On the condition number of certain Rayleigh-Ritz-Galerkin matrices

Bernard J. Omodei

Martin H. Schultz [Bull. Amer. Math. Soc. 76 (1970), 840-844] has investigated the spectral condition number of the Rayleigh-Ritz-Galerkin matrices that arise when normalized B-spline coordinate functions are used to approximate the solution of a class of linear, self-adjoint, elliptic boundary value problems in one dimension. This paper shows how results analogous to those of Schultz [op. cit.] can be established under weaker assumptions. We also extend the results to boundary value problems in higher dimensions.

We consider the following class of linear, self-adjoint, two-point boundary value problems:

(1)
$$L[u(x)] \equiv \sum_{j=0}^{n} (-1)^{j} D^{j} \left[p_{j}(x) D^{j} u(x) \right] = f(x) ,$$

 $0 < x < 1 , f \in L^{2}[0, 1] , n \ge 1 ,$

with homogeneous Dirichlet boundary conditions

(2)
$$D^k u(0) = D^k u(1) = 0$$
, $0 \le k \le n - 1$.

Assume that $p_j(x)$, $0 \le j \le n$, are real-valued bounded measurable functions on [0, 1] .

Let $W_0^{n,2}[0,1]$ denote the completion of the set of all $C^{\infty}[0,1]$ functions having compact support in (0,1), with respect to the Sobolev

Received 17 June 1976.

norm

$$\|\omega\|_{W^{n,2}} \equiv \left\{\sum_{j=0}^{n} \int_{0}^{1} \left[D^{j}\omega(x)\right]^{2} dx\right\}^{\frac{1}{2}}.$$

We assume that there exists a positive constant K such that for all $w \in W^{n,2}_0[0, 1] \ ,$

(3)
$$K \|w\|_{L^{2}}^{2} \leq \int_{0}^{1} \left\{ \sum_{j=0}^{n} p_{j}(x) \left[D^{j} w(x) \right]^{2} \right\} dx$$

This assumption corresponds to the assumption that the differential operator L is positive definite. Schultz [7] made the stronger assumption that, for all $w \in W_0^{n,2}[0, 1]$,

$$K \|w\|_{\tilde{W}^{n,2}}^{2} \leq \int_{0}^{1} \left\{ \sum_{j=0}^{n} p_{j}(x) \left[D^{j} w(x) \right]^{2} \right\} dx$$

It can be shown that the problem (1)-(2) has a unique generalized solution and that the Rayleigh-Ritz method is applicable; see Omodei [6]. Let $\{\phi_i(x)\}_{i=1}^m$ be m given linearly independent coordinate functions such that $\phi_i \in W_0^{n,2}[0,1]$ for all $1 \leq i \leq m$. Let S_m denote the approximating subspace spanned by $\{\phi_i\}_{i=1}^m$. We claim, without giving the derivation, that the Rayleigh-Ritz-Galerkin matrix $R \equiv (r_{ik})$ for the problem (1)-(2) is given by

(4)
$$r_{ik} = \int_0^1 \left\{ \sum_{j=0}^n p_j(x) D^j \phi_k(x) D^j \phi_i(x) \right\} dx , \quad 1 \le i, \ k \le m .$$

We now introduce normalized B-spline coordinate functions. Following the construction of de Boor [1], for a positive integer d, the finite set of real numbers

 $\pi : 0 = x_0 < x_1 \le x_2 \le \ldots \le x_N < x_{N+1} = 1$

is said to be a (d+1)-extended partition of [0, 1], if and only if $x_k < x_{k+d}$ for all $0 \le k \le N - d + 1$; that is, if f_k denotes the

330

multiplicity of the knot x_k in π , then $f_k \leq d$ for all $1 \leq k \leq N$. Let $I \equiv \{0 \leq k \leq N \mid x_k < x_{k+1}\}$, and define

(5)
$$\Delta \equiv \max_{k \in I} (x_{k+1} - x_k) \text{ and } \delta \equiv \min_{k \in I} (x_{k+1} - x_k)$$

Let $Sp_0(d, \pi)$ denote the *extended spline space* of all extended splines of degree d on π satisfying the boundary conditions (2); that is, $Sp_0(d, \pi)$ consists of those real-valued functions on [0, 1] which satisfy the boundary conditions (2), reduce to a polynomial of degree less than or equal to d on $[x_k, x_{k+1}]$ for all $k \in I$, and have $d - f_k$ continuous derivatives in a neighbourhood of x_k for all $1 \leq k \leq N$.

