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SOLVING SINGULAR INTEGRAL EQUATIONS

VIA (0,2,3) LACUNARY INTERPOLATION

Ezio VENTURINO

A modified product rule method for solving Cauchy-type singular

integral equations is proposed. It is based on interpolating the

unknown and some of its higher derivatives at any prespecified

points. At these nodes the value of the unknown can be calculated

directly by solving the discretized linear system. No need of

further interpolatory formulae arises, as is the case with other

quadrature methods.

1. Introduction

Modified product rules for the solution of Fredholm integral

equations are well known. Atkinson [7] gives a detailed treatment of some

of these methods, considering for instance equations having kernels which

possess logarithmic singularities. These methods proceed by splitting the

kernel in two parts, one part which is well-behaved and another one which

contains weak singularities or worse.

In connection with singular integral equations also, such methods
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have been recently introduced. Gerasoulis and Srivastav LSI considered

the replacement of the unknown function by a piecewise linear interpolant.

After quadrature and collocation a linear algebraic system is obtained,

which is the discretized version of the original equation. Gerasoulis then

[7] analyzed the case of a piecewise quadratic polynomial being the

approximation to the sought solution. Later, Jen and Srivastav [7 7]

considered the use of cubic splines. There are at least two major

grounds for seeking the solution in this form. First of all, the ordinary

direct methods, such as Gauss-Chebyshev or Gauss-Jacobi quadrature, [5],

161, [72], require the collocation nodes to be well-determined points,

usually the zeros of a polynomial related to the one whose zeros provide

the quadrature nodes [2], [3]. The disadvantage in this case is the fact

that if the solution is sought at points other than the collocation nodes,

an interpolatory formula is needed. The second and perhaps more important

advantage is the possibility of avoiding computation and use of polynomials

of high degree. Also, the methods discussed here could be applied, with

due modification, to singular integro-differential equations.

Three methods are described in the next section. They are slight

modifications of each other, in the sense that the satisfaction of only

one condition makes the difference while the general quadrature-collocation

scheme remains unaltered. The corresponding matrices of the linear

algebraic system which is obtained by discretization of the singular

integral equation, are given in the following section. In section 4, error

analysis is provided, based upon the results of Jen 1101 and our estimates

given in [74]. Finally some numerical examples are presented as support

of the theoretical investigation.

2. Description of the algorithms

Consider the following singular integral equation

(2.1) (1/TT) I g(t)/(t-x) dt + K(x,t)g(t) dt = fix) -1 < x < 1

together with the additional normalization condition

(2.2) f git) dt = C .
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Singular integral equations 241

The solution is then known to possess square root singularities at the

endpoints and a new unknown function y(t) can be introduced by the

following definition

(2.3} g(t) = y(t}/A-? .

Suppose moreover that the partition {x •} of the interval (-1,1) is

given, for i = 0,...,n+l, with xQ = -1 and x = 1 . Also a second

set of nodes is assumed to be known, {t • }, i = 0,...,n. The following
3

relations hold

(2.4) \~*U1-H

We can replace the unknown function by a spline, a deficient spline or a

piecewise polynomial. We want to consider lacunary data, and they are

assumed as follows. The function and its second derivative are sought at

the nodes of the first set, while at the nodes of the second we assign the

third derivative. In this way the situation, except for the fact that all

the above are unknowns, becomes a (0,2,3)-type lacunary interpolation

problem. The function

(2.5) sJlx) = s(xi)A((x-Xj)/h_J)

-x.)/h. + 8"(x.)C(x-x.)/h.)
IS U If U U

replaces the unknown function y(t) in the singular integral equation,

where the quartic polynomials A(x), B(x), C(x), D(x), E(x) are defined

as follows

(2.6) A(x) = 1 - x

B(x) = x

C(x) = i(8z-5)x + 6(l-2z)x2 + 4zx3 - x4~\/(12(l-2z))

D(x) = U4z-l)x - 4zx3 + x4y(12(l-2z))

