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Abstract 

We present a numerical method for iterative computation of electron optical systems influenced by 

space charge with an improved accuracy in the same calculation time. We replace the common 

algorithm for evaluating the space charge distribution with a new one based on the calculation of the 

current density distribution from an aberration polynomial. We introduce a re-meshing algorithm which 

adapts the mesh used for the field calculation by the finite element method in each iteration to the actual 

space charge distribution to keep it sufficiently fine in all areas with non-zero space charge. 

 

Introduction 

All electrons in the electron-optical system generally interact with each other. These repulsions affect 

the electron trajectories and the presence of the electrons itself alters the electrostatic field in the system. 

The significance of this effect grows with the total current in the system. It is not computationally 

feasible to simulate the interaction between each pair of electrons in the beam in most cases. The 

standard approximation uses the concept of space charge based on the collective effect. The space 

charge is a time invariant charge distribution corresponding to the actual current density distribution in 

the system. The space charge distribution generates a new electrostatic field in the system, leading to a 

new current density distribution, which allows performing a self-consistent computation [1]. 

 

The crucial part of the self-consistent algorithm, the evaluation of the space charge distribution, is 

commonly based on the particle-in-cell method [1] or the charge-tube method [2]. The particle in-cell-

method divides the simulated system to a large set of cells and determines the time the traced particles 

spend in each cell. It is necessary to have sufficiently small cells in the crossovers for good results. The 

formation of a hollow beam in the second iteration caused by a non-realistically high current density in 

the crossover was described in [1]. Other inaccuracies are caused by cells inside the wide parts of the 

beam not encountering any particles, which generates zero space charge. The problem with the accuracy 

in crossovers is improved by the charge tube method, which uses narrow tube cells around traced 

trajectories. On the other hand a huge number of trajectories has to be computed to eliminate the areas 

with no cells in the wide parts of the beam. Both methods have several empirical parameters, especially 

the charge-tube method is highly sensitive to the value of the tube diameter. 

 

The calculation of the current density from the aberration polynomial is described in [3]. This method 

provides smooth results and it includes the effect of a non-zero source size and the energy distribution 

and can be used in all parts of the system where trajectory slopes are sufficiently small [4]. We 

implemented this approach to the space charge calculation and it led to more accurate results in the 

whole electron-optical system. The increased accuracy of the space charge distribution in each iteration 

improves convergence of the self-consistent iterative algorithm. Even our present non-optimized 

implementation retains about the same computation time as the two standard methods, even when a 

single iteration takes more time.  
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The accuracy of the whole algorithm is strongly affected by the mesh used for the FEM field 

computations. A really fine mesh is necessary in those areas, where rapid changes in the field occur. 

These areas are determined by the fixed system geometry and the variable space charge distribution. It is 

difficult to construct a suitable mesh before starting the computation, especially if the number of 

elements should stay as low as possible for a reasonable computation speed. We solve this problem by a 

re-meshing algorithm based on [5], applied to the mesh in each iteration according to the actual current 

density distribution.  

 

Simulation algorithm 

We follow the standard self-consistent iterative computational scheme [1] in our space charge 

calculation method. The process starts with the computation of all fields not influenced by the space 

charge. After that the certain number if iterations is performed. In each iteration the actual current 

density distribution corresponding to the field from the previous iteration is evaluated. The mesh is 

refined according to the new current density distribution and the new electrostatic field is computed 

using the refined mesh. The computational scheme is shown in Figure 1. 

  

We use the Galerkin method [6] with linear shape functions on a general triangular mesh in cylindrical 

coordinates for solving the field equations. The electrostatic part of the field is described by the standard 

Poisson equation for the electrostatic potential and the magnetic part is described by the equation for the 

magnetic flux function (r,z). In the vicinity of optical axis with no materials we use the equation for 

the auxiliary potential function defined as (r,z) = (r,z)/r
2
 in coordinates [r

2
,z,], which provides 

near-axis r
2
 correction [6]. Using the auxiliary potential function is advantageous due to the relation 

Bz(0,z) = (0,z), so we do not have to perform the derivative on the axis to find the axial magnetic flux 

density. Details on the equations can be found in [7].  

