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Facultad de Matemáticas de la Universidad Autónoma de Yucatán,
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Abstract. The notions of central endolength and semigeneric tameness are
introduced, and their behaviour under base field extension for finite-dimensional
algebras over perfect fields are analysed. For k a perfect field, K an algebraic closure
and � a finite-dimensional k-algebra, here there is a proof that � is semigenerically
tame if and only if � ⊗k K is tame.
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1. Introduction. In this note, k denotes a perfect field, perhaps finite, K an
algebraic closure of k, and � a finite-dimensional k-algebra.

For an object V with structure of k-vector space and F , a field extension of k, we
denote by VF the object V ⊗k F.

In [6] and [7], the notion of generic module was introduced in order to generalize
the concept of tameness, providing a deeper understanding of representation type
problems of finite-dimensional algebras over an arbitrary field.

DEFINITION 1.1. For M ∈ � − Mod, we denote EM = End�(M)op. The endolength
of M is its length as right EM-module and it is denoted as endol(M). We say that M is
endofinite if endol(M) < ∞. We say that M is generic if it is endofinite, indecomposable
and it has infinite dimension over k.

DEFINITION 1.2. � is generically trivial if there are no generic modules in � − Mod
and � is generically tame if for each natural number d there is only a finite number of
isomorphism classes of generic modules of endolength d in � − Mod.

THEOREM 1.3 (Theorems 4.4 and 4.5 of [6]). Let us assume that k is algebraically
closed, i.e. k = K. Then, � is of finite representation type if and only if � is generically
trivial, and � is tame if and only if � is generically tame.

A nice way to study the case when the base field is not algebraically closed is to
use base field extension, as was proposed in [12] and [13].

THEOREM 1.4 (Theorem 5.2 of [13] and Theorem 2.1 of [14]). If � is generically
tame, then �K is generically tame.

Whether the converse of the precedent theorem holds seems to be a quite hard
problem, so here I suggest to consider a more tractable type of generic modules:
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DEFINITION 1.5. Let G be a generic �-module. We say that G is algebraically rigid
if the �K -module GK is generic. We say that the generic �-module G is algebraically
bounded if there exists a finite field extension L/k and a natural number n such that
GL ∼= G1 ⊕ · · · ⊕ Gn, where Gi is an algebraically rigid �L−module for i ∈ {1, . . . , n}.

Also it seems convenient to consider a slightly different way to measure some
generic modules.

DEFINITION 1.6. For M ∈ � − Mod, we denote DM = EM/rad(EM) and by ZM

the centre of DM . Let G be an indecomposable endofinite �-module, then it is known
that DG is a division ring (see Proposition 2.2(a)). If DG is finite-dimensional over the
field ZG, then dimZG (DG) = c2

G for a natural number cG : in this case, we say that G is
centrally finite and we define its central endolength as c − endol(G) = cG × endol(G).
Otherwise, we define c − endol(G) = dimZG (DG) × endol(G).

DEFINITION 1.7. We say that � is semigenerically tame if for each d ∈ � there is
only a finite number of isomorphism classes of algebraically bounded and centrally
finite generic modules of central endolength equal to d.

The main result in this paper is the following:

THEOREM 1.8. Let k be a perfect field, K an algebraic closure of k, and � a finite-
dimensional k-algebra. Then, � is semigenerically tame if and only if �K is generically
tame. Moreover, if � is semigenerically tame, then each algebraically bounded generic
�-module is centrally finite.

The problem of whether semigeneric tameness is equivalent to generic tameness
remains open (see 2.20).

2. Some facts about generic modules and base field extension. It is convenient to
recall some important facts.

LEMMA 2.1 (Lemma 1.1 of [6]). Let M, N ∈ � − Mod, then

max {endol (M) , endol (N)} ≤ endol (M ⊕ N) ≤ endol (M) + endol (N) .

If I 	= ∅, then endol (⊕i∈I M) = endol (M) .

PROPOSITION 2.2 ([7] and [13]).

(a) The endomorphism ring of an endofinite indecomposable �-module G is a local
ring with nilpotent radical.

(b) If M ∼= ⊕
i∈I Mi and G is an endofinite indecomposable module such that G is

a direct summand of M, then G is a direct summand of Mi for some i ∈ I.
(c) A �-module G is endofinite if and only if G is isomorphic to a direct

sum
⊕s

j=1

(⊕
Ij

Gj

)
, for some natural number s, endofinite indecomposable

modules Gj and sets Ij, for j ∈ {1, . . . , s} . Applying Lemma 2.1 and the previous
item, we get that if H is an indecomposable direct summand of G, then there
exists j such that H ∼= Gj. Moreover, by Azumaya’s decomposition Theorem
(12.6 of [1]), if G ∼= ⊕u∈U Nu, where Nu is indecomposable for each u, then
(assuming j 	= j′ implies Ij ∩ Ij′ = ∅ and Gj � Gj′) there exists a bijection
σ : U → I1 ∪ · · · ∪ Is such that Nu ∼= Gj if and only if σ (u) ∈ Ij.
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LEMMA 2.3 (Lemma 2.5 of [12] and Lemmas 3.2 and 3.3 of [13]). Let M and N be
�-modules and let L/k be a field extension.

(a) The natural map α : Hom� (M, N)L → Hom�L

(
ML, NL

)
is a monomorph-

ism. If [L : k] < +∞ then α is an isomorphism. If M = N, then α is a
morphism of L-algebras.

(b) If [L : k] < +∞ and M is endofinite, then ML is endofinite and

endol (M) ≤ endol
(
ML) ≤ [L : k] endol (M) .

(c) If M is endofinite and indecomposable, and ML and NL have a common direct
summand, then M is a direct summand of N.

REMARK 2.4. The injectivity in Lemma 2.3(a) can be obtained through the proof
of Lemma 3.2 of [13]. The proof of 2.3(c) for M generic is the same of Lemma 3.3 (b)
of [13].

