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Abstract: Bayesian probability models uncertain knowledge and learning from
observations. As a defining feature of optimal adversarial behaviour, Bayesian
reasoning forms the basis of safety properties in contexts such as privacy and
fairness. Probabilistic programming is a convenient implementation of Bayesian
reasoning but the adversarial setting imposes obstacles to its use: approximate
inference can underestimate adversary knowledge and exact inference is impractical
in cases covering large state spaces.

By abstracting distributions, the semantics of a probabilistic language, and
inference, jointly termed probabilistic abstract interpretation, we demonstrate
adversary models both approximate and sound.

We apply the techniques to build a privacy protecting monitor and describe how
to trade off the precision and computational cost in its implementation all the while
remaining sound with respect to privacy risk bounds.

11.1 Introduction

Bayesian probability is the de facto standard for modeling uncertainty and learning
from observations. Adversaries with uncertain information will employ Bayesian
reasoning if they wish to optimize the effectiveness of their attacks. Defenders

@ This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as
representing the official views or policies of the Department of Defense or the US Government.

b From Foundations of Probabilistic Programming, edited by Gilles Barthe and Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.
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must build systems assuming such canny attackers or else risk underestimating the
knowledge an adversary can gain and the damage it may inflict.

Probabilistic programming, a mechanization of Bayesian reasoning, offers the
requisite elements for doing so. It is a tool for describing adversary knowledge;
for specifying the systems adversaries interact with, including the experiments or
channels through which they make observations; and for defining and verifying
guarantees such as those bounding the damage adversaries can inflict.

Unfortunately, using a practical probabilistic programming system may lead one
to draw not entirely trustworthy conclusions about an adversary’s bounds. Practical
systems are necessarily approximate, for reasons of performance and expressiveness,
and are often designed with the average or best case in mind, rather than the
worst case. However, when sensitive information is at stake, i.e., in a conservative
risk-averse analysis, an over-approximation of adversarial capabilities is acceptable
but an under-approximation is not.

Probabilistic abstract interpretation is a technique addressing exactly this point:
it is approximate and thus more practical than exact inference but it can be made
approximate in a manner that adversarial risks can be checked soundly, that is, never
underestimated. In our case soundness means simply that any likelihood is never
underestimated. We leverage this guarantee to bound Bayes’ vulnerability, a measure
of adversary knowledge and privacy risk.

We begin in Section 11.2 with example privacy and algorithmic fairness properties
that motivate the approach to follow. In Section 11.3 we describe a language and
its probabilistic semantics suitable for defining and verifying those properties. In
Section 11.4 we outline abstractions for probability and for probabilistic interpretation
of programs which we then instantiate in Section 11.5 and develop in Section 11.6.
We then apply abstract interpretation to implement a privacy monitor for limiting
adversary knowledge in Section 11.7. In Section 11.8 we discuss closely related
works and compare our approach with alternatives. We conclude with Section 11.9.

This chapter collects and expands on a progression of work on the development
and use of probabilistic abstract interpretation to compute upper bounds on the
likelihoods of outcomes of systems modeled using probabilistic languages (Mardziel
etal., 2011, 2013; Sweet et al., 2018).

11.2 Quantitative Properties

Across domains from information security to algorithmic fairness, probability
bounds impose limits on the likelihood of undesired outcomes. Consider, for
example, disparate impact ratio and the 80-20 rule (Feldman et al., 2015):

Definition 11.1 (Disparate Impact Ratio). Given a population random variable X
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with domain X, a jointly distributed sub-population indicator Z, and a decision
procedure f : X — {+,—}, the disparate impact ratio is the likelihood of a positive
outcome for a minority population as compared to the likelihood of a positive
outcome for the majority population:

def Pr{f(X) = + | Z = minority]
DIR(X.f) = Pr[f(X) = + | Z = majority]

The 80-20 rule states that disparate impact ratio should not fall below 0.8 and is
the basis of arguments of discrimination in the U.S. where legal restrictions limit the
impact of gender, race, and other protected classes on decisions in hiring, housing,
lending, and other areas. Example instantiations of this or similar rules are plentiful
in the algorithmic fairness literature (Feldman et al., 2015).

