obtain a
contradiction of Lemma 1.1. Hence A = T. Since F,{x) is a principal ideal domain,
there is an element y such that P = yF,(x). Since P is a maximal ideal of F,(x}, y
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is an irreducible polynomial in x. Leta € A. From aF,(x) = F,(x)/P we obtain
laF,(x)| = [{a)*| = p' wheret = deg y. It follows that x' € Cs(a) where! = (p')!.
Since it is true for each a € A, x' € C5(A). By Lemma 1.2 C;(A) = A. This means
that |xA| has finite order. However, Lemma 2.1 implies that G/A is torsion-free.
Hence T = (0).

(2) It follows from the choice of B that G/B is hypercentral. If a € A, then the
subgroup (a B, x B) is nilpotent. It follows that

[a,x,...,x]€ B forsome neN.
——

n

We can rewrite it using the additive notation: a(x — 1)" € B. This means that the
factor-module A/B is F,(x)-torsion. Let g € Cs(B), ag = a,, then

ax -1 =agx—-1Y'=a(x—-1)"-g=alx—-1)", or(a, —a)(x — 1)" =0.

Since A is F,(x)-torsion-free, this means that a — a; = 0, that is ag = a. In other
words, g € Cg(A) = A. O

DEFINITION. Let H be a group and let A be a ZH-module. Then A is called the
just infinite Z H-module, if A satisfies the following conditions:

(JI1) if B is anon-zero Z H-submodule of A, then A/B is finite;
(JI12) N{B | B is anon-zero Z H-submodule of A} = (0).

LEMMA 2.3. Suppose that all proper factor-groups of G have finite O-rank. Let
1#ae€ A, ,and B = (a)°. Then B is a just infinite Z H-module where H = G/A.

PROOF. Since G is a non-monolithic group, B satisfies the condition (JI 2). Let
C be a G-invariant subgroup of B (that is C is a Z H-submodule of B), C # (1).
Then G/C is hypercentral. Lemma 2.1 implies that G/A is a torsion-free nilpotent
group of finite 0-rank. By Lemma 1.3 the group G possesses a finite subnormal series
A= Hy < H < H, <--- < H, = G such that H,/H, is finitely generated and
H;,,/H,; are torsion and p-divisible, 1 <i <n — 1.

Put B;/C = (a)""C/C, B,/C = (a):C/C. Since H,/A is finitely generated,
H, = F, - A for some finitely generated subgroup F;. Since G/C is a hypercentral
group, its finitely generated subgroup (aC, F\C/C) is nilpotent. Since the torsion
part of a finitely generated nilpotent group is finite, B;/C is finite. [7, Lemma 5]
implies that every H,-invariant subgroup of B,/C is H, - invariant. This means that
B,/C = B;/C, in particular, B,/C is finite. By [7, Lemma 5] after finitely many
steps, we obtain the equation B/C = B,/C. So, B/C is finite. Hence B satisfies the
condition (JI 1), and so B is a just infinite Z H-submodule. g
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PROPOSITION 2.4. Let G be a non-monolithic group, all proper factor-groups of
which are hypercentral groups of finite O-rank, and let A be a non-identity maximal
normal abelian subgroup of G. If A is not torsion-free, then G is hypercentral.

PROOF. Assume the contrary. Let G be non-hypercentral, that is G be just-non-
hypercentral. Lemma 1.2 implies that A is an elementary abelian p-subgroup for
some prime p. By Lemma 2.1 G/A is a nilpotent torsion-free group of finite O-rank.