REMARK 2.5. Let L/k be a field extension. Let ξ : �L − Mod → � − Mod be
the restriction functor of [13] and ( )L : � − Mod → �L − Mod the scalar extension
functor. By Lemma 3.1 of [13], the functor ξ is right adjoint to ( )L

. Let us observe that
( )L is naturally equivalent to the functor �L ⊗� , when we consider the canonical
structure of �L − �-bimodule of �L, and ξ is naturally equivalent to the functor
�L ⊗�L , when we consider the canonical structure of � − �L-bimodule of �L.

LEMMA 2.6 (Lemma 31.4 of [5]). Let �1 and �2 be k-algebras and let B be a
�1 − �2-bimodule such that it is free of finite rank m as right �2-module. Then, for any
M ∈ �2 − Mod we have that

endol (B ⊗�2 M) ≤ m × endol (M) .

If the functor B ⊗�2 : �2 − Mod → �1 − Mod is full, then the equality holds.

Proof. The first part of the statement is Lemma 31.4 of [5], and the second part of
the statement follows easily from the proof given in [5].

�
LEMMA 2.7 (Lemma 3.4 of [13]). Let L/k be an arbitrary field extension. For any

�L-module M the endolength of ξ (M) is less than or equal to the endolength of M.

COROLLARY 2.8. Let L be an intermediate field of an arbitrary field extension F/k.

Then for any �-module M we have that endol
(
ML

) ≤ endol
(
MF

)
.

Proof. Let ξ : �F − Mod → �L − Mod be the restriction functor. By Lemma
2.7, we get endol

(
MF

) ≥ endol
(
ξ

(
MF

))
. It is easy to see that ξ

(
MF

) ∼= ⊕i∈I ML,

where the cardinality of I is [F : L] , and by Lemma 2.1 we have endol
(⊕i∈I ML

) =
endol

(
ML

)
, so endol

(
MF

) ≥ endol
(
ML

)
.

�
REMARK 2.9. Let G be an algebraically rigid �-module and let L be an intermediate

field of K/k. Since
(
GL

)K ∼= GK we get that GL is an indecomposable �L-module. Also
it is known that dimk (G) = dimL

(
GL

)
. By Corollary 2.8, we have that endol (G) ≤

endol
(
GL

) ≤ endol
(
GK

)
. It follows that GL is a generic �L-module.

REMARK 2.10. Let η1 : L → L′ be an isomorphism of k-algebras, and K/L and
K ′/L′ algebraic field extensions such that K and K ′ are algebraically closed. Recall that
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there exists an isomorphism of k-algebras η2 : K → K ′ such that (η2)|L = η1. Then,
there are induced isomorphisms of k-categories F1⊗η1 : �L − Mod → �L′ − Mod
and F1⊗η2 : �K − Mod → �K ′ − Mod. Thus, we have, by Remark 2.9, the following
equivalent definition: a �-module G is algebraically rigid if GL is generic for any
algebraic field extension L/k. The argument of Remark 2.9 also exhibits that we can
drop out the assumption of genericity for G in Definition 1.5, for algebraic rigidness,
and substitute it for indecomposability, in the case of algebraic boundedness.

In this note, a Galois field extension F/k means a normal separable finite field
extension F of k.

LEMMA 2.11. Let F/k be a Galois field extension and L an intermediate field with
n = [L : k] .

(a) There is an isomorphism of F-algebras h1 : L ⊗k F → ×n
i=1F.

(b) There is an isomorphism of L-algebras h2 : L ⊗k F → ×n
i=1F.

Proof. L is separable over k, then it is a simple field extension over k,

i.e. L = k (a) . Let p be the irreducible monic polynomial of a over k, and p =∏n
i=1 (x − ri) its factorization on F [x] . It is known that we can choose elements of

the Galois group Gal (F/k) , namely σ1, σ2, . . . , σn, such that σi (a) = ri. Then, there
is a k-linear transformation h1 : L ⊗k F −→ F × · · · × F, determined by h1 (l ⊗ f ) =
(σ1 (l) f, . . . , σn (l) f ) , where l ∈ L and f ∈ F, and it is easy to verify that h1 satisfies the
first item.

The composition h2 = (×n
i=1σ

−1
i

)
h1 = L ⊗k F → F × · · · × F, given in homogen-

eous elements by h2 (l ⊗ f ) = (
lσ−1

1 (f ) , . . . , lσ−1
n (f )

)
, fulfils the second item.

�

REMARK 2.12. In the context of Lemma 2.11 and its proof, notice that there
are precisely n isomorphism classes of indecomposable L − F-bimodules, being
{Fσ1 , . . . , Fσn} a complete set of representatives, where Fσi is F with its natural structure
of right F-module and with the structure of left L-module given by the composition

L
j→ F

σi→ F, where j is the inclusion.
If we set a = r1, we get F = Fσ1 as L − F-bimodules.
Also we observe that we can define the L − F-bimodule Fσi , which is F as left

L-module and with the structure of right F-module determined by 1 · f = σ−1
i (f ) :

then (σi)
−1 induces an isomorphism of L − F-bimodules between Fσi and Fσi .

It is easy to see that h1 : L ⊗k F → ×n
i=1Fσi and h2 : L ⊗k F → ×n

i=1Fσi are
isomorphisms of L − F-bimodules.

LEMMA 2.13. Let F/k be a Galois field extension, ξ : �F − Mod → � − Mod
the restriction functor, Fσ1 , . . . , Fσn as in Remark 2.12, and M ∈ �F − Mod. Then,
ξ (M)F ∼= ⊕n

i=1 (� ⊗k Fσi ) ⊗�F M and M is a direct summand of ξ (M)F
. Moreover,

M is (indecomposable, generic, centrally finite, algebraically rigid, algebraically
bounded) if and only if (� ⊗k Fσi ) ⊗�F M is (respectively indecomposable, generic,
centrally finite, algebraically rigid, algebraically bounded) for each i. Also dimF (M) =
dimF ((� ⊗k Fσi ) ⊗�F M) and endol (M) = endol ((� ⊗k Fσi ) ⊗�F M) for each i. If M
is indecomposable and endofinite, then c − endol (M) = c − endol ((� ⊗k Fσi ) ⊗�F M)
for each i.
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Proof. The first part of the claim follows by Remarks 2.5 and 2.12,
i.e. we have isomorphisms of � ⊗k F-modules ξ (M)F ∼= �F ⊗� �F ⊗�F M ∼=
((� ⊗� �) ⊗k (F ⊗k F)) ⊗�F M ∼= ⊕n

i=1 (� ⊗k Fσi ) ⊗�F M.

