Bull. Austral. Math. Soc. Vol. 63 (2001) [15-20]

A COUNTING FORMULA ABOUT THE SYMPLECTIC SIMILITUDE GROUP

KWANKYU LEE

We derive an explicit formula for the number of elements in the symplectic similitude group GSp(2n, q) with given trace and determinant.

1. INTRODUCTION

Let \mathbb{F}_q be the finite field with q elements. Recall that the symplectic similitude group GSp(2n,q) over \mathbb{F}_q is defined by

$$\operatorname{GSp}(2n,q) = \left\{ g \in \operatorname{GL}(2n,q) \mid {}^{t}gJg = \alpha(g)J \text{ for some } \alpha(g) \in \mathbb{F}_{q}^{\times} \right\},$$

where J denotes $\begin{bmatrix} 0 & 1_n \\ -1_n & 0 \end{bmatrix}$. This paper addresses the problem of counting the number of elements in GSp(2n, q) with given trace and determinant. More formally, we want to find the value of

 $C(\zeta,\eta) = \big| \{ g \in \operatorname{GSp}(2n,q) \mid \det g = \zeta, \ \operatorname{tr} g = \eta \} \big|,$

when $\zeta \in \mathbb{F}_q^{\times}$, $\eta \in \mathbb{F}_q$ are given. In [1], Kim gave a related result: an explicit formula for the number of elements in GSp(2n,q) with given trace. In this paper, we derive an explicit formula for $C(\zeta, \eta)$.

THEOREM 1. Let $\zeta \in \mathbf{F}_q^{\times}$, $\eta \in \mathbf{F}_q$. Let S denote the number of n-th roots of ζ in \mathbf{F}_q , and let

$$T_m = q \sum_{\alpha \in \mathbb{F}_q^{\times}} \sum_{\alpha_1, \dots, \alpha_m \in \mathbb{F}_q^{\times}} t(\alpha^n, \alpha_1 + \alpha \alpha_1^{-1} + \dots + \alpha_m + \alpha \alpha_m^{-1}) - (q-1)^m S,$$

where t(x, y) = 1 if $(x, y) = (\zeta, \eta)$, 0 otherwise; and the inner sum is regarded as $t(\alpha^n, 0)$ for m = 0. Then we have

$$C(\zeta,\eta) = q^{n^2 - 1} \sum_{b=0}^{[n/2]} \left(q^{b^2 + b} \begin{bmatrix} n \\ 2b \end{bmatrix}_q \prod_{j=1}^{b} (q^{2j-1} - 1) \sum_{l=0}^{[(n/2)-b]} q^l R(n - 2b + 1, l) T_{n-2b-2l} \right) + q^{n^2 - 1} \prod_{j=1}^{n} (q^{2j} - 1) S,$$

Received 11th January, 2000 This work was supported by the Brain Korea 21 Project.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 \$A2.00+0.00.

where R(m, l) denotes $\sum_{0 < j_1 < \dots < j_l < m-l} \prod_{\nu=1}^{l} (q^{m-\nu-j_{\nu}} - 1)$ with R(m, 0) = 1.

The definition of the q-binomial coefficient $\begin{bmatrix} n \\ b \end{bmatrix}_q$ is given in the next section.

2. PREPARATION

Recall that the symplectic group over \mathbb{F}_q is defined by

$$\operatorname{Sp}(2n,q) = \left\{ g \in \operatorname{GL}(2n,q) \mid {}^{t}gJg = J \right\}.$$

Observe that

$$\mathrm{GSp}(2n,q) = \coprod_{\pmb{lpha}\in \mathbf{F}_q^{ imes}} d_{\pmb{lpha}} \mathrm{Sp}(2n,q)$$

with $d_{\alpha} = \begin{bmatrix} 1_n & 0 \\ 0 & \alpha 1_n \end{bmatrix}$. A maximal parabolic subgroup P of Sp(2n, q) is given by

$$P = P(2n,q) = \left\{ \begin{bmatrix} A & 0 \\ 0 & {}^{t}A^{-1} \end{bmatrix} \begin{bmatrix} 1_n & B \\ 0 & 1_n \end{bmatrix} \mid A \in \operatorname{GL}(n,q), {}^{t}B = B \right\}.$$

We let, for $0 \leq b \leq n$,

$$A_b = A_b(2n,q) = \left\{ g \in P(2n,q) \mid \sigma_b g \sigma_b^{-1} \in P(2n,q) \right\},$$

where

$$\sigma_b = \begin{bmatrix} 0 & 0 & 1_b & 0 \\ 0 & 1_{n-b} & 0 & 0 \\ -1_b & 0 & 0 & 0 \\ 0 & 0 & 0 & 1_{n-b} \end{bmatrix}.$$

Now the Bruhat decomposition of Sp(2n, q) with respect to P says

$$\operatorname{Sp}(2n,q) = \prod_{b=0}^{n} P \sigma_b P = \prod_{b=0}^{n} P \sigma_b (A_b \setminus P).$$

This decomposition will play a crucial role in our proof of the theorem.