Definition 11.2 (Posterior Bayes Vulnerability). Given a prior belief, or background
knowledge, r.v. X about a secret, and a program f : X — Y, the Posterior Bayes
vulnerability is the probability of the most probable input upon observing a particular
program output y.

V(X f.y) € maxPr[X = x| f(X) = y]

Bounds on quantities such as Bayes vulnerability are, likewise, plentiful in the
quantitative information flow literature. They aim to model the potential risk in an
adversary learning the secret input and exploiting it in some manner (Alvim et al.,
2012). In the case of Bayes vulnerability, risk measures the chance an adversary will
guess the secret input in one try after making a particular observation on a given
program (Smith, 2009).

A Privacy Monitor A key thrust throughout this chapter will be the development of
a privacy monitor for a system that permits querying private information but wishes
to enforce bounds on Bayes vulnerability. The setting is motivated by proposals to
move personal private data from centralized services to individuals, allowing them
tighter controls over their own personal data (Seong et al., 2010; Baden et al., 2009).

An online query interface with a privacy monitor allows interested parties to
retrieve only the necessary data with the understanding that different parties will
have interest in different aspect of the data. For example, consider an individual’s full
birth date, which has been shown to be privacy sensitive: along with zip-code! and
gender, it suffices to uniquely identify 87% of Americans in the 1990 U.S. census
(Sweeney, 2000) and 63% in the 2000 census (Golle, 2006). A horoscope application
or “happy birthday” application might request only an individual’s birth month and
day while a different music recommendation application might instead request a

! Zip-code is the postal code in the United States.
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Variables var =X |Y|Z]|...

Expressions exp ::=var | const | op (exp;,exp,)
Statements stmt ::= var := exp |
skip | stmt; ; stmt; |
while exp do stmt |
if exp then stmt| else stmt, |
prob p then stmt| or stmt; |

var := uniform const; const,

Figure 11.1 ImpWhile with probability: syntax.

user’s age (i.e., birth year). A traditional access control system might restrict one
of these or the other, in order to hide the full date. But doing so excludes some
reasonable applications. A privacy monitor using the Bayes vulnerability bound
may allow services to query components of the birth date as they like as long as the
full birth date is protected up to a given bound.

The privacy monitor is developed in detail in Section 11.7. It appeared originally
in Mardziel et al. (2011), and was further developed in Mardziel et al. (2013)
and Sweet et al. (2018). The monitor was also extended to consider individual
privacy bounds on computations involving multiple parties, each with private
inputs (Mardziel et al., 2012).

11.3 Distribution Semantics

This section presents a minimal, imperative probabilistic programming language and
its formal, mathematical semantics. We will use the language to model systems of
interest, and reason about their properties, including those noted in the prior section.

Figure 11.1 gives the syntax of the language. It is a simple imperative language,
which we call ImpWthile, with (global) variables, (integer) constants, arithmetic
and relational expressions, and statements, which include assignments, no-ops
(skip), sequencing, iteration, and conditionals. ImpWhile programs manipulate
program states, which are maps from variables to their current integer values; these
values may be updated during execution, where the final state upon termination is
termed the output state. The language also includes two probabilistic constructs:
probabilistic choice and probabilistic uniform assignment. The former, written
prob p then stmt; or stmt,, has the following semantics: evaluate statement stmt
with probability p (a ratio between 0 and 1) or otherwise evaluate statement stmt;.
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X,Y,Z

X, ¥,z

¥ £ Variables — Integers
o, TEX

YET 5[0,1]

XY, ZecX

€€

X(o)
X(exp) “

Zo‘:exp is true for o X(O-)

X(exp, | exp,) =
X(exp; A expy)/X(exp,)

Variable names.

Variable values.

Set of all program states.

Program states.

Set of all program state distributions.
Program state distributions.

Initial program state, and the point distribution assign-
ing probability 1 to only the initial state.

Probability of state o in distribution X.

Marginal probability of exp being true in distribution

Marginal probability of exp, being true conditioned on

exp, being true in distribution X.

[stmt] : £ - X Concrete state semantics.

[stmt]] - X - X Concrete distribution semantics.

a,b,c € A Regions; abstract program states of domain A.
a,b,ce A Abstract distributions of domain A.

{stmt)) : A — A Abstract semantics for state domain A.