It is easy to see that for i ∈ {1, . . . , n} there exists i′ ∈ {1, . . . , n} such that
Fσi ⊗F Fσi′ ∼= F as F − F-bimodules, so (� ⊗k Fσi ) ⊗�F (� ⊗k Fσi′ ) ∼= (� ⊗� �) ⊗k

(Fσi ⊗F Fσi′ ) ∼= �F as �F − �F -bimodule.
Then, the functor (� ⊗k Fσi ) ⊗�F : �F − Mod → �F − Mod is an equivalence

of k-categories, so M is indecomposable if and only if (� ⊗k Fσi ) ⊗�F M is
indecomposable for each i.

Since � ⊗k Fσi ∼= �F as right �F -modules, by Lemma 2.6 we get endol (M) =
endol ((� ⊗k Fσi ) ⊗�F M) , for each i.

Since dimF (M) = dimF ((� ⊗k Fσi ) ⊗�F M), we get that M is generic if and only
if (� ⊗k Fσi ) ⊗�F M is generic for each i.

By the previous equivalence of k-categories it follows, when M is indecomposable
and endofinite, that dimZM (DM) = dimZ(�⊗kFσi )⊗

�F M

(
D(�⊗kFσi )⊗�F M

)
for each i.

Using the canonical isomorphism

((� ⊗k Fσi ) ⊗�F M)K ∼= (� ⊗k Fσi ⊗F K) ⊗�K MK

we can develop an argument similar to the above one and conclude that
((� ⊗k Fσi ) ⊗�F M)K is generic if and only if MK is generic. Then, M is algebraically
rigid if and only if (� ⊗k Fσi ) ⊗�F M is algebraically rigid for each i.

By a similar argument, and the additivity of the tensor product, we can verify the
part of the statement about algebraic boundedness.

�

PROPOSITION 2.14. Let L/k be a finite field extension and G an endofinite
indecomposable �-module. Then:

(a) GL ∼= G1 ⊕ · · · ⊕ Gm, where Gi is an endofinite indecomposable �L-module
for i ∈ {1, . . . , m} . Let F/k be a Galois field extension with L an intermediate
field, then m ≤ [F : k] .

(b) G is a direct summand of ξ (Gi) , for each i, where ξ : �L − Mod → � − Mod
is the restriction functor.

(c) G is (generic, algebraically bounded) if and only if Gi is (respectively generic,
algebraically bounded) for each i, if and only if Gi is (respectively generic,
algebraically bounded) for some i.

(d) If L/k is a Galois field extension, then endol (G1) = · · · = endol (Gm) ,

c − endol (G1) = · · · = c − endol (Gm) and DG1
∼= · · · ∼= DGm as k-algebras.

Proof. Let F/k be as in item (a). By Lemma 2.3(b) and Proposition 2.2(c), there
exists an endofinite indecomposable direct summand H of GF .

Let ξ ′ : �F − Mod → �L − Mod and ξ1 : �F − Mod → � − Mod be the
respective restriction functors.

By Lemma 2.7 and Proposition 2.2(c), we get ξ1 (H) ∼= ⊕s
j=1

(⊕
Ij

Mj

)
, where

each Mj is indecomposable and endofinite.
By Lemma 2.13, we get that H is a direct summand of ξ1 (H)F then, by Lemma

2.3(b) and Proposition 2.2(c), there exists j0 ∈ {1, . . . , s} such that H is a direct
summand of MF

j0 . By Lemma 2.3(c), we get Mj0
∼= G.
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Then, GF is a direct summand of ξ1 (H)F and so, by Lemma 2.13 and Proposition
2.2(c), GF is a finite direct sum of endofinite indecomposable �F -modules. It follows
that GL ∼= G1 ⊕ · · · ⊕ Gm, where Gi is indecomposable and endofinite for each i, and
m ≤ [F : k] . Moreover, if Hi and Hi′ are indecomposable direct summands, respectively,
of GF

i and GF
i′ , then endol (Hi) = endol (H) = endol (Hi′) , c − endol (Hi) =

c − endol (H) = c − endol (Hi′ ) and dimF (Hi) = dimF (H) = dimF (Hi′ ) .

It follows that dimF (H) ≤ dimk (G) ≤ [F : k] × dimF (H) and dimF (H) ≤
dimL (Gi) ≤ [F : k] × dimF (H) for each i, then G is generic if and only if H is generic,
if and only if Gi is generic for each i.

Also, using the equivalence of categories of the proof of Lemma 2.13, we get
DHi

∼= DHi′ as k-algebras.
Let us fix i ∈ {1, . . . , m} , and assume that Hi is an indecomposable direct summand

of GF
i . By the previous argument, G is a direct summand of ξ1 (Hi) and of ξ1

(
GF

i

)
, and

we have ξ1
(
GF

i

) = ξξ ′ (GF
i

) ∼= ξ
(
⊕[F :L]

s=1 Gi

) ∼= ⊕[F :L]
s=1 ξ (Gi) : by Lemmas 2.7 and 2.1 and

Proposition 2.2(c), it follows that G is a direct summand of ξ (Gi) for each i.
It is easy to verify that G algebraically bounded implies Gi algebraically bounded

for each i.
Now let us assume that Gi is algebraically bounded for some i ∈ {1, . . . , m} , and

notice that we can choose F such that the indecomposable direct summand Hi of GF
i

is algebraically rigid. Also we have seen that GF is a direct summand of ξ1 (Hi)
F and

so, by Lemma 2.13 and Proposition 2.2(c), G is algebraically bounded.
�

PROPOSITION 2.15. Let L/k be a finite field extension, H an endofinite
indecomposable �L-module, and ξ : �L − Mod → � − Mod the restriction functor.

(a) ξ (H) ∼= G1 ⊕ · · · ⊕ Gm, where Gi is an endofinite indecomposable �−module
for i ∈ {1, . . . , m} . Let F/k be a Galois field extension with L an intermediate
field, then m ≤ [F : k] .

