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The tensor product A ® B of the distributive lattices A and B was first investigated by
Fraser in [4] and [5]. In this paper, we present some results relevant to the structure
and construction of this tensor product. In particular, we establish a sufficient condition
for join-irreducibility in the tensor product and show that this condition characterizes
join-irreducibility in the case that A and B satisfy the descending chain condition. We
also show that if A and B satisfy the descending chain condition then so does A ® B;
this insures the compact generation of A ® B by its join-irreducibles. We conclude with
some examples and applications of our results to the tensor product of finite distributive
lattices.

1. Definitions and preliminaries

Details of the existence, uniqueness, and construction of the tensor product A ® B of
the distributive lattices A and B appear in [4] and [5]. We summarize these results
briefly.

Definition 1.1. Let A, B and C be distributive lattices. A function / : A xB->C is
called a bihomomorphism if the functions ga:B^*C defined by ga{b) = f(a,b) and hb:A->C
defined by hb(a) = f(a,b) are lattice homomorphisms for each as A and beB.

Definition 1.2. Let A and B be distributive lattices. A distributive lattice C is a tensor
product of A and B if there exists a canonical bihomomorphism f:AxB-*C such that C
is generated by f(A x B) and for any distributive lattice D and any bihomomorphism
g:A x B->D there is a homomorphism h:C-*D satisfying g = hf.

Theorem 1.3. Let A and B be distributive lattices. Then a tensor product of A and B
exists and is unique up to isomorphism.

The tensor product of A and B is denoted by A (g> B and the image of an element
(a,b) of A x B under the canonical bihomomorphism f:A x B->A (x) B is written as
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a®b. In this notation, the tensor product A ® B is the distributive lattice which is
generated by the elements of the form a ® b, subject to the partial ordering relation on
these generators which is inherited from the direct product and to the four
bihomomorphic identities:

(ax + a2) ®b = (ai®b) + (a2 ® b)

{axa2) ®b = (a1® b)(a2 ® b)

a® (bi + b2)={a® bt) + (a® b2)

and

for all a,al,a2eA and all b,bt,b2eB.
(The usual additive and multiplicative notation will be used to represent the join and

meet operations in a lattice.)

2. Prime filters and join-irreducibles in the tensor product

For a distributive lattice L, let S(L) be the set of prime filters in L, and let S'(L) =
S(L)u {(j>,L). Let 2 denote the two-element chain {0,1} with 0 < l . The one-to-one
correspondence between the elements P of the set S'(L) and homomorphisms h:L-*2 is
well-known. The following characterization of S'(A ® B) was first obtained by Fraser
in [4].

That there is a one-to-one correspondence between homomorphisms h:A® B-*C and
bihomomorphisms g:AxB-*C follows from the definition of the tensor product. Thus
there is a one-to-one correspondence between P e S'(A ® B) and bihomomorphisms
g:Ax B^>2. This correspondence is such that a ® be P if and only if g(a, b) = l.

Let ^ be the set of all bihomomorphisms g:Ax B-»2. We define a partial order on 'S
by setting gt ^g2 if and only if g^a,b) = \ implies g2(a,b) = 1 for all ae A, beB. Now let
P, Q e S'(A ® B) and let gP, gQ be the corresponding bihomomorphisms in <S. Then

gp ̂  gQ-^g p(a, b) = 1 implies gQ(a, b) = 1

for all aeA,beB

oa®beP implies a®beQ

for all aeA,beB

<>P<=Q.

This establishes that S'(A ® B) is order isomorphic to ^ ; the problem of characterizing
S'(A ® B) then reduces to that of characterizing the bihomomorphisms g.A x B-+2.
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Now let g:AxB->2 be a bihomomorphism and for each xeA, let F(x) = {yeB:
g(x,y) = l}. Then it follows from the bihomomorphic properties of g that F(x)eS'(B)
and that for all x1,x2eA,

2) = F{xl)nF(x2)

and

The second identity establishes that the union of two members of the range of F is
again in the range of F. But the union of two filters is a filter only if one is contained in
the other. Thus the range of F is a chain and F is a homomorphism from A into a
subchain of S'(B).

Conversely, if F:A-*S'(B) is such a homomorphism, define g:AxB->2 such that
g(x, y) = 1 if and only if y e F(x). It is immediate that g is a bihomomorphism in the set

It is a straightforward verification that if gx and g2 are distinct bihomomorphisms
from AxB into 2, then the corresponding homomorphisms Ft and F2 from A into S'(B)
are also distinct.

Finally, let 2tf be the set of all homomorphisms F:A-+S'{B) such that the range of F
is a subchain of S'(B). Let ^f be ordered by setting Ft^F2 if and only if F1(x)^F2(x)
for all xeA. Then we have the following result.