E(x) = [-x + 2x3 - x4V(12(l-2z)) .
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The kernel K(x3t) is instead replaced in each subinterval by a

quadratic interpolatory polynomial, K-(x3t) . In this way we obtain for

the singular integral equation the expression

(2.7) (l/-n) I V+1 s.(t)/Ul-t6 (t-x)l dt

i=0 >x

n

i=0

By collocation at a set of nodes lying in (-131)3 this functional

relation will be reduced to a discrete algebraic system. The nice feature

of such replacements now comes into the picture, since the integrals in

the above formula can all be evaluated in closed form. The use of some of

the formulae in Gradshteyn and Ryzhik [9] and integration by parts when

necessary provides us with the analytical expressions for the coefficients

of the matrix in the above mentioned system. Three different algorithms

can be proposed based on the results of the preceding section. We may

collocate at n+1 points and seek the quartic spline interpolating the

unknown function. This operation needs another 2n equations which come

from the continuity of the first and third derivative at the nodes {x.} ,

i. = I3...3n . Moreover, there is the normalization condition, and the

difference between the 3n + 5 unknowns and the 3n + 3 equations can be

filled in by two extra collocation conditions, or we may want to use the

natural splines by simply prescribing

(2.8) e"(-l) = e"(l) = 0 .

The second approach consists in seeking the solution as a deficient quartic

spline. In this case, we would impose the continuity conditions only for

the first derivative and then collocate at 2n+2 distince nodes. One

extra condition comes from the normalization equation and the remaining two

equations can be obtained from the natural conditions (2.8) or by the two

extra collocation nodes. The third approach makes use of a piecewise

polynomial scheme. Here, instead of the continuity of the first derivative,

we require the continuity of the third one, and then proceed as in the case

of the deficient spline. The form of the matrix of the linear algebraic

system in each case is the same for the latter ones, while it is more
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"sparse" for the first one. In each case, block structure of some form is

obtained. The first part has a full structure, corresponding to the

collocation equations and the normalization conditions. The continuity

conditions instead provide a submatrix. The structure of this is given by

three blocks, each of which possesses a tridiagonal form.

3. The coefficient matrix

We turn now to the constriction of the matrix of the system. A few

results from Gradshteyn and Ryzhik [9] are needed, namely the formulae

2.27, 2.272.3, 2.273.3, 2.274.3, 2.264.4 and 2.551.3. If we define

% (tk/ dt
i

{£K/Ut-x)h-t6Vs dt

there is an obvious relationship between the two operators, given by

1(0,i) = arcsinfa;. ^) - arcsinfx J

I(2,i) = (x./2) Jl^. - (x.,J2) A-x2.,i + (h) KO,i)

,i) = x2. Jl^. + (2/3)(l-x.)

- (2/Z)(l-x2
i+1)

Z/2

1(4A) = (x\/4) £Ji+ (3Xi/8) 6^- (x\+1/4) £j

(3/8) 1(0,1)

I(5,i) = x4. JuJ. + 4Ux2./S) + (2/15n(l-x2J3/2 - x4.,

(2/15)1 (l-x2
i

,i) = (x./6) Vl-x. + (Sx./24) /1-x. + (5x./16) Sl-x.
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- C5xi+1/1B) h-xi+1 + (5/16) 1(0,i)

and also

= (l-x2)~1/2 I In tanCu^ \Jl-x2-1+x tanfw^;] + x

- (l+/l-x2)tan(u. J - In x - (l-/l-x2)t#n(u. J

where

+ tanCwJ \-l-vl-x + x tan(u..^)
1 I.

u. = arcsin(.x.)/2 .

The kernel K(x>t) of the equation is replaced in each subinterval

(x.,x. ~) by a quadratic polynomial, by evaluating the values K(x,x-)s

K(x9t.)s K(x3x.,i) . Hence in the equation K(x*t) gets replaced by

K.(x,t), with

2
K.(x,t) = a(iyx)t

where

aCi,x) = \K(x,x.)t. - K(x3t.)x. - K(x,x.)x.^ + K(x,x.LJx-

-K(x,xUl)ti+K(x,ti)x.+1]/H(i)

b(itx) = ix^Mx^t.) - t2.K(x3x.) - K(x3x.,Jx2. + x2.,Mx,x.)

a(i3x)

Ed) = X^t^B-1)^ +

The above formulae allow the explicit construction of the matrices of the

system. Given their complexity however we refer the reader to [75]/ in

which the entries are given in a suitable, form for implementation. The

following equations then provide the continuity conditions for the first

derivative of the function s(x) at the nodes {a;-}, i = lt...sn
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12h.(l-2z)s(x. J - 12(l-2z(h. 1+h.i i-l i-l i

(h. J9z-3) + h.(8z-5))h.h. .s"(
i-l i i i-l

h*.h. J4z-l)s"(x.J - h3.s'"(t.)
if Lr^J. U'lJ. 1? IS

The next ones instead provide the continuity of the third derivative

2h.(l-z)s"(x. J + 2((x-l)h.+zh. Js"(x.)
i i-l i i-l 1

- 2zh.. .s"(x.^) + h.h. lS'"(t. Ji-l i+l i i-l i-l

+ h.h. ns"' (t.) = 0 .i i-l i

4. Error analysis

In this section we sketch an error analysis for the proposed

algorithm. However nothing really new is contained in what follows since the

the basic results are the ones in LI41, as far as the convergence of the

deficient spline and the piecewise polynomial to the solution are concerned.