LetxA # A,aA € $(G/A),1 #a € A, B = (a). It follows from Lemma 2.2 that
Cg(B) = A. By Lemma 2.3 B is a just infinite F, H-module where H = G/A. We
canconsider B as a J H-module where J = F,(x). By Lemma 2.2 B is J-torsion-free.
From [6, Theorem 2'] we obtain that H is finitely generated and abelian-by-finite, and
B is a J-minimax module, that is B includes a finitely generated submodule C such
that B/C is a J-torsion module with the finite set I1;(B/C). Since Spec J is infinite,
there exists a maximal ideal P suchthat P ¢ I1,(B/C). Again P = yJ where y is an
irreducible polynomial. We can choose P such that deg y > 2. In particular C/CP is
the P-componentof B/C P ,hence B/CP = C/CP®E/CP,where E/CP = B/C.
It follows that BP < E, in particular, B, = BP # B. Since xA € {(G/A), B, is a
G-invariant subgroup of B. This means that B/ B, is finite, B/B P is a vector space
over the field J/P = F|,sothat B/B, = M,/B, x --- x M;/B, where M;/B, is a
minimal J - submodule 1 < i < k. From the choice of P, it follows that |M;/B,| > p?
forany i. Since B} # (1), G/B, is hypercentral. Then ¢(G/B,)N B/B; # (1). Since
M;/B, is a minimal (x)-invariant subgroup and xA € ¢{(G/A), either M;/B, <
Z(G/By) or M;/B, N¢(G/B)) = (1). It follows that there is an index ¢ such that
M,/B, < ¢(G/B)). Since cB, € £(G/B)), |{c)°B,/B;| = p. On the other hand
[{(c)*'B,/B,| = |M,/B,| > p>. This contradiction shows that G is hypercentral. [

3. Non-monolithic case of characteristic 0

Everywhere in this section (except Proposition 3.5) G is a just-non-hypercentral
non-monolithic group, and A is a maximal normal abelian subgroup of G. We assume
that A is torsion-free.

Put #;(A) = {B | B is a non-identity G-invariant pure subgroup of A}. We have
the following two possibilities: N (A) = (1) and NFP;(A) # (1). Consider the
first possibility.

LEMMA 3.1. If NP (A) = (1), then G/ A is torsion-free.

PROOF. Let T/A be the torsion part of G/A. Suppose that T/A # (1). Then
T/AN¢(G/A) # (1). Therefore T contains an element x € A such that x?(A for
some prime p and xA € {(G/A). Let V = (x, A), B € &;(A). Since B # (1)
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then G/B is a hypercentral group. If V/B is torsion-free, V /B is abelian (see, for
example, [8, Chapter 66]). Suppose that V/B contains elements of finite order. Let
Y /B be the torsion part of V/B. Since A/B is torsion-free, |Y/B| = p. Then Y/B
isnormal in G/B. Since Y/BN A/B = (1),[Y,A] < B. So,V/B=Y/B x A/B
is abelian. Hence in each case V/B is abelian. In other words, [V, V] < B. Since
it is true for every subgroup B € £2;(A), it follows that [V, V] < NZ;(A) = (1).
Consequently, V is abelian. This is a contradiction with the choice of A. Hence G/A
is torsion-free. O

DEFINITION. Let R be a ring, H be a group, and let A be an RH-module. We
say that A is an R H-hypercentral (or R H-hypertrivial) module if A has an ascending
series of R H-submodules

0)=A <A< <A <An<--<A=A

such that A, (x — 1) < A, foreveryx € H,a < y.

Let G be a just-non-hypercentral group, A be a non-identity normal abelian sub-
group of G, and H = G/Cs;(A). Suppose that A is torsion-free. We will consider
A as ZH-module. Let D = A ®; Q. We can extend the action of H on A to the
action of H on D in only one way. Let £ be a non-zero Q H-submodule of D, then
E, = EN A # (0). From the relations A/E, = A/JANEZ=A+E/E < D/E, we
obtain that A/E, is Z-torsion-free. The factor-group G/ E, is hypercentral, therefore
the ZH-module A/E, is ZH-hypercentral. Let E;, = Cy < C) < --- < Cy < Cyy1 <

- < C, = A be an ascending series of Z H-submodules such that A,,;(x — 1) < A,
foreach x € H,0 < o < y. Since A/E, is Z-torsion-free, we can choose the
submodule C, such that C, is pure, @ < y. Put Z, = C, ®; Q. Then, obviously,
theseries E =Zy < Z, <. < Zy < Zyy <--- < Z, = Disa QH-hypercentral
series of D/E. Consequently, every proper factor-module of Q H-module D is QH-
hypercentral. Hence we come to the problem of studying the Q H-module D, every
Q H -factor-module of which is Q H -hypercentral, where H is a hypercentral group.