(stme)) : A — A Abstract semantics for distribution domain A.

Table 11.1 Notations and conventions.

Likewise, the uniform assignment X := uniform [ u assigns to X an integer value
uniformly at random from the range of integers between / and u inclusive. The
probabilistic elements of this language and their semantics derive from foundational
work on probabilistic programming (Kozen, 1981) and have appeared in a similar
form in the quantitative information flow literature (Clarkson et al., 2009).

Before presenting the semantics of the language, we turn our attention to some
notation, gathered in Table 11.3. This notation will help us talk about the properties
of systems we are interested in. Non-bold capital letters, such as X, Y, and Z are
variable names (as already mentioned). The lowercase counterparts, x, y, and z, are
unspecified values attainable by variables. Lowercase Greek o, T denote program
states, drawn from the set X. We write € to denote the initial state, which is the state

https://doi.org/10.1017/9781108770750.012 Published online by Cambridge University Press


https://doi.org/10.1017/9781108770750.012

366 Calderon et al: Probabilistic Abstract Interpretation

that maps all variables to 0. Bold capital letters, X, Y, and Z, denote distributions?
over program states from the set X Ei N [0, 1].

Some of our conventions for the rest of this chapter depart from the standard
probability conventions used in Definitions 11.1 and 11.2 due to the use of an
imperative modeling language and the need to manipulate and distinguish distribu-
tions. First, we will no longer use random variables over values like X. Instead, we
use distributions like X and write X(o-) to designate the probability of the state o
according to the distribution X. Second, we will no longer use f(X) to designate
the r.v. distributing output values of the function f given input values distributed
according to r.v. X. Instead we will write [[stmt] X to describe the distribution of
output states after the evaluation of statement stmt starting from a distribution of
input states X.

We define two shorthands to make clear the connection between more familiar
probabilistic notation and the distribution notations in this chapter. Given a boolean
expression exp, we will write X(exp) to denote the marginal probability of the
event that the variable exp is true. That is, X(exp) E 2orexp is true for o X(07). Given
boolean expressions exp;, exp,, we will write X(exp, | exp,) to denote the marginal
probability of exp, being true given exp, being true. Formally, X(exp, | exp,) =
X(exp; A exp,)/X(exp,). Probabilities such as Pr[f(X) = + | Z = minority] of
Definition 11.1 will now be written as ([[stmt]]X) (Y = + | Z = minority). In this
case we assumed stmt is the imperative implementation of f, the variable Y holds
its sole output, and Z holds the minority status of the input individual.?

Now we present the mathematical semantics of the language in Figure 11.1. We
call it the concrete probabilistic semantics [[stmt]:X — X (as distinct from abstract
probabilistic semantics which will follow) and it describes the effect of statements
on distributions (of states). It is presented in Figure 11.2. The meaning of a statement
stmt evaluated on a distribution X, written [[stm¢]|X, captures informally the process
of evaluating stmt on states sampled according to X, and collecting the results in
a distribution.* The probabilistic semantics described at the top of Figure 11.2
is defined in terms distribution operations and combinators in the bottom part.
The two shorthand notations for marginal probability and marginal conditioned
probability can likewise be defined in terms of these distribution operators. We note
that distributions for the language are discrete. For space reasons, we omit many
foundational probability theory details.

We can now rephrase our two example properties. Given a population of individuals
X and a program (statement) stmmt over some set of variables including protected
class Z representing the individuals’ attributes and producing its outcome in variable

2 For simplicity, we often use the term distribution even when we are technically dealing with sub-distributions.

3 When writing f in our language, the minority status { minority, majority } and outcome quality { +, - } would
be encoded as integers.