(b) There exists i0 ∈ {1, . . . , m} such that H is a direct summand of (Gi0 )L
.

(c) H is (generic, algebraically bounded) if and only if Gi is (respectively generic,
algebraically bounded) for each i, if and only if Gi is (respectively generic,
algebraically bounded) for some i.

Proof. Let F/k be as in item (a). By Proposition 2.14, we get HF ∼= H1 ⊕ · · · ⊕ Hn,

where Hj is indecomposable and endofinite for each j, and n ≤ [F : L] .
Let ξ1 : �F − Mod → � − Mod and ξ ′ : �F − Mod → �L − Mod be the

respective restriction functors.
By Lemma 2.13, we get that ξ1

(
HF

)F
is a finite direct sum of n × [F : k] endofinite

indecomposable �F -modules, thus ξ1
(
HF

) = ξξ ′ (HF
) ∼= ⊕[F :L]

s=1 ξ (H) and ξ (H) are
finite direct sums of endofinite indecomposable � -modules, then we obtain (a).

By Proposition 2.14 and Lemma 2.13, we get that H is (generic, algebraically
bounded) if and only if each direct summand of ξ1

(
HF

)F
is (respectively generic,

algebraically bounded): the last item of the claim follows applying this and Proposition
2.14 to the isomorphism ξ1

(
HF

)F ∼= ⊕[F :L]
s=1

(
GF

1 ⊕ · · · ⊕ GF
m

)
.

�

https://doi.org/10.1017/S0017089515000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000051


ON SEMIGENERIC TAMENESS AND BASE FIELD EXTENSION 45

LEMMA 2.16. Let G be an endofinite indecomposable �-module and L a finite field
extension of k. The isomorphism α : (EG)L → EGL of 2.3(a) induces an isomorphism of
L-algebras (DG)L ∼= DGL .

Proof. It is clear that α induces an isomorphism of L-algebras

α : (EG)L
/rad

(
(EG)L) → EGL/rad (EGL ) = DGL .

Since k is perfect, from Theorem 2.5.36 of [15], we have that (rad (EG))L = rad
(
(EG)L)

,

then

(DG)L = (EG/rad (EG))L ∼= (EG)L
/ (rad (EG))L = (EG)L

/rad
(
(EG)L) ∼= DGL .

�
LEMMA 2.17. Let G be an endofinite indecomposable �-module. Let L be a finite

field extension of k. By Proposition 2.14, we have that GL ∼= m1G1 ⊕ · · · ⊕ mtGt,

where m1, m2, . . . , mt ∈ � and G1, . . . , Gt are pairwise non-isomorphic endofinite
indecomposable �L-modules. Then, we have isomorphisms of L−algebras

DGL ∼= End�L (m1G1 ⊕ · · · ⊕ mtGt)
op

/rad (End�L (m1G1 ⊕ · · · ⊕ mtGt)
op)

∼= Mm1 (DG1 ) × · · · × Mmt (DGt ) .

Proof. The isomorphisms follow from the usual description of the radical of an
endomorphism algebra of a finite direct sum of modules with local endomorphism
algebras (use Proposition 2.2(a)). �

PROPOSITION 2.18. Let G be an endofinite indecomposable �-module, L/k a finite
field extension and GL ∼= m1G1 ⊕ · · · ⊕ mtGt, where m1, m2, . . . , mt ∈ � and G1, . . . , Gt

are pairwise non-isomorphic endofinite indecomposable �L-modules. Then:

(a) endol
(
Gj

) = endol (G) × mj for j ∈ {1, . . . , t} . If L/k is a Galois field
extension, then m1 = . . . = mt.

(b) c − endol
(
Gj

) = c − endol (G) for each j. Moreover, G is centrally finite if
and only if there exists j ∈ {1, . . . , t} such that Gj is centrally finite.

Proof. For j ∈ {1, . . . , t} consider the idempotent ej of EGL induced by one of the
copies of Gj, i.e. given a monomorphism σj : Gj → GL and an epimorphism πj : GL →
Gj such that πjσj is the identity on Gj, we set ej = σjπj. Notice that σ : Gj → Gej is an
isomorphism of �L−modules, so endol

(
Gj

) = endol
(
GLej

)
.

It is immediate that EGLej = ejEGL ej, and so endol
(
GLej

)
is its length as right

ejEGL ej-module.
Let {0} = W0 ⊂ W1 ⊂ . . . ⊂ Wu = G be a composition series for G as right

EG-module, and observe that Wq+1/Wq ∼= DG for q ∈ {0, . . . , u − 1} .

It is clear that GL and W L
q , for each q, are (EG)L -modules and EGL -modules. Also,

we have W L
q+1/W L

q
∼= (

Wq+1/Wq
)L ∼= (DG)L

. The above isomorphism composed with

α : (DG)L → DGL gives an isomorphism of EGL -modules W L
q+1/W L

q
∼= DGL . We also

have an isomorphism of ejEGL ej-modules W L
q+1ej/W L

q ej ∼= DGL ej.

By Lemma 2.17, we get that lengthejEGL ej
(DGL ) = mj : it follows that endol

(
GLej

) =
mju.
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By Proposition 2.14, we get, when L/k is a Galois field extension, that endol (G1) =
. . . = endol (Gt) , and so m1 = m2 = · · · = mt.

For item (b), we recall (Corollary 1.7.24 of [15]) that the centre of (DG)L is (ZG)L
,

and by Lemmas 2.16 and 2.17 we have (DG)L ∼= Mm1 (DG1 ) × · · · × Mmt (DGt ) , so
(ZG)L ∼= ZG1 × · · · × ZGt as L-algebras.

It follows that 1 ⊗ 1 = e′
1 + . . . + e′

t, where
{

e′
j

}
j∈{1,...,t}

is a set of primitive

orthogonal idempotents contained in (ZG)L
, thus (DG)L e′

j is a (ZG)L e′
j-vector

space with the same dimension that the ZG-vector space DG, i.e. dimZG (DG) =
m2

j × dimZGj

(
DGj

)
for each j.