 

The aberration coefficients of a sufficient order in a fixed set of equidistantly distributed planes 

perpendicular to the optical axis are fitted using the standard least-squares method to the set of the traced 

trajectory points with initial conditions (particle positions, starting angles and energies) generated 

randomly with suitable distributions. These aberration coefficients are used to determine the positions of 

several billion particles in chosen planes perpendicular to the optical axis. It is important to choose 

relevant planes from the set of planes with known aberration coefficients, where current density is high 

or varies significantly, to prevent unnecessarily long computations. The current density distribution and 

its radial profile are constructed using the known particle positions for each chosen plane. The radial 

profiles are smoothed by Savitzky-Golay method [8] modified for non-equidistant abscissae and a 

quadratic spline is fit onto the resulting data. The fitted current density radial profiles are obtained in a 

few hundreds of the most relevant planes. These fits are used to construct a trilinear interpolant of the 

whole current density distribution which is very dense in the radial direction.  

 

The re-meshing algorithm reduces each triangular element of the mesh to some maximal size by 

introducing new mesh points in the centers of the chosen edges. The criterion for the division is the 

maximum of the current density at the element centroid and at the centers of all its three edges. We use 

several predefined levels of this value corresponding to different maximal element sizes. This prevents 

abrupt changes in element sizes within small distances, which would cause inaccuracies in the FEM 

calculations. The regular structure in the reduced triangles is removed by a small random shift of the 

new points in the mesh at the end of the re-meshing process. The points of base mesh generated before 

the first iteration are held in fixed positions in all iterations, so that we can compare the results in them 
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as a stopping criterion. As a result of the re-meshing process, there are no elements with the right hand 

side of the Poisson equation larger than some predefined maximum. The re-meshing in an iteration is 

based on the mesh generated in the previous one, which speeds up the process, because the same base 

mesh elements are not divided again in each iteration. The number of elements in the mesh grows with 

an increasing iteration number. Such a mesh in the third and higher iterations will typically have slightly 

more elements than the optimal one created by dividing the base mesh, but computational time of the re-

meshing together with the FEM field computation is significantly shorter.  

 

We introduced the second order Anderson's mixing algorithm [9] to improve the convergence of whole 

self-consistent iterative algorithm. As the criterion of convergence we used the 2-norm of the differences 

in the electrostatic potential in two following iterations evaluated in the base mesh points. If the results 

of two following iterations are worse than the best result observed so far, the process is regarded as 

stagnating and the calculation is stopped too. 

 

  
 

Figure 2. The upper image shows the geometry of the simulated 

system with the electrostatic field in the second iteration based 

on the trajectories traced only in the magnetic field and without 

space charge. The lower image shows the axial z-component of 

magnetic flux density not influenced by space charge. 

Figure 1.  The simplified algorithm 

diagram based on the standard 

iterative self-consistent method used 

for space charge computations [1]. 

 

Algorithm testing 

We implemented the proposed algorithm in MATLAB. The final FEM system of linear equations with a 

sparse matrix was solved by the MATLAB bicgstab procedure with a Jacobi preconditioner [10]. The 
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electrostatic field from the previous iteration was used as the initial guess to speed up the computation. 

The trajectories were traced using MATLAB Runge-Kutta ode45 solver calculating the standard 

relativistic trajectory equation [7]. The electrostatic field influenced by the space charge was 

interpolated by the ZRP method [11] adapted for the Poisson equation. The interpolation of the magnetic 

flux density vector components was based on the seventh-order expansion of the scalar magnetic 

potential [7]. 