4 A formal treatment of distribution to distribution semantics first defines the intermediate state to distribution
semantics to describe probabilistic statements and can be found in Clarkson et al. (2009).
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[[skip]IX X
[X := exp]X X [X — exp]
[stmt; ; stmtr | X = [stmet, | ([stme; | X)
[[if exp then stmt; else stmt, X = [stmt1 | ([exp]X) + [stmtz |([—exp]X)

[stmt]X E [stmt]|([stmt | ([exp, X)) + [—exp, 1X
where stmt = while exp do stmt,

[[prob g then stmt; or stmt, X E [stmt (g - X) + [stme2](1 = q) - X)

def

[X := uniform [ u]X = 3*_, ——= - X[X — x]

X

X [X i exp] = Ao ZT\T[X—>[[exp]]‘r]=(r X(T)
X +Xo  Z 0. Xi(0) + Xa(0)

def

[exp]X = Ao. if [exp]lo then X(o) else 0
p-X déf/lotp~X(0')

IX| = 3o X(0)

normal(X) “ ﬁ - X

X | exp “ normal([[exp]|X)

Figure 11.2 ImpWhile with probability: probabilistic semantics (top) and distribution operators
and combinators (bottom).

Y, we rewrite Definition 11.1 as below:
(Istme]|X) (Y = + | Z = minority)
([stmeX) (Y = + | Z = majority)
Likewise, given a program stmt processing variable X distributed according to

prior states X to output Y, the posterior Bayes vulnerability given output y, as in
Definition 11.2 is expressed as below:

max {([fIX) (X = x | ¥ = y)} (11.2)

Example 11.3. The Demographics,,,,, program below computes a distribution for
the demographics—just the birth year and day—of a population of individuals.

(11.1)

def

Demographics,,,,,
BDAY := uniform 0 364;
BYEAR := uniform 1956 1992

If Xo = [Demographics,,, e then Xo(o) = m for states o that have
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o(BDAY) € {0,---,364} and o(BYEAR) € {1956,---,1992}. X, assigns prob-
ability O to all other states.

As the distribution is uniform it is not likely to represent a realistic population.
More realistic distributions, informed from actual demographic reports such as the
U.S. census, can be generated via combinations of the probabilistic choice prob and
uniform assignment uniform statements. Such a distribution could then be used to
represent an adversary’s prior knowledge. Further, the abstraction described later in
this chapter relaxes the need to exactly capture background knowledge. A discussion
of background knowledge can be found in Section 11.8.

Example 11.4. The program Birthday,,,, below determines whether an individ-
ual’s birth day (of the year) is within the week period starting from what is assumed

to be today.
Birthday,,,, =
TODAY := 260;
if BDAY > TODAY A BDAY < (TODAY + 7) then
OUTPUT =1
else
OUTPUT =0

If X; = ([Birthday,,,, Xo) | (OUTPUT = 0) then X (") = 553 for states o
with o(BDAY) € {0,---,259,267,---,364} and o(BYEAR) € {1956,---,1992}.
X assigns O probability to all other states.

Example 11.5. The program Decennialy,,,; determines whether an individual is
in a decennial year (their age is a multiple of 10), or otherwise gets lucky with a
probabilistic draw.

. def
Decennialy;,,,, =

AGE := 2011 — BYEAR;
if AGE =20V AGE =30V ... VAGE = 60

then
OUTPUT =1
else
OUTPUT :=0;

prob 0.1 then OUTPUT := 1 or skip

Let X; = ([Decennialy,,,; [|X), that is, before conditioning on any particular
output. Then X has probability:

e Xy(0) = 3357 for states o with o(OUTPUT) = 1, o(BDAY) ¢
{0,---,259,267,--- ,364}, and o (BYEAR) € {1991,1981,1971,1961}.
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1992 | = 1892 =
E o .
§ 3
2 1972 \: s 1972 —
102 L .
1956 | | [ 1956 |
0 259 267 .. 0 259 267 ..
bday baay
(2) X, | (OUTCOME = 0) (b) X, | (OUTCOME = 1)

Figure 11.3 Posterior distributions given starting demographics according to
Demographics,,,,,, Birthday,,,,, outputs in the negative, and Decennial,,,,, outputs
in the negative (a) or positive (b).

e Xh(o) = W * % for states o with o(OQUTPUT) = 1,
o(BDAY) € {0,---,259,267,--,364}, and o(BDAY) € {1956,---,1992} \
{1991,1981,1971,1961}.

e Xo(o) = ﬁ * % for states o with o(OUTPUT) = O,
o(BDAY) € {0,---,259,267,---364}, and o(BYEAR) € {1956,---,1992} \
{1991,1981,1971,1961}.

e X, (o) = 0 for all other states o.