Then, c − endol (G) = endol (G) × √
dimZG (DG) = endol (G) × mj ×√

dimZGj

(
DGj

) = endol
(
Gj

) ×
√

dimZGj

(
DGj

) = c − endol
(
Gj

)
for each j.

Now the last part of the item (b) is immediate.
�

COROLLARY 2.19. Let L/k be a finite field extension. Then, � is semigenerically
tame if and only if �L is semigenerically tame.

Proof. Let G and G′ be algebraically bounded and centrally finite �-modules such
that G � G′ and c − endol (G) = c − endol (G′) . By Propositions 2.14 and 2.18, there
exist algebraically bounded �L-modules H and H ′ such that H is a direct summand of
GL, H ′ is a direct summand of (G′)L

, and c − endol (H) = c − endol (H ′) . By Lemma
2.3(c), we get that H � H ′ : it follows that � not semigenerically tame implies �L not
semigenerically tame.

Now, let H be an algebraically bounded centrally finite �L-module. By Proposition
2.15, there exists an algebraically bounded �-module G such that H is a direct
summand of GL. By Proposition 2.18, we get c − endol (G) = c − endol (H) . By
Proposition 2.14, we know that GL has a finite number of isomorphism classes of
indecomposable direct summands: it follows that � semigenerically tame implies �L

semigenerically tame.
�

The next corollary provides an example of a situation where generic tameness
coincides with semigeneric tameness.

COROLLARY 2.20. Assume that K/k is a finite field extension and �K is tame. Let G
be a generic �-module, then G is algebraically bounded and centrally finite.

Proof. The case k = K is immediate from Theorem 4.6 of [6].
If k � K, by Theorem 17 VI Section 11 of [11], the field k is real closed and

K = k
(√−1

)
, so [K : k] = 2.

In this case, G is algebraically bounded by Proposition 2.14.
Let H be an indecomposable direct summand of GK . Then, H is generic, by

Proposition 2.14, and so H is centrally finite by Theorem 4.6 of [6]: by Proposition
2.18 (b) we get that G is centrally finite.

�

The next results exhibit special features associated to algebraically bounded and
algebraically rigid modules.
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LEMMA 2.21. Let G be an algebraically bounded �-module and AG the field of the
algebraic elements of ZG. Let L/k be a finite field extension such that GL ∼= m1G1 ⊕ · · · ⊕
mtGt, where m1, . . . , mt ∈ � and G1, . . . , Gt are pairwise non-isomorphic algebraically
rigid �L-modules, then [AG : k] = t.

Proof. Let Z0 be a subfield of AG such that [Z0 : k] < ∞. Let F/Z0 be a field
extension such that F/k is a Galois field and L can be identified with an intermediate
field of F/k. (Recall Remark 2.10.)

Applying Lemma 2.11, we have Z0 ⊗k F ∼= F × · · · × F, and so ZG ⊗k F ∼=
ZG ⊗Z0 Z0 ⊗k F ∼= ZG ⊗Z0 (F × · · · × F) ∼= ×s

i=1ZG ⊗Z0 F, where s = [Z0 : k] .
By Lemma 2.16, we can embed (ZG)F in ZGF , and so there are at least s non-trivial

central orthogonal idempotents in DGF : by Lemma 2.17 and Proposition 7.8 of [1], we
get s ≤ t. It follows that [AG : k] ≤ t.

Now let F/AG be a field extension such that F/k is a Galois field extension
and L can be identified with an intermediate field of F/k, so we get that (ZG)F ∼=
×s

i=1ZG ⊗AG F, where s = [AG : k] .
By Theorem 21.2 IV Section 10 of [11], we have that ZG ⊗AG F is a field: by Lemma

2.17 applied to GF , and Proposition 7.8 of [1], it follows that s = t.
�

PROPOSITION 2.22. Let L/k be an algebraic field extension and G an algebraically
rigid �L-module. Then, the morphism of K-algebras α : (EG)K → EGK induces an
injection α : (DG)K → DGK .

Proof. By Lemma 2.3(a), there is a canonical monomorphism α : (EG)K → EGK ,

and by Proposition 2.2(a) we get that rad (EG)K is nilpotent, so α
(

rad (EG)K
)

⊂
rad (EGK ) and α induces a morphism of K-algebras α : (DG)K → DGK .

Now, let AG be the subfield of the algebraic elements of ZG : by Lemma 2.21 we
get AG = L.

Then, by Theorem 21.2 IV Section 10 of [11], (ZG)K is a field.
By Corollary 1.7.24 of [15], the centre of (DG)K is (ZG)K

. Now, consider the
canonical isomorphism (DG)K ∼= DG ⊗ZG (ZG)K : by Theorem 1.7.27 of [15], we get
that (DG)K is a simple ring. It follows that α is injective.

�

3. Tame case. We recall some known facts, in order to have tools for the proof
of Theorem 3.2.

A ring morphism η : R → S induces by restriction a faithful functor Fη : S −
Mod → R − Mod. By Silver’s Theorem Fη is full if and only if η is an epimorphism
(see [16]).

Let � be an arbitrary k-algebra. Then:

(1) For any morphism of k-algebras η : � → Mn (�), we can consider a � −
�-bimodule ηM = �n, where � acts by the right canonically and � acts by
the left by λ · v = η (λ) v. Clearly, k acts centrally on ηM.

(2) Now assume that M is a � − �-bimodule, where k acts centrally, and τ :
M → �n is an isomorphism of right �-modules. Then, we can transfer the
�-module structure of M to �n in the canonical way, i.e. defining λ · v =
τ

(
λτ−1 (v)

)
. Notice that now τ is an isomorphism of � − �-bimodules.
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Moreover, there is induced a morphism of k-algebras ψ : � → Mn (�) such
that λ �→ Lλ, where Lλ : �n → �n denotes the action of λ, induced by τ,

on the � − �-bimodule �n.

(3) Given a � − �-bimodule M we have the right multiplication morphism μ :
� → EM given by δ �→ μδ, where μδ : M → M denotes right multiplication
by δ. If M is free by the right, then μ is injective.