Let g_n be the number of $n \times n$ nonsingular matrices over \mathbb{F}_q , and a_n the number of $n \times n$ nonsingular alternating matrices over \mathbb{F}_q . We define $g_0 = a_0 = 1$ for convenience.

Then

$$g_n = \prod_{j=0}^{n-1} (q^n - q^j) = q^{(n^2 - n)/2} \prod_{j=1}^n (q^j - 1),$$
$$a_n = \begin{cases} q^{(n/2)((n/2) - 1)} \prod_{j=1}^{n/2} (q^{2j - 1} - 1) & \text{for } n \text{ even}, \\ 0 & \text{for } n \text{ odd}, \end{cases}$$
$$A_b \setminus P = q^{(b^2 + b)/2} \begin{bmatrix} n \\ b \end{bmatrix}_q.$$

The *q*-binomial coefficient $\begin{bmatrix} n \\ r \end{bmatrix}_q$ is defined by

$$\begin{bmatrix} n \\ r \end{bmatrix}_q = \prod_{j=0}^{r-1} \frac{q^{n-j} - 1}{q^{r-j} - 1}.$$

See [1] and [2] for more details of these facts.

3. PROOF OF THE THEOREM

For any complex-valued function f defined on \mathbb{F}_q and $\sigma, \tau \in \mathbb{F}_q$, let $M_m(f; \sigma, \tau)$ denote

$$\sum_{\alpha_1,\ldots,\alpha_m\in\mathbb{F}_q^{\times}}f(\sigma\alpha_1+\tau\alpha_1^{-1}+\cdots+\sigma\alpha_m+\tau\alpha_m^{-1})$$

with $M_0(f; \sigma, \tau) = f(0)$. Remember that R(m, l) was defined in Theorem 1.

LEMMA 1. Let f be an arbitrary complex-valued function defined on \mathbb{F}_q , and $\sigma, \tau \in \mathbb{F}_q^{\times}$. Then

$$\sum_{g \in GL(n,q)} f(\sigma \operatorname{tr} g + \tau \operatorname{tr} g^{-1})$$

= $q^{(n^2 - n)/2 - 1} \sum_{l=0}^{[n/2]} q^l R(n+1,l) \left(q M_{n-2l}(f;\sigma,\tau) - (q-1)^{n-2l} \sum_{\gamma \in \mathbf{F}_q} f(\gamma) \right)$
+ $q^{(n^2 - n)/2 - 1} \prod_{j=1}^n (q^j - 1) \sum_{\gamma \in \mathbf{F}_q} f(\gamma).$

PROOF: Recall that for a nontrivial additive character λ of \mathbf{F}_q and $\sigma, \tau \in \mathbf{F}_q$, the ordinary Kloosterman sum $K(\lambda; \sigma, \tau)$ is defined by $K(\lambda; \sigma, \tau) = \sum_{\alpha \in \mathbf{F}_q^{\times}} \lambda(\sigma \alpha + \tau \alpha^{-1})$. First we state a slightly modified version of Theorem 4.3 in [2].

K. Lee

SUBLEMMA. Let us define $K_{\operatorname{GL}(n,q)}(\lambda; \sigma, \tau) = \sum_{g \in \operatorname{GL}(n,q)} \lambda(\sigma \operatorname{tr} g + \tau \operatorname{tr} g^{-1})$ for a non-trivial additive character λ of \mathbb{F}_q and $\sigma, \tau \in \mathbf{F}_q^{\times}$. Then

$$K_{\mathrm{GL}(n,q)}(\lambda;\sigma,\tau) = q^{(n^2-n)/2} \sum_{l=0}^{[n/2]} q^l R(n+1,l) K(\lambda;\sigma,\tau)^{n-2l}.$$