The mass of the positive outcomes, ||[[OUTPUT = 1]Xz||, is % while the
297

mass of the negative outcomes, ||[[OUTPUT = 0]IXz||, is 575. Combining the

probabilities above with the masses, we let X3 = X, | (OUTCOME = 1) and
def

X, = Xa | (OUTPUT = 0) have probabilities as below:

e XJ(0) = 3581—*37 % = % for states o with o(BDAY) ¢
(0,---,259,267,- - ,364} and o-(BYEAR) € {1991, 1981,1971,1961}.
e XJ(0) = % s 11—0 % = % for states o with o(BDAY) €

{0,---,259,267,---,364} and o(BYEAR) € {1991,1981,1971,1961} \
{1991,1981,1971,1961}.

X3 (o) = 0 for all other states o

X5(o) = W * %/% = m for states o with o (BDAY) €
{0,---,259,267,--- ,364) and o(BYEAR) e {1991,1981,1971,1961} \

{1991,1981,1971,1961}
X5 (o) = 0 for all other states o .

The two posterior distributions are visualized in Figure 11.3 with negative outcome
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on the left and positive outcome on the right. Darker regions correspond to higher
probability.

As described and exemplified, the probabilistic semantics are exact. Computational
issues, however, make it difficult to directly apply these semantics in practice. When
the space of states becomes large, several aspects of the semantics and definitions
become intractable. The assignment statement (see Figure 11.2) and the conditioning
operator require sums to enumerate over potentially large number of states or even
all possible states. Likewise, properties like Bayes vulnerability refer to all possible
marginal states (X = x). Finally, while loops may require potentially an infinite
number of iterations to evaluate. In the next section we introduce abstractions that can
overcome the state-space problems and conclude with a discussion on the problem
of adapting abstract interpretation techniques for analyzing looping constructs to the
probabilistic case.

11.4 Abstraction

Abstract interpretation is a technique for making tractable the verification of otherwise
intractable program properties (Cousot and Cousot, 1977). As the term implies,
abstraction is its main principle: instead of reasoning about potentially large sets of
program states and behaviours, we abstract them and reason in terms of their abstract
properties. We begin by describing the two principal aspects of abstract interpretation
in general: an abstract domain and abstract semantics over that domain.

Definition 11.6 (Abstract Domain). Given a set of concrete objects C an abstract
domain A is a set of corresponding abstract elements as defined by two functions:

e an abstraction function o : 2¢ — A, mapping sets of concrete elements to
abstract elements, and

e a concretization function y : A — 2€, mapping abstract elements to sets of
concrete elements.

In this chapter, C will be instantiated to either program states X or distributions
Y. over program states. In either case, we assume that concrete program semantics
for these elements are given. Because you can view a program’s state as a point in
a multidimensional space, we often refer specific sets or distributions of program
states as regions.

We will ignore the abstraction function. For convenience we will consider abstract
domains that can be defined as predicates over concrete states. e, v : a —
{c € C: py(c)} where ¢, is a predicate parameterized by the abstract element a.

The second aspect of abstract interpretation is the inferpretation part: an abstract
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Figure 11.4 The (over)approximation of a polyhedron (black) using an octagon (shaded, left)
and an interval (shaded, right).

semantics, written ((stmt)) : A — A. We require that the abstract semantics be
sound in that it over-approximates the concrete semantics.

Definition 11.7 (Sound Abstraction). Given an abstract domain A and its abstract se-
mantics, the abstraction is sound if whenever ¢ € y (a) then [[stmt]|c € y ({stmz)) a).

Abstractions generally sacrifice some precision: the abstraction of a set of elements
C can be imprecise in that y(a(C)) contains strictly more than just C and likewise
that y ({(stmt)) a) contains strictly more elements than {[[stmt]c : ¢ € v (a)}. For
this reason, an analysis satisfying Definition 11.7 is called a may analysis in that it
contains the set of all states that may arise during program execution.

Numeric abstractions A large class of abstractions are designed specifically to
model numeric values; in this chapter we restrict ourselves to integer-valued variables.
The interval domain 1 represents “boxes” or non-relational bounded ranges of values
for each variable X; in a state (Cousot and Cousot, 1976):

v Al ui)} = {o e X < o(X;) < u; for every i}

Abstract elements here are sets of bound pairs, /; and u;, forming the lower and
upper bound, respectively, for every variable X;. Intervals are efficient to compute,
but imprecise, in that they cannot characterize invariants among variables. More
precise, but less efficient numeric domains can be used.