Theorem 2.1. Let A and B be distributive lattices. Then S'(A ® B) is order isomorphic
to the set J4? of all homomorphisms F:A->S'(B)from A into a subchain of S'(B).

Proof. Let gug2 be bihomomorphisms in ^ and let Fx and F2 be the corresponding
homomorphisms in Jf. Then

F1^F2oFl(x)sF2(x) for all xeA

oyeF^x) implies yeF2(x) for all xeA,yeB

og1(x,y) = l implies g2{x,y) = l for all xeA,yeB

The previously established order isomorphism of'S and S'(A ® B) is then applicable and
completes the proof.

This characterization of S'(A (x) B) provides us with a first method for the
construction of A ® B. It follows from Stone's representation theorem that for every
distributive lattice L, the map x->x*, where x* = {PeS(L):xeP}, determines an
isomorphism between L and a ring of upper-hereditary subsets of S(L). (A subset H of a
partially ordered set T is called upper-hereditary if for all x, y e T, x e H and x ^ y implies
y € H. Lower-hereditary subsets are defined analogously.)
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Let #e0 denote the set of all homomorphisms Fe^f except the homomorphism F
defined by F(x) = B for all xeA. (This homomorphism corresponds to the
bihomomorphism g.A x B->2 which is such that g(x,y) = 1 for all xeA and yeB.)

Stone's theorem can be applied using the sets (a® b)* = {PeS(A ® B):a® beP}.
Then A ® B is isomorphic to the ring of subsets of S(A ® B) generated by the sets
(a® ft)*. Since (a® ft)* is isomorphic to {FeJ^0:beF(a)}, it is more convenient to use
these subsets of Jf 0 to generate a ring of sets isomorphic to A ® B.

We now have the necessary machinery at hand for an analysis of the join-irreducibles
in A ® B. Recall that in any distributive lattice L, xeL is join-irreducible in L if and
only if the principal filter [x) is prime in L. We begin by establishing a sufficient
condition for join-irreducibility in the tensor product.

Theorem 2.2. Let A and B be distributive lattices and let {a,}, {ft;}, l ^ i ^ n , be sets of
join-irreducibles in A and B which are such that a t g ... ;gan and ftx^ ... ^ftn. Then
Y[y=i(ai ® bt) is join-irreducible in A® B.

Proof. Let/:{«!,...,an}-»S'(B) be the mapping defined by /(af) = [ft,) for l ^ i ^
Then/can be extended to a homomorphism F:A->S'(B) by defining

F(x) =

(j> for all xeA — [at)

[ftj) for all xe^aj) — [a2)

[ftj for all xe[4

It is a straightforward verification that F is in Jf0. Thus the element I~["=i(a« ® ^i)
uniquely determines the homomorphism F given above. It is easy to verify that the
subset [n"= 1(a; ® ft,)]* is isomorphic to [F) = {Ge^fo

:^ = G}, the principal upper-
hereditary subset of J^o determined by F. It is clear that any principal upper-hereditary
subset of JVO is join-irreducible in the set of all such subsets of 3ti?0. Since [F) is join-
irreducible, the set representing n"= 1(a; ®bt) is join-irreducible in the ring of subsets
isomorphic to A ® B and so J"]"=i (a, ® ft,-) is join-irreducible in A ® B.

A partial converse to Theorem 2.2 holds. We will need the following lemma which is
applicable to the homomorphisms of Theorem 2.1.

Lemma 2.3. Let A and B be distributive lattices and let f:A-*B be a homomorphism
which is such that the homomorphic image of A is a chain. Let 6 be the congruence
relation which is defined on A by the homomorphism f. Then each non-empty congruence
class in A is uniquely determined as the intersection of a prime filter and a prime ideal.

Proof. Let [a]0 be a non-empty congruence class in A. It is well known that [a]0
can be uniquely determined as the intersection of an ideal I in A and a filter D in A. We
need only show that / and D are prime.

Suppose that / is not prime. Then there exist xl,x2eA such that xl,x2£I but
xlx2eI. Then xi + a and x2 + a are not in /. But (x, +a)(x2 + a) = xlx2 + xla + ax2 + a =
xix2 + a is in / since xtx2el and ael. Now aeD and x{x2 + a^a so xtx2+a is in

https://doi.org/10.1017/S0013091500022379 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022379


TENSOR PRODUCT OF DISTRIBUTIVE LATTICES 241

D. Thus xlx2 + ael nD = [a]6. But xl+a,x2 + a£[a]6. Since / is a homomorphism,
f(x1x2 + a)=f((x1 + a){x2 + a)) = f(x1 + a)nf(x2 + a). The range of / is a chain, so
either f(x1x2 + a) = f(x1+a) or f(x1x2 + a) = f(x2 + a). This contradicts the result that
x1x2 + ae\_d]6 and x1 + a,x2 + a4\_a]6. Hence the ideal / must be prime. A similar
argument shows that D is a prime filter.