Assuming that $n \leq d$, we add 2(d-n) extra knots to π to form the partition

$$\tilde{\pi}$$
 : $x_{-d+n} = \dots = x_{-1} = x_0 < x_1 \leq \dots \leq x_N < x_{N+1} = x_{N+2} = \dots = x_{N+d+1-n}$
We now define the classical *B-splines* for the partition $\tilde{\pi}$ (see [4]):

$$M_k(x) \equiv (d+1)g(x_k, x_{k+1}, \ldots, x_{k+d+1}; x)$$
, $-d + n \leq k \leq N - n$,

is (d+1) times the (d+1)-th divided difference in y of the function $g(y; x) \equiv (y-x)_+^d$ based on the points $x_k, x_{k+1}, \ldots, x_{k+d+1}$. The normalized B-splines are defined by

(6)
$$\psi_k(x) \equiv \frac{x_{k+d+1}-x_k}{d+1} M_k(x) , -d+n \leq k \leq N-n .$$

It can be shown that $\{\psi_k(x)\}_{k=-d+n}^{N-n}$ form a basis for $Sp_0(d, \pi)$ (see [4]).

The following lemma is a simple consequence of a theorem in [2].

LEMMA 1. For an arbitrary (d+1)-extended partition π , there exists a positive constant D depending on d but not on π such that

(7)
$$\left\| \sum_{k=-d+n}^{N-n} a_{k+d+1-n} \left(\frac{d+1}{x_{k+d+1} - x_k} \right)^{\frac{1}{2}} \psi_k \right\|_{L^2} \ge D \|\mathbf{a}\|_2$$

for all
$$\mathbf{a} \in \mathbb{R}^{N+d+1-2n}$$
 where $\|\mathbf{a}\|_2 \equiv \left(\sum_{i=1}^{N+d+1-2n} a_i^2\right)^{\frac{1}{2}}$.

We consider the case where the approximating subspace $S_m \equiv Sp_0(d, \pi)$, $m \equiv N + d + 1 - 2n$, and the coordinate functions $\phi_i(x) \equiv \psi_{i+n-d-1}(x)$, $i \equiv 1, 2, ..., m$. Assume that $f_k \leq d + 1 - n$ for all $i \leq k \leq N$ to ensure that $Sp_0(d, \pi) \subset W_0^{n,2}[0, 1]$. The spectral condition number of the Rayleigh-Ritz-Galerkin matrix R is defined by

$$\kappa(R) \equiv \|R\|_2 \|R^{-1}\|_2$$
 where $\|R\|_2 \equiv \sup_{a \in R^m} \|Ra\|_2 / \|a\|_2$.

Using (3), it can easily be shown that R is positive definite and symmetric, and hence $\kappa(R) = \lambda^{-1}\Lambda$ where λ and Λ are the minimum and maximum eigenvalues, respectively, of R. The following theorem is analogous to that of Schultz [7].

THEOREM 1. If (3) holds and π is an arbitrary (d+1)-extended partition of [0, 1] such that $f_k \leq d + 1 - n$ for all $1 \leq k \leq N$, then there exists a positive constant C depending on d but not on π such that

(8)
$$\kappa(R) \leq C(\Delta/\delta)\delta^{-2n}$$

Proof. From (4) and (3), we obtain for all $a \in R^{m}$,

$$\mathbf{a}^{T}R\mathbf{a} = \int_{0}^{1} \left\{ \sum_{j=0}^{n} p_{j}(x) \left[D^{j} \sum_{i=1}^{m} a_{i}\psi_{i+n-d-1}(x) \right]^{2} \right\} dx \ge K \left\| \sum_{i=1}^{m} a_{i}\psi_{i+n-d-1} \right\|_{L^{2}}^{2}$$

which, by Lemma 1, yields

$$a^{T}Ra \geq KD^{2} \sum_{i=1}^{m} a_{i}^{2} \frac{(x_{i+n}-x_{i+n-d-1})}{d+1}$$
$$\geq KD^{2}(d+1)^{-1}\delta ||a||_{2}^{2},$$