More generally, an abstract domain can be defined in terms of a set of predicates
over states, interpreted conjunctively:

v {¢j}j — {o € X: ¢;(0) for every j}

Restrictions on the types of predicates allowed define a family of abstractions.
Examples include intervals I already mentioned, polyhedra P where ¢; are restricted
to linear inequalities, and octagons (Miné, 2001) where the linear inequality
coeflicients are further restricted to the set {—1,0, 1}. Polyhedra and octagons are
relational in that they allow precise representations of states that constrain variables
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in terms of other variables (note this is not the case for intervals). In terms of
tractability, intervals are faster to compute with than octagons which are faster
than polyhedra. Precision follows the reverse ordering: polyhedra are more precise
than octagons which are more precise than intervals. In other words, intervals can
over-approximate the set of points represented by octagons which themselves can
over-approximate the set of points represented by polyhedra. This relationship is
visualized in Figure 11.4.

Other domains are specifically tailored to efficient analysis of particular types
of systems. These include grids (Bagnara et al., 2006) for precisely handling
modulo operations and domains designed for analysis of numeric values with
overflow/underflow (Simon and King, 2007).

Abstract domains implement a set of standard operations including:

e Meet, a1 b is the smallest region containing the set of states in the intersection
of y (a),y (b). For convex linear domains this operation is least expensive and is
exact.

e Join, alLl b is the smallest region containing both y (a) and y (). For linear convex
domains, this is supported by the convex hull operation.

e Transform, a [x — exp], computes an over-approximation of the state-wise assign-
ment x — exp. In the case of invertible assignments, this operation is supported
by linear domains via affine transformation. Non-invertible assignments require
special consideration (Mardziel et al., 2011).

Abstraction combinators Abstractions can also be extended disjunctively as in
the powerset construction (Giacobazzi and Ranzato, 1998). For a base domain A,
the powerset 2* domain has concretization:

y: {aj}j {0 €Z:0 €y(a;) forsome j} = Uy (aj)

That is, an abstract element in 2% is itself a set of base elements from A and represents
the set of states represented by at least one of its constituents base elements.

Abstraction in the manner outlined can also be applied to probability distributions
which serve as the concrete elements. Earlier techniques (Monniaux, 2001) attached
probability constraints to standard state domains. Given a state domain A we form
the probabilistic (upper bound) domain D (A) that adds a probability bound on all
states represented by the base domain elements:

vi(ap)—{XeX:X(o)<pforalo € y(a)}

We can combine the probabilistic upper bound construction the powerset con-
struction to define a domain for representing more complex distributions. A more
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expressive variant of powerset for probabilistic abstractions imposes a sum bound
(as opposed to disjunction of bounds):

v {(aj,pj)}j —iXeXl:X(o)< Z pj for every o
Jioey(aj)

We emphasize in these abstractions the focus on the upper bounds of probability;
such abstractions do not explicit track lower bounds (beyond the assumed trivial 0).
That is, for any probabilistic abstraction a and any state o, there exists X € v (a)
such that X(o) = 0. Because of this, these upper bound abstractions lack sound
definitions of conditioning. Recall Bayes’ rule or the definition of conditioning
in Figure 11.2 that involves a normalization by total mass of a (sub)distribution.
Upper bounds alone cannot exclude the possibility of O as the total mass in the
denominator. Posterior Bayes vulnerability of Definition 11.2 features conditioning
by program output and disparate impact ratio of Definition 11.1 features probability
in the denominator. Thus neither of these conditions can be soundly checked using
purely upper-bound abstractions of probability described thus far.

11.5 Sound Domains with Conditioning

As suggested, sound inference needs to account for both lower and upper bounds on
probability. The dual-bounded probabilistic construction does exactly this (Mardziel
etal., 2011)°. In this Section we define this domain. In the next section we outline
representative aspects of the implementation of its abstract semantics and outline
soundness proofs.

The construction imposes probability bounds along with several other constraints
used to preserve precision in the implementations of abstract operators to follow.