We are now ready to present the following partial converse to Theorem 2.2. Our
result requires the descending chain condition in A and B and includes the descending
chain condition in A ® B as a corollary. The lattice L satisfies the descending chain
condition if and only if every descending chain of elements of L terminates at some
point: if a^a2^.... ^ a n ^ ... is any descending chain in L, there is some k such that
ak = ak + j = — If L satisfies the descending chain condition, then every filter in L is
principal. In particular, every prime filter in L is a principal filter that is generated by a
join-irreducible element of L. The following theorem characterizes the join-irreducible
elements of A ® B when A and B satisfy the descending chain condition.

Theorem 2.4. Let A and B be distributive lattices in which the descending chain
condition holds. Then each prime filter in A® B is principal and is generated by an
element in A® B of the form Y\l=i (a; ® bt), where the sets {a,}, {bt}, l^i^n, are sets of
join-irreducibles in A and B such that al ^ ... ^an and b1 ̂  ... ^bn.

Proof. We employ Lemma 2.3 to associate with each FeJ4?0, and thus with each
P e S(A ® B), an element in A ® B of the form f~[?= x (at ® bt).

Let F:A->S'(B), FeJ^0, be a homomorphism. Let d be the congruence relation which
is defined on A by F and let [a]0 be the congruence class of 6 which is such that
F(x) = (j) for all x e [a] 6. Then [a] 0 is a prime ideal in A and the complement in A of
[a]0 is a prime filter. The descending chain condition in A implies that this prime
filter is principal. Let a1 be the join-irreducible in A which generates this prime filter.
Then F(x)#</> for every xeA,x^at. Finally, Fla^ is a prime filter in B and the
descending chain condition in B implies that this prime filter is principal. Let bt be the
join-irreducible in B which generates this prime filter. Then F(a1) = [bi).

If by T^O, and if A — (F~l(4>) u [_a{]6) is non-empty, we may then proceed analogously
in determining the join-irreducibles a2eA, b2eB. Thus a2 is the smallest a6[ax) such that
F{a)^\bl), and b2 is the join-irreducible satisfying F(a2) = \_b2). The procedure is then
repeated.

This construction is such that at^a2^ ... and b^b^ The descending chain
condition in B ensures that the sequence of b('s terminates at some point and that the
above procedure ends after a finite number of applications.

We have thus associated with FBJ^0 the uniquely determined pair of sequences {aj,
{bi}, l ^ j ^n , of ascending and descending join-irreducibles in A and B. By Theorem 2.2
we have that f]"= x (a, ® bt) is join-irreducible in A ® B. The construction of the
sequences {a,} and {bj is such that f]"=i {Ge^'0:bieG(ai)} = \_F), the principal upper-
hereditary subset of 3^0 generated by F. Hence n"=i(a>®^>)* ' s isomorphic to [F),
and n"=1(aj ®fe,-) is a generator for the member of S(A®B) corresponding to the
homomorphism F.

If A and B satisfy the descending chain condition, then Theorems 2.2 and 2.4 together
characterize the join-irreducible elements of A® B as the elements of the form
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n?= i (a< ® &••)> where at and b{ are join-irreducible in A and B and satisfy ax g ... gan
a n d b t ^ ... ^ b n .

Corollary 2.5. Let A and B be distributive lattices in which the descending chain
condition is satisfied. Then the following hold:

(i) Every filter in A® B is a principal filter.
(ii) The descending chain condition is satisfied in A® B.

(iii) A ® B is compactly generated by its join-irreducibles. (Thus, each element of A®B
can be represented as a finite sum of join-irreducibles in A ® B.)

Proof, (ii) and (iii) are consequences of (i). (See Dilworth and Crawley [3], p. 70.)
Theorem 2.4 showed that every prime filter in A ® B is principal. It is well known that
the lattice of all filters of a distributive lattice is compactly generated by the prime
filters. It follows that every filter is principal.

If the descending chain condition is satisfied then Theorem 2.4 and Corollary 2.5(iii)
provide us with a more straightforward procedure for constructing the tensor product
than the method described in the remarks following Theorem 2.1. For a lattice L, let
J{L) denote the partially ordered set of non-zero join-irreducibles of L and let H(J(L))
denote the lattice of lower-hereditary subsets of J{L). If L is a distributive lattice in
which the descending chain condition holds, then L and H(J(L)) are isomorphic ([6],
p. 61). Now if A and B are distributive lattices satisfying the descending chain condition,
then A® B also satisfies this condition. Hence in this case A ® B is isomorphic to
H(J(A ® B)). Theorem 2.4 provides a characterization of the elements of J(A ® B), and
Corollary 2.5 assures that the hereditary subset construction is applicable. Thus we can
construct A ® B by instead constructing H(J(A ® B)).