and thus

(9)
$$\lambda \geq KD^2 (d+1)^{-1} \delta .$$

Conversely, since $p_j(x)$, $0 \le j \le n$, are bounded on [0, 1], there exists a positive constant P such that, for all $a \in R^m$,

$$\mathbf{a}^{T} R \mathbf{a} \leq P \sum_{j=0}^{n} \int_{0}^{1} \left[\sum_{i=1}^{m} a_{i} D^{j} \psi_{i+n-d-1}(x) \right]^{2} dx$$

$$\leq P \sum_{j=0}^{n} (2d+1) \sum_{i=1}^{m} a_{i}^{2} \int_{0}^{1} \left[D^{j} \psi_{i+n-d-1}(x) \right]^{2} dx ,$$

since $\psi_{i+n-d-1}(x)$, $1 \le i \le m$, has support $[x_{i+n-d-1}, x_{i+n}]$. Thus

$$a^{T}Ra \leq P(2d+1) \sum_{i=1}^{m} a_{i}^{2}(x_{i+n}-x_{i+n-d-1}) \sum_{j=0}^{n} \left\| D^{j}\psi_{i+n-d-1} \right\|_{L^{\infty}}^{2}$$

Using Lemma 3.1 of [3], it can be shown that there exists a positive constant E depending on d but not on π such that

$$\sum_{j=0}^{n} \left\| \mathcal{D}^{j} \psi_{i+n-d-1} \right\|_{L^{\infty}}^{2} \leq E\delta^{-2n} \quad \text{for all } 1 \leq i \leq m.$$

Hence

$$\mathbf{a}^{T} R \mathbf{a} \leq P E(2d+1)(d+1) \Delta \delta^{-2n} \|\mathbf{a}\|_{2}^{2}$$

and thus

(10)
$$\Lambda \leq PE(2d+1)(d+1)\Delta\delta^{-2n}$$

Combining (9) and (10), we obtain the desired result with $C = PE(2d+1)(d+1)^2 K^{-1} D^{-2} . //$

A corollary analogous to the Corollary of [7] is clearly valid.

Extension to higher dimensions

We consider the following class of linear, self-adjoint, boundary value problems defined on an *M*-dimensional hypercube $\Omega \equiv \begin{array}{c} M\\ X\\ j=1 \end{array}$ with boundary $\partial\Omega$:

(11)
$$L[u(\mathbf{x})] = f(\mathbf{x}) , \mathbf{x} \in \Omega , f \in L^2(\Omega) ,$$

.

with homogeneous Dirichlet boundary conditions

(12)
$$D^{\alpha}u(x) = 0$$
, $x \in \partial \Omega$, $0 \le |\alpha| \le n-1$, $n \ge 1$,

where the linear differential operator L is defined by

(13)
$$L[u(\mathbf{x})] \equiv \sum_{0 \le |\alpha|, |\beta| \le n} (-1)^{|\alpha|} p^{\alpha} \left[p_{\alpha\beta}(\mathbf{x}) p^{\beta} u(\mathbf{x}) \right] .$$

We are using the usual multi-index notation, see [5]. Assume that all the coefficients $p_{\alpha\beta}(x)$ are bounded measurable functions in Ω and that $p_{\alpha\beta} = p_{\beta\alpha}$ for all $0 \le |\alpha|, |\beta| \le n$.

Let $W_0^{n,2}(\Omega)$ denote the completion of the set of all $\mathcal{C}^{\infty}(\overline{\Omega})$ functions having compact support in Ω , with respect to the Sobolev norm

$$\|\omega\|_{W^{n,2}} \equiv \left\{ \sum_{0 \le |\alpha| \le n} \int_{\Omega} \left[D^{\alpha} w(x) \right]^{2} dx \right\}^{\frac{1}{2}}.$$

We assume that there exists a positive constant $\,{\it K}\,$ such that for all $\,\omega\,\in\,{\it W}^{n\,,2}_{\Omega}(\Omega)$,

(14)
$$K \|w\|_{L^{2}}^{2} \leq \int_{\Omega} \left\{ \sum_{0 \leq |\alpha|, |\beta| \leq n} p_{\alpha\beta}(x) D^{\alpha} w(x) D^{\beta} w(x) \right\} dx .$$