Definition 11.8. Given a state domain A, the dual-bounded probabilistic domain
D (A) is occupied by probabilistic regions defined by 4-tuples (a, s, p, m). A proba-
bilistic region represent distributions satisfying 4 constraints: a € A bounds their
support, s = (s™", s™) bounds their number of support points, p = (p™", pm&*)
bounds their probability mass per support point, and m = (m™", m™*) bounds their
total probability mass (recall we are working with sub-distributions). Formally these
conditions define the concretization function:

X € X : support(X) C y(a),
ST < || support(X)|| < s™,
mmin < ||X|| < 1,nmax’

p™™ < X(0) < p™™ for every o € support(X)

v (a,s,p,m) —

5 This is a generalization of the probabilistic polyhedra domain from earlier work (Mardziel et al., 2011).
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We will use non-bold lowercase a to denote abstract states and bold lowercase a
to denote dual-bounded probabilistic regions. We will refer to the p parameters as
the point bounds, the s parameters as size bounds, the m parameters as mass bounds,
and the a parameter as the support bound.

This probabilistic construction applies to base domains that implement the standard
set of abstract operations from the prior section in addition to the counting operation:

e Region size, written #(a), is the number of states (integer vectors in the case
of integer-valued states being modeled) in the region, i.e., ||y (a)||. For some
domains this is an expensive model counting operation and requires specialized
tools such as Latte (De Loera et al., 2008). On the other hand, for other domains
like intervals, this operation is trivial.

For convenience in the rest of this chapter, we use two additional operations that
can be defined using the standard operations and size.

e Boolean expression conjunction on a region a, written {exp)) a, returns a region
containing at least the points in a that satisfy exp. This is the abstract equivalent
of [exp]lo- of Figure 11.2.

e Boolean expression count on a region a, written as a#exp, is an upper bound on
the number of points in a that satisfy exp.

Example 11.9. In the powerset of probabilistic polyhedra D (P), we can represent
the negative outcome distributions of Figure 11.3(a), before normalization, with
two probabilistic polyhedra a; and a; containing polyhedra a; and a, bounding
regions 0 < BDAY < 259,1956 < BYEAR < 1992 and 267 < BDAY < 354,1956 <
BYEAR < 1992, respectively. The other parameters for a; would be as follows:

min

pin = pMX = 9/135050 = 375z * 15
sI]Illn — Sflnax _ 8580 _ 260 « 33

mPt = mP = 7722/13505 = it x 5"

Notice this over-approximation loses the fact that the states with BYEAR €
{1991,1981,1971,1961} have 0 probability in the concrete semantics. This is also
evident in that s mm = s1"™ = 8580 < #(a;) = 9620, illustrating that the “bounding
box” of the polyhedra covers more area than is strictly necessary for precision.

For the positive outcome of Figure 11.3(b), we can use the same two polyhedra
a; and a; with the other parameters for a; as follows:

Pt = 1/135050 = 575z * 75 P = 10/135050 = 57bes
mm = 9620 = 260 * 37 ST = 9620 = 260 * 37 (11.3)
mm =26/185 mdx = 26/185

min

In this case s]

= s{"™ = #(ay), meaning that all covered points are possible,
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but prlnirl # p"™* as some points are more probable than others (i.e., those in the
darker band). An astute reader might notice that here m™" # p™" = s"" and
m{™* # p"™® % s The benefit of these seemingly redundant total mass quantities
in the representation is that they can sometimes be computed precisely. In this
case mrlni“ = m{™* = 34—7 * g—gg + 1—10 * 3—3 ¢ g—gg. This quantity is the probability of
Decennial,,,,; returning 1 composed of having a decennial (first term) plus not

having a decennial (second term).

Notice that the exemplified representations are only some among many reasonable
options. First, the use of polyhedra as a base domain was not necessary and intervals
alone would have been sufficient. Second, more precise representations could have
been constructed by using more than just two probabilistic polyhedra (or intervals).
On the other hand, even less precise representations would use only a single
probabilistic polyhedron (interval). Further nuances come into play for schemes
with powerset abstractions that employ a dynamic number of probabilistic regions
that can increase or decrease in the process of evaluating programs. How to best
employ the representation power of powerset domains is not trivial remains an open
problem.