Moreover the estimates for the singular integral equation are basically

the same as provided by Jen [10] and thus will not be repeated here. For

further details the reader is referred to the above mentioned dissertation

[JO].

Let the discretized equation be represented by the system

Ax = f .

The vector x* providing the correct solution satisfies the equation

Ax* = f* = f + E

where E is the error vector induced in the numerical scheme by the use

of the piecewise polynomials or the deficient splines. Let K* be the

piecewise quadratic interpolant to the kernel K . By applying to the
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Fredholm term in the definiton of each component of E the triangle

inequality we obtain the bound

{max \y*\ max \K*-K\ + max \y*-y\ max \K\]

where y* is the deficient spline or the piecewise polynomial inter-

polating on the true values y(x.)3 i = 03 ....,n+l . From the analysis of
7

[74] it follows that the second term in the sum is of order 0(h ) . The

first one is also, while the error term corresponding to the dominant part

can be shown to be OCh ) for some 6 > 0 . This last expression

thus gives the order of E . We should remark however that the expression

for the error is

\\x*-4 < \\A-2\\ \\E\\

and A depends on h , so that the above result should be used with

caution.

5. Numerical examples

In this section we describe some numerical implementations of the

algorithms.

Example 1. Here we considered the equation

[
(lfa) g(t)/(t-x)dt = 0

1-1

subject to the normalization condition

(1A) g(t)dt = 1 .
>-l

The analytic solution is

git) = l//l-t2

For the spline algorithm the maximum error at the nodes is 4 x 10~ . It

is obtained by dividing the interval (-1,1) into six subintervals, that

is for n = 4 . For n = 6 it is 2 x 10~ for a value of z close to
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1/2 and it is not significantly affected by varying z .

The deficient spline algorithm gives for n = 5 an error of about

3 x 20~ or better. Here z has been chosen close to the endpoints 0

and 1 .

For the piecewise continuous polynomial case with n = 4 the

situation seems also to be well behaved. Choosing z = .8 the maximum

error turns out to be 4 x 10 .

Example 2. Consider the equation

,1
g(.t)/(t-x) dt = U Jx)

-1 m~1

subject to

ir) g(t)
i-l

(1/ir) g(t) dt = 0

J
whose analytical solution is g(t) = T Ct)/vl-t'

The spline case for n = 4 and m = 1 gives a maximum error of

1 x 10~4 for z = .7 and 2 x 10~5 for z = .0.

The deficient spline behaves similarly, giving an error of 9 x 10~

for z = .2 and n = 4 .

The algorithm for the piecewise continuous polynomials yields instead

an error of 6 x 20~ already for n = 4 and z = .1 .

Example 3. Here we considered the equation

g(t)/(t-x) dt
>-l

+ (1/v) I t(t)(t22)/(t2+x2)2dtg(t)(t*-x")/(t +x°rdt = 1
1 -1

subject to

,1
git) dt = 0 .

-1

https://doi.org/10.1017/S0004972700026514 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026514


2 4 8 Ezio Venturino

This equation arises in the problem of a cruciform crack in an

infinite medium under constant load. The value of the unknown <\>(t) ,

g(t)

at +1 has been analytically calculated by Rooke and Sneddon [J3] to four

correct decimal digits to be .8636 . By applying the above algorithms we

obtained the following results.

We examine first the spline method. In the case n = 5 and

3 = .854 we have $(1) = .86358321 . In the case n = 9 and

z = .80731 , then 4>(1) = .86365350 . Also for n = 5 and z = .9 ,

= .86360225 .

For the deficient spline solution the following results hold. In

the case n = 4 and z = .4413 , we have $(1) = .86363869 . For n = 5

and 3 = .90485 , then $(1) = .86265817 .

Finally for the piecewise continuous polynomial solution we have

the following result. For n = 4 and z = . 7 the solution is

•t>(l) = .86367947 .

As a general comment we can say that the differences between the

results provided by the three different methods are minor. The last one

however requires fewer computations due to the special structure of the

matrix. We present these algorithms as an alternative to methods

currently employed in the solution of SIE's. We do not claim any

superiority of the codes presented in this paper-over other methods in

common use.
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