Now pick a nontrivial additive character λ of \mathbb{F}_q . We then have

$$\begin{split} \sum_{g \in \mathrm{GL}(n,q)} & f(\sigma \operatorname{tr} g + \tau \operatorname{tr} g^{-1}) \\ &= \sum_{\gamma \in \mathbf{F}_q} \left| \left\{ g \in \mathrm{GL}(n,q) \mid \sigma \operatorname{tr} g + \tau \operatorname{tr} g^{-1} = \gamma \right\} \right| f(\gamma) \\ &= \frac{1}{q} \sum_{\gamma \in \mathbf{F}_q} \sum_{\delta \in \mathbf{F}_q} \sum_{g \in \mathrm{GL}(n,q)} \lambda \left(\delta(\sigma \operatorname{tr} g + \tau \operatorname{tr} g^{-1} - \gamma) \right) f(\gamma) \\ &= \frac{1}{q} \sum_{\gamma \in \mathbf{F}_q} \sum_{\delta \in \mathbf{F}_q^*} K_{\mathrm{GL}(n,q)}(\lambda; \delta\sigma, \delta\tau) \lambda(-\delta\gamma) f(\gamma) + \frac{1}{q} g_n \sum_{\gamma \in \mathbf{F}_q} f(\gamma). \end{split}$$

By the sublemma,

$$\sum_{g \in \operatorname{GL}(n,q)} f(\sigma \operatorname{tr} g + \tau \operatorname{tr} g^{-1})$$

= $q^{(n^2 - n)/2} \sum_{l=0}^{[n/2]} q^l R(n+1,l) \frac{1}{q} \sum_{\gamma \in \mathbf{F}_q} \sum_{\delta \in \mathbf{F}_q^{\times}} K(\lambda; \delta\sigma, \delta\tau)^{n-2l} \lambda(-\delta\gamma) f(\gamma)$
+ $q^{(n^2 - n)/2 - 1} \prod_{j=1}^n (q^j - 1) \sum_{\gamma \in \mathbf{F}_q} f(\gamma).$

But we have

$$\begin{split} \frac{1}{q} \sum_{\gamma \in \mathbf{F}_{q}} \sum_{\delta \in \mathbf{F}_{q}^{\times}} K(\lambda; \delta\sigma, \delta\tau)^{n-2l} \lambda(-\delta\gamma) f(\gamma) \\ &= \frac{1}{q} \sum_{\gamma \in \mathbf{F}_{q}} \sum_{\delta \in \mathbf{F}_{q}^{\times}} \left(\sum_{\alpha \in \mathbf{F}_{q}^{\times}} \lambda(\delta\sigma\alpha + \delta\tau\alpha^{-1}) \right)^{n-2l} \lambda(-\delta\gamma) f(\gamma) \\ &= \frac{1}{q} \sum_{\gamma \in \mathbf{F}_{q}} \sum_{\delta \in \mathbf{F}_{q}} \sum \lambda \left(\delta(\sigma\alpha_{1} + \tau\alpha_{1}^{-1} + \dots + \sigma\alpha_{n-2l} + \tau\alpha_{n-2l}^{-1} - \gamma) \right) f(\gamma) \\ &\quad - \frac{1}{q} (q-1)^{n-2l} \sum_{\gamma \in \mathbf{F}_{q}} f(\gamma) \\ &= \sum f(\sigma\alpha_{1} + \tau\alpha_{1}^{-1} + \dots + \sigma\alpha_{n-2l} + \tau\alpha_{n-2l}^{-1}) - \frac{1}{q} (q-1)^{n-2l} \sum_{\gamma \in \mathbf{F}_{q}} f(\gamma), \end{split}$$

where the unspecified sums are taken over $\alpha_1, \ldots, \alpha_{n-2l} \in \mathbb{F}_q^{\times}$. Thus we get the lemma.

A counting formula

LEMMA 2. Let e, f be arbitrary complex-valued functions defined on \mathbf{F}_q . Then

$$\begin{split} \sum_{g \in \mathrm{GSp}(2n,q)} e(\det g) f(\operatorname{tr} g) \\ &= q^{n^2 - 1} \sum_{b=0}^{[n/2]} \left(q^{b^2 + b} \begin{bmatrix} n \\ 2b \end{bmatrix}_q \prod_{j=1}^{b} (q^{2j-1} - 1) \sum_{l=0}^{[(n/2) - b]} q^l R(n - 2b + 1, l) \\ &\times \sum_{\alpha \in \mathbb{F}_q^{\times}} e(\alpha^n) \left(q M_{n-2b-2l}(f; 1, \alpha) - (q - 1)^{n-2b-2l} \sum_{\gamma \in \mathbb{F}_q} f(\gamma) \right) \right) \\ &+ q^{n^2 - 1} \prod_{j=1}^{n} (q^{2j} - 1) \sum_{\alpha \in \mathbb{F}_q^{\times}} e(\alpha^n) \sum_{\gamma \in \mathbb{F}_q} f(\gamma). \end{split}$$