(4) If M is a �-module such that EM = � ⊕ rad (EM) , where � is a
subalgebra of EM, then the inclusion map � → EM coincides with the
right multiplication morphism μ : � → EM described above. In particular,
� = Imμ.

With the previous ideas, it is easy to prove the next claim.

LEMMA 3.1. Let G ∈ � − Mod be a generic module such that its endomorphisms
ring is split over its radical, i.e. EG = D ⊕ rad (EG) as k-vector spaces, where D
is a subalgebra of EG and a division k-algebra. Thus, G is a � − D-bimodule and
there is associated a morphism of k-algebras η : � → Mn (D) , where n = endol (G) .

Moreover, for the induced restriction functor Fη : Mn (D) − Mod → � − Mod we get
Fη

(
EndMn(D) (G)

) = Dop.

THEOREM 3.2. Assume that �K is tame. Let G be an algebraically bounded generic
�-module. Then, there exists a Galois field extension F/k such that GF ∼= G1 ⊕ · · · ⊕ Gn

and for any intermediate field Z of K/F and i ∈ {1, . . . , n} , we have:

(a) GZ
i is an algebraically rigid �Z-module;

(b) EGZ
i

= Di ⊕ rad
(
EGZ

i

)
, where Di ∼= Z (x) ;

(c) Gi is centrally finite and c − endol (G) = c − endol
(
GZ

i

) = dimZ(x)
(
GZ

i

) =
endol

(
GK

i

)
.

It follows that � is semigenerically tame.

Proof. Let L/k be a finite field extension such that GL ∼= H1 ⊕ · · · ⊕ Hn, where Hi

is an algebraically rigid generic �L-module for i ∈ {1, . . . , n} .

Let us fix i for the following argument.
By definition HK

i is a generic �K -module. By Theorem 4.6 of [6] the K-algebra
EHK

i
is split over its radical, where EHK

i
= D ⊕ rad

(
EHK

i

)
and D ∼= K (x) .

HK
i has a structure of �K − K (x) -bimodule and endol

(
HK

i

) = dimK(x)
(
HK

i

) =
di, for some natural number di.

By Lemma 3.1, this structure of �K − K (x) -bimodule determines a morphism of
K-algebras ψ : �K → Mdi (K (x)) .

Then, there exists a finite field extension Fi/k and a morphism of Fi−algebras
φ : �Fi → Mdi (Fi (x)) such that the following diagram commutes:

�Fi ⊗Fi K
φ⊗1K ��

∼=

��

Mdi (Fi (x)) ⊗Fi K

η1

��
Mdi (Fi (x) ⊗Fi K)

η2

��
�K

ψ �� Mdi (K (x)) ,
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where η1 and η2 are the canonical isomorphisms: we recall that the canonical morphism
of K-algebras Fi (x)K ∼= K (x) is an isomorphism (see Lemma 5.1 of [13]).

It follows that associated to φ there is a �Fi − Fi (x) -bimodule, denoted by Gi, such
that GK

i
∼= HK

i : by Remark 2.10 we get that Gi is an algebraically rigid �Fi -module.
Observe that Fi (x) ∼= EndMdi (Fi(x))

(
Fi (x)di

) ∼= EndMdi (Fi(x))
(
Gi

)
, and that the

restriction functor Fφ identifies EndMdi (Fi(x))
(
Gi

)
with a subalgebra Di of EGi

, so
endol

(
Gi

) ≤ di.

Let π : EGi
→ DGi

be the canonical epimorphism, and α :
(
DGi

)K → DGK
i

the

injection of Proposition 2.22. It is not hard to verify that K (x) ∼= α
(
π (Di)

K
)

= DGK
i
,

thus DGi
= π (Di) ∼= Fi (x) and Gi is centrally finite.

Moreover, EGi
= Di ⊕ rad

(
EGi

)
and c − endol

(
Gi

) = endol
(
Gi

) = di.

We have a similar argument for GZ
i , where Z is an intermediate field of K/Fi,

so GZ
i is an algebraically rigid �Z-module, such that EGZ

i
∼= Z (x) ⊕ rad

(
EGZ

i

)
and

di = endol
(
GZ

i

) = c − endol
(
GZ

i

) = dimZ(x)
(
GZ

i

)
.

Now, we choose a field extension F/L such that F/k is a Galois field extension
and we can identify each Fi with an intermediate field of F/k, and let be Gi = GF

i for
each i.

By construction GF
i

∼= HF
i for all i, then GF ∼= HF

1 ⊕ · · · ⊕ HF
n

∼= G1 ⊕ · · · ⊕
Gn. By Proposition 2.18, we get that G is centrally finite and c − endol (G) =
c − endol (Gi) = di, for each i.

Now we only need to apply Theorem 1.3 and Lemma 2.3(c) to get that �K tame
implies � semigenerically tame.

�

REMARK 3.3. Let �K be tame, L/k an algebraic field extension and G an
algebraically rigid �L-module. Theorem 3.2, Lemma 2.16 and Corollary 1.7.24 of
[15] imply that DG is commutative. For an example let us consider the triangular

matrix R-algebra � =
(

R 0
H H

)
, where R is a real closed field and H is the quaternion

ring over R. There is a unique, up to isomorphism, generic �-module G, and DG ∼=
R (x) [y] /

〈
x2 + y2 + 1

〉
([9]). Also, we have DGC ∼= (DG)C ∼= C (x) [y] /

〈
x2 + y2 + 1

〉 ∼=
C (t) , where C is the algebraic closure of R and t can be identified with the element
y/

(
x − √−1

) ∈ C (x) [y] /
〈
x2 + y2 + 1

〉
(see [8] for a detailed argument). Notice that

G is an algebraically rigid generic �-module with DG � R (w) for w a commutative
variable.

4. Wild case. Now it is necessary to strength a little bit the definition of wild
representation type for a finite-dimensional K-algebra. In order to do so, we are going
to use differential tensor algebras and their reduction functors.

DEFINITION 4.1. Let C and D be additive k-categories and F : C → D a k−functor
(see page 28 of [2]). We say that F is sharp if:

1. F preserves indecomposables and isomorphism classes.
2. For any indecomposable M ∈ C, we have F (radEM) ⊂ radEF(M) and

the induced morphism of k-algebras EM/radEM → EF(M)/radEF(M) is a
bijection.
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REMARK 4.2. If F : C → D is full and faithful and idempotents split in C, then F
is sharp.