Suppose that NP (A) = (0). Let L = Nger B ®z O, where T = Z;(A) If we
assume that L # (0) then L, = L N A # (0). On the other hand,

LNA=(NperB®; Q)NA=Nper(BRz QNA) =NgerB=(0).
This means that L = {(0) and therefore D is a non-monolithic Q H-module.

PROPOSITION 3.2. Let H be a hypercentral torsion-free group, D a non-monolithic
QH-module, and Cy(D) = (1). Suppose that every proper factor-module of D is
Q H-hypercentral.

(1) If1 # x € §(H), then D is Q{x)-torsion-free.
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(2) If H has finite O-rank, then D is Q H-hypercentral .

PROOE. (1) Let T be the Q{x)-torsion part of D. Suppose that T # (0). Since
x € ¢(H), the I-component of D is a @ H-submodule for every ideal I of ring Q(x).
It follows that Iy ,,(T) = {P} for some maximal ideal P of Q(x). Put T} = {a €
T | aP = (0)}). Assume that T # T,. Then D/T, is a Q H-hypercentral module.
Thus for every element d € D, there is a number n € N such that d(x — 1)" € T,.
Since Iy (T/T) = {P}, this means that P = (x — 1)Q(x). But in this case
T, < Cp(x); that is Cp(x) # (0). This is a contradiction of Lemma 1.2. Hence
T=T.PuC=DP,thenT NC = (0). This means that C = (0); thatis D = T;.
Since D is non-monolithic, D includes a proper non-zero Q H-submodule £. Then
D/E is a Q H-hypercentral torsion module with I1,,,(D/E) = {P}. It follows that
P = (x — 1)Q{x), which is impossible, and so (1) is proved.

(2) Assume that D is non-Q H-hypercentral. Put / = Q(x). We can consider D as
JH-module. Let0 #d € D,E =dJH,andmr = {P | P € Spec(J) and E # EP}.

Since E is not J-torsion, [20, Theorem 2.3] implies that the set 7 is infinite. Thus
7 contains an ideal P such that P # J(x — 1). From the choice of x, we obtain that
E P is a Q H-submodule. It follows that D/E P is a Q H-hypercentral module. In
particular, {ou(D/EP)NE/EP = L/EP # (0). This means that L(x — 1) < EP.
On the other hand, LP < EP. Since P and J(x — 1) are distinct maximal ideals
of J, P+ J(x — 1) = J. From the inclusions L(x — 1) < EP, LP < EP, we
obtain that L. < E P, in particular, L/E P = (0). This contradiction proves that D is
Q H -hypercentral. O

Consideration of the case when N9?;(A) # (1) is our next step.
LEMMA 3.3. If NP;(A) # (1) then NPz (A) = A.

PROOE. Assume the contrary, and let B = N%?;(A) # {A). Then B is a proper
G-invariant pure subgroup of A. Lemma 1.2 yields that A = Cs(A). Put H = G/A.
We will consider A as a ZH-module. Put D = A ®; Q. We can consider D as a
QH-module. Let E = B ®; Q, then E is a proper Q H-submodule of D. If C is a
proper G-invariant non-identity subgroup of B, then from the choice of B we obtain
that B/C is a torsion group. It follows that E is a simple Q H-submodule. Since
E # (0), the factor-module D/E is QH-hypercentral. Let V/E = {ou(D/E). By
Lemma 1.4 there exists a Q H-submodule W such that V = E @& W. It follows from
the choice of D that W, = V N A # (0). Hence W, is a non-identity G-invariant
subgroup of A such that B N W, = (1). This is a contradiction of Lemma 1.1. So,
Ps(A) ={A}. u
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PROPOSITION 3.4. Let G be a non-monolithic group, the proper factor-groups of
which are hypercentral groups of finite O-rank, and let A be maximal normal abelian
subgroup of A. If A is a non-identity torsion-free subgroup, then G is hypercentral.