It can be shown that the problem (11)-(13) has a unique generalized solution and that the Rayleigh-Ritz method is applicable, see [6]. Let $\{\phi_i(x)\}_{i=1}^m$ be m linearly independent coordinate functions such that $\phi_i \in W_0^{n,2}(\Omega)$ for all $1 \leq i \leq m$. The Rayleigh-Ritz-Galerkin matrix $R \equiv (r_{ik})$ for the problem (11)-(13) is given by

(15)
$$r_{ik} = \int_{\Omega} \left\{ \sum_{0 \le |\alpha|, |\beta| \le n} p_{\alpha\beta}(x) D^{\alpha} \phi_{k}(x) D^{\beta} \phi_{i}(x) \right\} dx , \quad 1 \le i, k \le m .$$

For each j, $1 \le j \le M$, let π_j be a (d+1)-extended partition of [0, 1] in the j-th dimension:

$$\pi_{j} : 0 = x_{0}^{(j)} < x_{1}^{(j)} \le x_{2}^{(j)} \le \dots \le x_{N_{j}}^{(j)} < x_{N_{j}+1}^{(j)} = 1$$

and let Δ_i and δ_i be defined as in (5). Using expression (6), we

construct the normalized *B*-spline basis $\left\{\psi_k(\mathbf{x}^{(j)})\right\}_{k=-d+n}^{N_j-n}$ for

 $Sp_0(d, \pi_j)$, j = 1, 2, ..., M. Let $\overline{\pi} \equiv X = M_j$ be a (d+1)-extended product partition of Ω and let

$$\overline{\Delta} \equiv \max \Delta_j \text{ and } \overline{\delta} \equiv \min \delta_j \text{ .} \\ \underset{1 \leq j \leq M}{1 \leq j \leq M} j$$

The extended multivariate spline space $Sp_0(d, \overline{\pi})$ is defined to be the

tensor product $\bigotimes_{j=1}^{M} Sp_0(d, \pi_j)$. It can be shown that $Sp_0(d, \pi)$ is the linear span of all the normalized multivariate B-splines $\psi_{k_1}(x^{(1)})\psi_{k_2}(x^{(2)}) \dots \psi_{k_M}(x^{(M)})$, $-d + n \leq k_j \leq N_j - n$,

$$j = 1, 2, \ldots, M$$

which we rename as $\left\{B_{i}(\mathbf{X})\right\}_{i=1}^{m}$, where

$$X = (x^{(1)}, x^{(2)}, \dots, x^{(M)})$$
 and $m = \prod_{j=1}^{M} (N_j + d + 1 - 2n)$.

Using Lemma 1, it is straightforward to prove the following:

LEMMA 2. For an arbitrary (d+1)-extended product partition $\overline{\pi}$ of Ω , there exists a positive constant \overline{D} depending only on d such that for all $\mathbf{a} \in \mathbf{R}^m$,

(16)
$$\left\|\sum_{i=1}^{m} a_{i}B_{i}\right\|_{L^{2}} \geq \overline{D}\overline{\delta}^{M/2}\|\mathbf{a}\|_{2}.$$

In applying the Rayleigh-Ritz method, let the approximating subspace $S_m \equiv Sp_0(d, \overline{\pi})$ and let the coordinate functions $\phi_i(\mathbf{x}) \equiv B_i(\mathbf{x})$, $i = 1, 2, \ldots, m$. Assuming that the maximum multiplicity of the interior knots of π_j is less than or equal to d + 1 - n, for all $1 \leq j \leq M$, then it can be shown that $Sp_0(d, \overline{\pi}) \subset W_0^{n,2}(\Omega)$, see [6].

THEOREM 2. If (14) holds and $\overline{\pi}$ is an arbitrary (d+1)-extended product partition of Ω such that the multiplicity assumption above is valid, then there exists a positive constant \overline{C} depending only on d such that

(17)
$$\kappa(R) \leq \overline{C}(\overline{\Delta}/\overline{\delta})^M \overline{\delta}^{-2n}$$