REMARK 4.3. If F : C → D and H : D → E are sharp functors, then HF is sharp.

LEMMA 4.4. Assume that B is a proper subalgebra (see Definitions 3.2 of [3] and
12.1 of [5]) of the Roiter ditalgebra A (see Definition 5.5 of [5]). Let F : B − Mod →
A − Mod be the corresponding extension functor. Then, F is sharp.

Proof. It is easy to see that F preserves indecomposables and isomorphism classes
(see Lemma 2.4 of [4]). For sharpness, we can work with the usual characterization of
the radical

radE = {f ∈ E | 1 − gf h is invertible for all g, h ∈ E}

for a given ring E. Given M ∈ B − Mod, f 0 ∈ radEM and g, h ∈ EF(M), we have that
g0, h0 ∈ EM, then 1M − g0f 0h0 is invertible in EM . Since A is a Roiter ditalgebra and(
1F(M) − gF

(
f 0

)
h
)0 = 1M − g0f 0h0 we get that 1F(M) − gF

(
f 0

)
h is invertible in EF(M).

Thus, F (radEM) ⊂ radEF(M).

Now, given f ∈ EF(M), there is a decomposition f = (
f 0, f 1

) = (
f 0, 0

) + (
0, f 1

)
as a

sum of morphisms in EF(M). Here,
(
0, f 1

) ∈ radEF(M), because
(
1F(M) − g

(
0, f 1

)
h
)0 =

1M is invertible for all g, h ∈ EF(M). Thus, the induced morphism F : EM/radEM →
EF(M)/radEF(M) is surjective. Similarly, F

(
f 0

) = (
f 0, 0

) ∈ radEF(M) implies that f 0 ∈
radEM, so F is bijective.

�

LEMMA 4.5. The restriction of the cokernel functor Cok2 : P2 (�) → � − Mod is
sharp.

Proof. Use Lemma 18.10 and Remark 31.6 of [5].
�

In the following, we are going to use results from [6, 7] and [10], all of them
carefully studied in [5].

THEOREM 4.6. Let �K be of wild representation type, then there exists a �K −
K 〈x, y〉 -bimodule B, finitely generated as right module, such that the functor B ⊗K〈x,y〉 :
K 〈x, y〉 − Mod → �K − Mod is sharp.

Proof. Let us recall that associated to �K there is a basic finite-dimensional
K-algebra �, called the reduced form of �K (see page 35 of [2]), and an equivalence
of categories P⊗� : � − Mod → �K − Mod where P is the bimodule of proposition
Section 2.2.5 of [2]: it is an easy exercise in Morita equivalence to extend the functor
of that proposition from finitely generated modules to arbitrary modules.

� is wild by Corollary 22.15 of [5].
Associated to � there is the ditalgebra of Drozd, denoted by D� (see chapter 19 of

[5]). By Theorems 27.10(1) and 27.14 of [5], we have that D� is wild.
By Theorem 27.10(2) of [5], there is a reduction functor F : C − Mod → D� −

Mod such that C is a critical ditalgebra. Reviewing the argument in the proof of the
mentioned proposition, we see that F is full and faithful.
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Let A (resp. C) be the k-algebra of the degree zero elements of the underlying
graded algebra of D� (resp. C) (see Definition 2.2 of [5]) and consider the canonical
embedding LD� : A − Mod → D� − Mod (resp. LC : C − Mod → C − Mod).

Reviewing carefully the development of chapter 24 of [5], we observe in that
reference the proof of the existence of a C − K 〈x, y〉 -bimodule B0 such that the functor
LC

(
B0 ⊗K〈x,y〉

)
: K 〈x, y〉 − Mod → C − Mod is sharp: the functor that produces the

wildness of the star algebra of 30.2 of [5] is full and faithful, and for the extension
functor involved we apply the Lemma 4.4. Also, B0 is free of finite rank as right
module (see Lemma 22.7 of [5]).

By the properties of the reduction functors involved and Lemma 22.7 of [5], we
get that B1 = F (B0) is an A − K 〈x, y〉 -bimodule, free of finite rank, and the functor
LD�

(
B1 ⊗K〈x,y〉

)
is sharp.

Consider the equivalence functor � : D� − Mod → P1 (�) (see Proposition 19.8
of [5]). By Lemma 22.20(1) of [5], the image of any indecomposable under the
composition functor �LD�

(
B1 ⊗K〈x,y〉

)
is contained in P2 (�) . Then, by Lemma

4.5 and the previous arguments, Cok2�LD�

(
B1 ⊗K〈x,y〉

)
is sharp.

By Lemma 22.18(2) of [5], there exists a transitional bimodule, the � − A-bimodule
Z. By construction Z ⊗A is naturally isomorphic to the composition Cok�LD� .

Then, the � − K 〈x, y〉 -bimodule Z ⊗A B1 is finitely generated as right module and the
functor Z ⊗A B1 ⊗K〈x,y〉 is sharp.

Then, the statement is true for the �K − K 〈x, y〉 -bimodule B = P ⊗� Z ⊗A B1

and the functor B ⊗K〈x,y〉 .

�
THEOREM 4.7. If �K is wild, then � is not semigenerically tame.

Proof. This proof contains an adaptation of the argument of [14].
By Theorem 4.6, there is a �K − K 〈x, y〉 -bimodule B0, finitely generated as right

module, such that B0 ⊗K〈x,y〉 is a sharp functor.
As in Section 3, the composition of the epimorphisms of algebras K 〈x, y〉 →

K [x, y] → K (x) [y] has an associated restriction functor Fη : K (x) [y] − Mod →
K 〈x, y〉 − Mod which is full and faithful. Notice that Fη is equivalent to the
functor K (x) [y] ⊗K(x)[y] when we consider the canonical structure of K 〈x, y〉 −
K (x) [y] -bimodule of K (x) [y] .