 

We tested our algorithm on the design of the electron lithograph ELG BS 600 consisting of three 

magnetic lenses, showed in Figure 2, in an imaging regime with two crossovers. The starting plane 

corresponds to the crossover of the first condenser lens, where we used Gaussian distributions of the 

initial positions with  = 0.003 mm and of the energy deviations with  = 1.5 eV and uniformly 

distributed trajectory slopes of up to 0.005. The nominal energy was 15 keV and the total current in the 

system was 1 A. The virtual source was considered in the starting plane. The small beam diameter in 

the starting plane generates an undesired sharp peak in the space charge distribution which was not taken 

into account in our model of the virtual source. To fulfill the condition of the constant current in the 

entire system, in the vicinity of the staring plane we set a constant space charge distribution according to 

some plane a few millimeters behind the starting plane. The Dirichlet boundary condition on the left 

border was located a few centimeters from the starting plane, which slightly enlarges the mesh, but it 

significantly improves the electrostatic field in the vicinity of the starting plane. The base mesh 

generated by the software Gmsh 2.8.4 [12] had 2.35 million elements. The number of the elements after 

the first refinement was 3.24 million and went up to 5.28 million in the last iteration. 

 

The calculation time of one iteration was around 15 hours on a 4 GHz 8-core AMD-FX computer, but 

the code is not well optimized yet. The stopping tolerance was set to 1 V. We performed 8 iterations 

until the stopping criteria were fulfilled; the best result was observed in the sixth iteration with the 2-

norm of the potential difference of 0.98 mV. We checked the accuracy of proposed method of evaluating 

current density distribution after the computation. We fitted the aberration polynomial of the fifth order 

to the set of 2500 trajectories and the residual standard deviation was several nanometers, which is 

demonstrated in Figure 3. 

 
Figure 3. The plot on the left shows a comparison of the ray-traced positions in the given plane (full 

dots) and the positions calculated by evaluating the aberration polynomial of the fifth order (circles). 

The plot on the right shows the current density distribution radial profile obtained using the same 

aberration polynomial in the same plane. The fitted quadratic spline is drawn by dashed gray line nearly 

overlaps the data after Savitzky-Golay smoothing represented by full black line. 
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Figure 4. Trajectories starting on the optical axis with the nominal energy under different equidistant 

slopes, in the rotating coordinates. The inset graph shows the vicinity of the second crossover. 

 
Figure 5. The graph on the left shows the evolution of the electrostatic potential near the first crossover 

in the base mesh axial points in different iterations. The thick black line represents the result for the sixth 

iteration, from which the results were chosen. The changes following this iteration are small. The graph 

on the right shows the convergence of the algorithm. It is possible that algorithm would converge to 

slightly better results, but in a much longer computation time. 

 

We made the comparison of the results without the space charge and those after six iterations. In Figure 

4 it is obvious that trajectories with the same initial conditions change significantly. The diverging 
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action of the space charge is clearly visible especially in front of the first crossover. We made a 

comparison of the crossover positions and the diameters. The presented beam diameters correspond to 

the diameter containing 50% of the total beam current. The positions of crossovers were determined by 

local minima in the beam size. The changes in these two quantities are presented in Table 1, both 

crossover sizes decrease in the presence of space charge. This fact is illustrated by the imaging 

parameters of Gaussian planes presented in Table 1 too. 

 

 1st Gaussian plane 1st crossover 2nd Gaussian plane 2nd crossover 

 position [mm] M m position [mm] size [m] position [mm] M m position [mm] size [m] 

no SC 224,95 -1,953 -0,5124 229,75 1,755 421,5 0,873 1,156 422,5 0,823 

SC 229,15 -0,440 -2,2413 229,85 1,499 422,45 0,222 4,910 422,55 0,704 

 

Table 1. Comparison of the properties in the planes of least confusion and in the Gaussian image planes 

in the system with and without space charge. 

 

Conclusions 

The proposed algorithm converges in the order of magnitude of tens of hours on a 4 GHz 8-core AMD-

FX computer. It was tested on an electron-optical system with two crossovers. The shift of the second 

image is only several hundredths of a millimeter along the optical axis. The crossover diameters were 

reduced by a few tenths of a micrometer as a result of the axial space charge distribution. The algorithm 

can be used in those parts of the electron-optical system, where the trajectories can be fitted by the 

aberration polynomial. In the vicinity of the cathode the aberration polynomial cannot be used in the 

standard form. Further work will be focused on the determination of the initial conditions in the starting 

plane of the system and with the simulation in the vicinity of cathode [13]. 
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