Proof. From (15) and (14), we obtain for all $a \in \mathbb{R}^{m}$,

$$\mathbf{a}^{T}R\mathbf{a} = \int_{\Omega} \left\{ \sum_{\substack{0 \le |\alpha|, |\beta| \le n}} p_{\alpha\beta}(\mathbf{x}) D^{\alpha} \left[\sum_{i=1}^{m} a_{i}B_{i}(\mathbf{x}) \right] D^{\beta} \left[\sum_{i=1}^{m} a_{i}B_{i}(\mathbf{x}) \right] \right\} d\mathbf{x}$$

$$\geq K \left\| \sum_{i=1}^{m} a_{i}B_{i} \right\|_{L^{2}}^{2},$$

which, by Lemma 2, yields

$$\mathbf{a}^T R \mathbf{a} \geq K \overline{D}^2 \overline{\delta}^M \|\mathbf{a}\|_2^2$$
,

and thus

(18)
$$\lambda \geq K \overline{D}^2 \overline{\delta}^M .$$

Conversely, since $p_{\alpha\beta}(\mathbf{x})$, $0 \leq |\alpha|$, $|\beta| \leq n$, are bounded in Ω , there exists a positive constant Q such that

$$\mathbf{a}^{T} \mathbf{R} \mathbf{a} \leq Q \sum_{0 \leq |\alpha| \leq n} \int_{\Omega} \left[D^{\alpha} \sum_{i=1}^{m} a_{i} B_{i}(\mathbf{x}) \right]^{2} d\mathbf{x} ,$$

and using the minimal support properties of $\{B_i\}_{i=1}^m$, it can be shown that there exists a positive constant F depending only on d such that

$$\mathbf{a}^{T}R\mathbf{a} \leq QF \sum_{0 \leq |\alpha| \leq n} \sum_{i=1}^{m} a_{i}^{2} \int_{\Omega} \left[D^{\alpha}B_{i}(\mathbf{x}) \right]^{2} d\mathbf{x}$$
$$\leq QF \sum_{i=1}^{m} a_{i}^{2} (d+1)^{M} \overline{\Delta}^{M} \sum_{0 \leq |\alpha| \leq n} \left\| D^{\alpha}B_{i} \right\|_{L}^{2}$$

Using Lemma 3.1 of [3], it can be shown that there exists a positive constant \overline{E} depending only on d such that

$$\sum_{0 \le |\alpha| \le n} \left\| D^{\alpha} B_i \right\|_{L^{\infty}}^2 \le E \overline{\delta}^{-2n} \quad \text{for all } 1 \le i \le m \; .$$

Hence

$$\mathbf{a}^{T} R \mathbf{a} \leq Q F \overline{E} (d+1)^{M} \overline{\Delta}^{M} \overline{\delta}^{-2n} \|\mathbf{a}\|_{2}^{2}$$

and thus

(19)
$$\Lambda \leq Q \overline{FE} (d+1)^{M} \overline{\Delta}^{M} \overline{\delta}^{-2n}$$

Combining (18) and (19), we obtain the desired result with $\overline{C} = QF\overline{E}(d+1)^M K^{-1}\overline{D}^{-2}$. //

References

- [1] Carl de Boor, "On uniform approximation by splines", J. Approximation Theory 1 (1968), 219-235.
- [2] Carl de Boor, "The quasi-interpolant as a tool in elementary polynomial spline theory", Approximation theory, 269-276 (Proc. Internat. Sympos., Univ. Texas, Austin, Texas, 1973. Academic Press, New York, London, 1973).
- [3] C. de Boor and G.J. Fix, "Spline approximation by quasiinterpolants", J. Approximation Theory 8 (1973), 19-45.
- [4] H.B. Curry and I.J. Schoenberg, "On Pólya frequency functions IV: the fundamental spline functions and their limits", J. Analyse Math. 17 (1966), 71-107.
- [5] С.Г. Михлин, Численная реализация вариационных методов (Izdat. "Nauka", Moscow, 1966).
 - S.G. Mikhlin, The numerical performance of variational methods (translated by R.S. Anderssen. Wolters-Noordhoff, Groningen, 1971).
- [6] Bernard J. Omodei, "Stability of the Rayleigh-Ritz-Galerkin procedure for elliptic boundary value problems" (PhD thesis, Australian National University, Canberra, 1976). See also: Abstract, Bull. Austral. Math. Soc. 14 (1976), 471-472.

[7] Martin H. Schultz, "The condition number of a class of Rayleigh-Ritz-Galerkin matrices", Bull. Amer. Math. Soc. 14 (1970), 840-844.

Department of Mathematics, University of Manchester, Manchester, England. Present Address: School of Mathematical Sciences, Flinders University of South Australia, Bedford Park, South Australia.

338