PROOF: We have

$$\sum_{g \in \mathrm{GSp}(2n,q)} e(\det g) f(\operatorname{tr} g) = \sum_{\alpha \in \mathbb{F}_q^{\times}} \sum_{g \in \mathrm{Sp}(2n,q)} e(\det(d_{\alpha}g)) f(\operatorname{tr}(d_{\alpha}g))$$
$$= \sum_{\alpha \in \mathbb{F}_q^{\times}} e(\alpha^n) \sum_{g \in \mathrm{Sp}(2n,q)} f(\operatorname{tr}(d_{\alpha}g)).$$

By the Bruhat decomposition,

$$\sum_{g\in \mathrm{GSp}(2n,q)} e(\det g)f(\operatorname{tr} g) = \sum_{\alpha\in \mathbf{F}_q^{\times}} e(\alpha^n) \sum_{b=0}^n |A_b \setminus P| \sum_{g\in P} f(\operatorname{tr}(d_\alpha g\sigma_b)).$$

Observe that the structure of P allows us to compute explicitly $tr(d_{\alpha}g\sigma_b)$ for $g \in P$. Thus we get

$$\sum_{g \in \operatorname{GSp}(2n,q)} e(\det g) f(\operatorname{tr} g)$$

= $\sum_{\alpha \in \mathbb{F}_q^{\times}} e(\alpha^n) \sum_{b=0}^n |A_b \setminus P| \Big(q^{(n^2+n)/2-1} \big(g_n - a_b g_{n-b} q^{b(n-b)} \big) \sum_{\gamma \in \mathbb{F}_q} f(\gamma)$
+ $a_b q^{(n^2+n)/2+b(n-b)} \sum_{g \in \operatorname{GL}(n-b,q)} f(\operatorname{tr} g + \alpha \operatorname{tr} g^{-1}) \Big).$

Now use Lemma 1 to resolve the last expression. This completes the proof.

PROOF OF THEOREM 1: We obtain Theorem 1 from Lemma 2 simply by setting e and f to be the functions defined by

$$e(\alpha) = \begin{cases} 1 & \text{if } \alpha = \zeta, \\ 0 & \text{otherwise,} \end{cases} \text{ and } f(\alpha) = \begin{cases} 1 & \text{if } \alpha = \eta, \\ 0 & \text{otherwise,} \end{cases}$$

for $\alpha \in \mathbf{F}_{q}$.

۵

Π

K. Lee

REMARK. Tables of $C(\zeta, \eta)$ for $\operatorname{GSp}(2n, q)$ with different n and q are included below. These were produced by a Mathematica program into which the formula for $C(\zeta, \eta)$ was coded. The referee explained the apparent symmetries in the tables by observing that $C(\zeta, \eta) = C(\alpha^{2n}\zeta, \alpha\eta)$ for $\alpha \in \mathbb{F}_q^{\times}$.

TABLES OF $C(\zeta, \eta)$

GSp(6,3)

$C(\zeta,\eta)$	$\eta = 0$	$\eta = 1$	$\eta = 2$
$\zeta = 1$	3053423790	3058639785	3058639785
$\zeta = 2$	3063934512	3053384424	3053384424

GSp(4,5)

$C(\zeta,\eta)$	$\eta = 0$	$\eta = 1$	$\eta = 2$	$\eta = 3$	$\eta = 4$
$\zeta = 1$	3867500	3713125	3713125	3713125	3713125
$\zeta=2$	0	0	0	0	0
$\zeta = 3$	0	0	0	0	0
$\zeta = 4$	3870000	3712500	3712500	3712500	3712500

GSp(6,5)

$C(\zeta,\eta)$	$\eta = 0$	$\eta = 1$	$\eta = 2$	$\eta = 3$	$\eta = 4$
$\zeta = 1$	91408007812500	91395326171875	91401669921875	91401669921875	91395326171875
$\zeta = 2$	91395312500000	91408015625000	91395328125000	91395328125000	91408015625000
$\zeta = 3$	91395312500000	91395328125000	91408015625000	91408015625000	91395328125000
$\zeta = 4$	91408007812500	91401669921875	91395326171875	91395326171875	91401669921875

References

- D.S. Kim, 'Exponential sums for symplectic groups and their applications', Acta Arith. 88 (1999), 155-171.
- [2] D.S. Kim, 'Gauss sums for symplectic groups over a finite field', Monatsh. Math. 126 (1998), 55-71.

Department of Mathematics Sogang University Seoul 121-742 Korea e-mail: leekk@math.sogang.ac.kr