PROOE. If N#;(A) = (1), then we can use Proposition 3.2. Suppose that
NPz (A) # (1). Assume that G is not-hypercentral. Lemma 3.3 implies that for
every non-identity G-invariant subgroup B of A, the factor-group A/ B is torsion.

Letl #a € A, B = (a)’, w = {p | pisaprime such that B # B*}. [20, Theorem
2.3] proves that the set 7 is infinite. Let p € 7. Since B/B” = (a)° B*/B”, B/B”
includes a proper G -invariant maximal subgroup M,/ B?. Since G/ B” is hypercentral,
and any chief factor of a locally nilpotent group is central (see, for example, [13,
Theorem 5.27, Corollary 1}), [B, G] < M,. It follows that [B, G] < N, M,. If
[B, G] # (1) then the factor-group B/[B, G] is torsion. Since x is infinite, the set
[1(B/[B, G]) is infinite too. On the other hand, B/[B, G] = (a)°[B, G}/[B, G] =
(a)[B, G]/[B, G]. Hence B/[B, G} is finite. This contradiction shows that [B, G] =
(1), thatis B < £(G). But this is a contradiction of Lemma 1.2. Consequently, G is
hypercentral. O

PROOF OF THEOREM 1. Let A be a maximal normal abelian subgroup of G. Since
Fitt G # (1), A # (1). If A is not torsion-free then G is hypercentral by Proposition
2.4. If A is torsion-free, then G is hypercentral by Proposition 3.4. ]

4. Monolithic case

LEMMA 4.1. Let G be a monolithic just-non-hypercentral group and let M be the
monolith of G. If M is abelian, then M is a maximal normal abelian subgroup of G ;
in particular, M = C5(M). Moreover, M = FittG.

PROOF. Let A be a maximal normal abelian subgroup of G such that M < A.
Suppose that A # M. Lemma 1.2 implies that either A is an elementary abelian
p-subgroup for some prime p, or A is torsion-free. Consider the first case. Since
G /M ishypercentral, (1) # A/MN&(G/M). LetaM # M,aM € $(G/M)NA/M,
B = (a, M). We can consider B as F,H-module, where H = G/A. Then M is a
simple F,H-submodule of B, and [B, g] < M forany g € G. By Lemma 1.4 there
exists a G-invariant subgroup C such that M NC = (1). This contradicts Lemma 1.1.

Let A be a torsion-free subgroup. We can consider A as ZH-module. Put D =
A ®; Q. We can consider D as Q H-module. Since M is a simple Z H-module, the
additive group of M is divisible,and M = M ®; Q. Since M is divisible, A = M x U
for some subgroup U (see, for example, [3, Theorem 21.2}). This means that A/M
is torsion-free. Since G/M is hypercentral , £(G/M) N A/M is non-trivial. Let
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aM # M,aM € ;(G/MYNA/M,E = (a, M) ®z Q. Then E/M is a Q H-central
factor of Q H-module D. By Lemma 1.4 there exists a Q H-submodule C such that
E = M & C. It follows from the choice of D that C; = C N A = (1). But in this case
C, N M = (1), and we obtain a contradiction of Lemma 1.1.

Put F = Fitt G, and assume that M # F. Since G/M is hypercentral, F/M N
C(G/M) # (1). Let M # xM € (G/M)NF/M, 1 # a € M. The subgroup
L = (x,a) is nilpotent (see, for example, [13, Theorem 2.18]). It follows that
Cuni(x) # (1). However this is in contradiction with Lemma 1.2. Hence M =
F. O

LEMMA 4.2, Let H be a hypercentral group, M a simple Z H-module, Cy(M) =
(1), C =& (H), and let T be the torsion part of C.

(1Y If M is Z-torsion-free, then T is a locally cyclic subgroup.

(2) If M is an elementary abelian p-subgroup for some prime p, then T is a locally
cyclic p’-subgroup.

(3) If H has finite O-rank, then M is an elementary abelian p-subgroup for some
prime p, and C is a locally cyclic p’-subgroup.