The following section is concerned with details and consequences of this construction.

3. Applications and examples

We begin with an illustration of the results of the preceding section. Let A and B be
the lattices of Figure 1. Theorem 2.4 then permits us the construction of J(A ® B) which
is shown in Figure 2.

0®a

J(A®B)
Figure 2
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We note, as an example of the sort of arguments which might return us to the
partially ordered set <?f0 from J(A ® B), that the homomorphism corresponding to the
join-irreducible (0® a)(l ®0) is the homomorphism F:A^>S'(B) defined by F(0) = {a, 1}
and F(l) = B. This homomorphism, in turn, corresponds to the bihomomorphism
g:A x B->2 defined by

O. if (x, 30 = (0,0) or (0,*)
otherwise.

By determining the lattice of lower-hereditary subsets of J(A ® B), we find that
H(J(A®B)), and hence A (x) B itself, is the 18-element distributive lattice given in
Figure 3.

H(J(A®B))
Figure 3

The general problem of identifying the join-irreducible products of degree k in A ® B,
by Theorem 2.4, reduces to that of identifying the distinct chains of exactly k join-
irreducibles in A and B. This provides what appears to us to be the most efficient
procedure for the enumeration of the members of J(A <g> B). Its application in the case
that A and B are Boolean algebras is particularly simple.

The length of a finite distributive lattice L is defined as the (uniquely determined)
length of the maximal chains in L and is equal to |J(L)|, the number of non-zero join-
irreducibles in L.
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Theorem 3.1. Let A and B be the Boolean algebras on m and n generators respectively.
Then the length ofA® B is m + 2mn + n and A® B is a subdirect product of max {mn, m + n}
chains.

Proof. Let A be the Boolean algebra with generators {au...,am} and B be the
Boolean algebra with generators {/?!,...,&„}. Then the non-zero join-irreducibles in
A ® B are the mn products of the form (a,- ® 0)(0 ® bj), l ^ i ^ m , l^j^n, the m + n
join-irreducible generators of the form (a,- ® 0) or (0 ® bj), and the mn join-
irreducible generators of the form (a; ® bj), l^i^m, 1 ^j^n. Thus A ® B has a total of
mn + m + n + mn = m + 2mn + n non-zero join-irreducible elements. Hence the length of
A ® B is m + 2mn + n.

The covering relations in J(A ® B) may be completely described with reference to the
join-irreducibles of the form (a; ® 0) or (0 ® bj). The join-irreducibles (a,- ® 0) cover
each product (a,- ® 0)(0® bj), l^j^n, and are covered by each generator (at ® bj),
1 ^j 5S n. Analogous statements hold for elements of the form (0 ® bj). Hence there are
m + n elements which cover mn elements and are covered by mn elements.

The preceding enumeration of the members and the covering relations in J(A ® B)
implies that the largest anti-chain in J(A ® B) is of cardinality max {mn,m + n}. We may
then apply Dilworth's decomposition theorem and its consequences (see [2]) to argue
that there is a representation, not necessarily unique, of A ® B as a subdirect product of
max {mn, m + n} chains.

The construction which opened this section provides an illustration of the above. One
further result which is illustrated by the lattices of Figure 1 concerns projectivity in the
tensor product.

Theorem 3.2. The tensor product of a finite projective distributive lattice and a finite
chain is projective.

Proof. For a lattice L, let J01(L) denote the set J(L) u {0,1}. Balbes has shown that
if L is a finite distributive lattice, then L is projective if and only if the partially ordered
set JOi(L) is a lattice ([1], Theorem 7.4). For distributive lattices A and B, let
Horn (A, B) denote the partially ordered set of lattice homomorphisms from A into B. A
result of Kucera and Sands asserts that if A is a projective distributive lattice, then
Uom{A,B) is a lattice ([7], Theorem 4.1).

Now assume that A is a finite projective distributive lattice and B is a finite chain.
Then S'(B) is also a finite chain. It follows from Theorem 2.1 that S'(A ® B) is
isomorphic to Horn (A, S'(B)). By the theorem of Kucera and Sands, Horn (A, S'(B)) is a
lattice, and so S'(A ® B) is also a lattice. Now J0l{A ® B) is isomorphic to the dual of
S'(A ® B). Hence J01(^4 ® B) is a lattice, and it follows from the result of Balbes that
A ® B is projective.
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