Then, B0 ⊗K〈x,y〉 K (x) [y] ⊗K(x)[y] : K (x) [y] − Mod → �K − Mod is sharp.
We also have that B0 ⊗K〈x,y〉 K (x) [y] is finitely generated as right module. Since

K (x) [y] is a principal ideal domain, there exists a polynomial h ∈ K (x) [y] such that
B = B0 ⊗K〈x,y〉 K (x) [y]h is free of finite rank as right module, where K (x) [y]h denotes
the localization of K (x) [y] over h.

The canonical algebra morphism K (x) [y] → K (x) [y]h is an epimorphism, so the
functor B ⊗K(x)[y]h : K (x) [y]h − Mod → �K − Mod also is sharp.

Since B is of finite rank as right module and � is finite-dimensional, there exist
a finite field extension L/k and a �L − L (x) [y]h -bimodule B, such that B is free
as L (x) [y]h -module with rankL(x)[y]h (B) = rankK(x)[y]h (B) = n and BK ∼= B as �K −
K (x) [y]h -bimodules. Of course, it is assumed that h ∈ L (x) [y] .

Let {pi}i∈I be an infinite set of non-equivalent primes of L [y] , each one relatively
prime to h in L (x) [y] .

There is a canonical isomorphism of L (x) -algebras L (x) ⊗L L [y] ∼= L (x) [y] and
so, for each i ∈ I, there exists an isomorphism of L (x) -algebras L (x) ⊗L (L [y] / 〈pi〉) ∼=
(L (x) [y]) / 〈pi〉 . Then, choosing Fi as a normal closure of L [y] / 〈pi〉 we get, by the
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previous isomorphisms, Lemma 2.11(a) and Lemma 5.1 of [13], the isomorphisms of
k (x) -algebras

((L (x) [y]) / 〈pi〉)Fi ∼= L (x) ⊗L (L [y] / 〈pi〉) ⊗L Fi ∼= L (x) ⊗L

(Fi × · · · × Fi) ∼= Fi (x) × · · · × Fi (x) ,

where the number of factors is dimL (L [y] / 〈pi〉) .

For each i ∈ I , let us consider the left L (x) [y]h -module Gi = L (x) [y]h / 〈pi〉 . Let
pi = ∏grad(pi)

j=1

(
y − ri,j

)
be its factorization on Fi [y] . From Remark 2.12, we get that

GFi
i

∼= ⊕dimL(L[y]/〈pi〉)
j=1 Hi,j, where Hi,j is the Fi (x) [y]h -module Fi (x) , where the action of

y is multiply by ri,j.

There is a canonical isomorphism Fi (x) [y]h ⊗Fi K ∼= K (x) [y]h of K (x) -algebras.
It is easy to see that we can identify HK

i,j with the K (x) [y]h -module K (x) , where the
action of y is to multiply by ri,j.

Notice that EGi
∼= (L (x) [y]) / 〈pi〉 , DHi,j = EHi,j

∼= Fi (x) and DHK
i,j

= EHK
i,j

∼= K (x) ,

then 1 = endol (Gi) = endol
(
Hi,j

) = endol
(

HK
i,j

)
, for each i and each j.

Moreover, we get that the monomorphism α :
(
EHi,j

)K → EHK
i,j

of Lemma 2.3(a) is
bijective.

By Lemma 2.6, we have that endol
(
B ⊗L(x)[y]h Gi

) ≤ n and

endol
(

B ⊗K(x)[y]h HK
i,j

)
≤ n, for each i and each j.

Then, by Proposition 2.2(c) and Lemma 2.1, we have that B ⊗L(x)[y]h Gi ∼=
⊕si

t=1

(⊕Ii,t Ui,t
)
, where si ∈ � for each i ∈ I, Ii,t is a set for t ∈ {1, . . . , si} , Ui,t is an

indecomposable �L-module of endolength less or equal to n, for each i and each t,
and t 	= t′ implies Ui,t � Ui,t′ .

Also by sharpness, we get that B ⊗K(x)[y]h HK
i,j is indecomposable, and clearly it is

of infinite dimension over K.

It is easy to verify that for any i ∈ I there exists a commutative diagram of categories
and functors

L (x) [y]h − Mod
⊗LFi ��

B⊗L(x)[y]h

��

Fi (x) [y]h − Mod
⊗Fi K ��

BFi ⊗Fi (x)[y]h

��

K (x) [y]h − Mod

B⊗K(x)[y]h

��
�L − Mod

⊗LFi �� �Fi − Mod
⊗Fi K �� �K − Mod.

From the previous diagram, and the fact that B ⊗K(x)[y]h HK
i,j is a generic �K -module, we

get that BFi ⊗Fi(x)[y]h Hi,j is indecomposable for each i and each j, then BFi ⊗Fi(x)[y]h Hi,j

is an algebraically rigid �Fi -module for each i and each j.
By Proposition 2.2 and Lemma 2.3(c), we get that Ui,t is an algebraically bounded

�L-module, for each i and each t.
By sharpness of B ⊗K(x)[y]h , we get that i 	= i′ implies that B ⊗K(x)[y]h HK

i,j �

B ⊗K(x)[y]h HK
i′,j and so, by Lemma 2.3(c), Ui,t � Ui′,t′ .

Also by sharpness of B ⊗K(x)[y]h , we get that endol
(

B ⊗K(x)[y]h HK
i,j

)
=

c − endol
(

B ⊗K(x)[y]h HK
i,j

)
for each i and each j.
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By the previous commutative diagram and the mentioned isomorphism of

K-algebras α :
(
EHi,j

)K → EHK
i,j
, it follows that

(
DBFi ⊗Fi (x)[y]h Hi,t

)K ∼= DB⊗K(x)[y]h HK
i,t
, and

so we get

c − endol
(
BFi ⊗Fi(x)[y]h Hi,t

) = c − endol
(
B ⊗K(x)[y]h HK

i,t

)
.

Now by Proposition 2.18 we have c − endol
(
Ui,j

) ≤ n : it follows that �L is not
semigenerically tame and, by Corollary 2.19, � is not semigenerically tame. �

Keeping in mind Drozd’s theorem, it is clear that Theorem 1.8 is a consequence of
Theorems 3.2 and 4.7.
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