PROOF. Put £ = Endz,(M). Then E is a divisible algebra by Schur’s theorem.
Let Z be the center of E. Then Z is a subfield of E. For every element ¢ € C
the mapping 7. : @ — ac,a € M, is a Z H-automorphism of M, and the mapping
v:ic— 1, c € C,is an imbedding of C in the multiplicative group of Z because
Cu(M) = (1). It follows from [4, Theorem 127.3] that T is a locally cyclic subgroup
(moreover, it is a p’-subgroup if M is an elementary abelian p-group). If ro(H) is
finite, then A is an elementary abelian p-group for some prime p by [20, Theorem
2.3]. From [20, Theorem 2.3], we obtain that C is a torsion subgroup. O

PROOF OF THEOREM 2. Lemma 4.1 implies that M is the hypercentral residual of
G. It follows from [19, Theorem 2'] that G includes a subgroup H such that G is a
split extension of M by H, and H = Ng(H) is hypercentral. By [19, Theorem 2'] ali
complements to M are conjugate. Condition (1) follows from Lemma 4.1, condition
(2) follows from Lemma 4.1, Conditions (5) and (6) follow from Lemma 4.2, O

The last statement of Theorem 2 follows from previous statements and Lemma 4.2.
The question about the existence of groups from Theorems 1 and 2 is natural. The
following theorem clarifies this situation.

THEOREM 3. Let H be a hypercentral group, C = ¢(H), and let T be the periodic
part of C.

(1) If T = C is a locally cyclic p’-subgroup, and p is prime, then there exists a
simple F,H-module M such that Cy(M) = (1).
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(2) If H has infinite O-rank, and T is a locally cyclic group, then there exists a simple
Z H-module M such that Cy (M) = (1) and the additive group of M is torsion-free.
(3) If H has infinite O-rank, and T is a locally cyclic p’-subgroup for some prime
D, then there exists a simple F,H-module M such that Cy(M) = (1).

PROOF. (1) There exists a simple F,C-module B such that Cc(B) = (1) (see, for
example, [17, Section 4]). Consider the F, H-module B* = B ®y,¢ F, H and identify,
in the natural way, B with the F,C-submodule of B ® 1. Then B* = &,y Bt where
Y is the transversal to C in H. Let M be a F,H-composition factor of B*. Then
M is a simple F,H-module. Since B* is a semisimple F,C-module, there exists a
non-empty subset S of Y such that M is isomorphic to My = @,.sBt. If t € S then
Cc(M) < Ce(Bt) = t71Cc(B)t = Cc(B). This means that Cc(M) = (1). Hence
Cu(M) = (1).

(2) Since H has an infinite O-rank, H includes an abelian subgroup V of infinite
O-rank (see, for example, [14, Theorem 6.36]). We can assume that C < V. Let
Q be a maximal periodic subgroup of V with the property T N Q@ = (1), and let
T,/ Q be the periodic part of V/Q. Then Soc(T,/Q) = (SocT)Q/Q = SocT, in
particular, Soc(7,/ Q) is locally cyclic. It follows that 7,/ Q is locally cyclic. Hence
there exists a simple ZV-module B such that Cy(B) = @ and the additive group
of B is torsion-free (see [17, Proposition 4.13]). It follows from the choice of B
that Cy(B)NC = (1). Put B* = B ®;c ZH, then B* = @®,.sBt, where S is a
transversal to V in H. Let M be a composition Z H -factor of B*, then M is a simple
ZH-module and M = @, Bt for some subset R of S. For every t € R, we have
Cyu(M)NC < Cc(Bt) = t7'Ce(B)t = (1). This means that Cy(M) N C = (1).
Since H is hypercentral, C; (M) = (1). The proof of (3) is similar. O

REMARK. Lemma 4.2 shows that if M is a simple Z H-module with C, (M) = (1),
then M is an elementary abelian p-subgroup for some prime p and C = £(G) is a

locally cyclic p’-subgroup. Conversely, Theorem 3 (1) implies that for such group H
there exists a simple F, H-module M with identity centralizer.
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