11.6 Abstract Semantics

The abstract semantics for dual-bounded probabilistic regions is defined identically
to concrete semantics in Figure 11.2(top) except with supplanting each of the
concrete operations/combinators of Figure 11.2 (bottom) with abstract versions that
operate on abstract distributions instead of concrete distributions. Soundness of the
abstraction is then shown inductively on language statements from the soundness of
the abstracted operations and combinators. We present some of these operations in
this section; the full set of operations as well as the corresponding proofs can be
found in Mardziel et al. (2013).

Abstract Conjunction The concrete conjunction operation restricts a distribution
to states satisfying a boolean expression, nullifying probability mass of states that do
not: [exp]| X o if [exp]lo then X(o) else 0. Using the expression conjunction
and count for abstract states, we develop the abstract conjunction for probabilistic
regions as follows.

Definition 11.10. Given a probabilistic region a; = (ay, 51, p1,m;) and boolean
expression exp, let n = a#exp and n = a#(—exp) . That is, n is an over-approximation
of the number of states in a that satisfy the condition exp and 7 is an over-
approximation of the number of points in a that do not satisfy exp. Then, (exp)) a;
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is the probabilistic region ay = (ay, 52, p2, my) defined by the parameters enumerated

below.
prznm — prlnm Sr2n1n = max {Smm _ ﬁ, 0}
pr2nax — prlnax Srznax — min {Smax }
mgﬂm = max {pmm gnn’ mm prlnax min {Sll'nax,ﬁ}}
m12nax — min {pmax max, rnax prlnm max {Stlnin _ I’l,O}}

ay  =(exp)a

The soundness requirement for this and subsequent operations stipulates an
inclusion relation between the concrete variant and the abstract variant. In the case
of conjunction the statement is is thus: if X € vy (a) then [exp]|X € y ({exp)) a).

Abstract Plus The concrete plus operation combines mass of two given distributions:
X +X, = Xi(0) + X5(0). The abstract counterpart over-approximates the
result. Specifically, if X; € y (a;) and X € y (az) then X + X, € y (a; + ay). For
the remainder of the chapter, we will leave the association between a probabilistic
region, a, and its constituents, (a, s, p, m), implicit. When more than one probabilistic
region is being discussed, the subscripts of the tuple elements will match the
subscript of the region.

The abstract sum of two probabilistic regions is defined differently depending on
whether their support regions overlap. In the case they do not overlap, the sum a3
has a3 = a; U ap and parameters as below:

mm — mm mm max — max max
py" = min{p"™py™"} | pi™* = max {p]™,pi*™}
Sr3mn — mm + Sr2mn Sr3nax — Srlnax + Smax
mmm — mm +mmm mmax — max +mmaX

3 3

Otherwise, a; and a, overlap. We first determine the minimum and maximum
number of points in the intersection that may be support points for both a and
for b. We refer to these counts as the pessimistic overlap and optimistic overlap,
respectively.

Definition 11.11. Given two distributions X7, X», we refer to the set of states that are
in the support of both X; and Xj as the overlap of X1, X5. The pessimistic overlap of
a and b, denoted a @ b, is the cardinality of the smallest possible overlap between
any two distributions X; € y (a) and X, € v (b) and the optimistic overlap a © b is
the cardinality of the largest possible overlap. They are computed as follows:

a ® b % max {srlmn + sinin _ (#(a) + #(b) — #(a b)) }
a®b < min {s‘lna", sy, #(an b)}

https://doi.org/10.1017/9781108770750.012 Published online by Cambridge University Press


https://doi.org/10.1017/9781108770750.012

11.6 Abstract Semantics 377

The pessimistic overlap is derived from the inclusion-exclusion principle
AN B|| = ||A|l + ||B|| = ||]A U BJ|| while the optimistic overlap cannot exceed
the support size of either distribution or the size of the intersection.

Definition 11.12. The abstract sum of a and b, written a + b, is the probabilistic
region ¢ with parameters as follows:

c = alUb
pin p‘lnin + pg‘i“ ifa®b=4%#c)
3 . ; i .
min {p‘f““, przmn} otherwise
max max 3
R Py +p; ifa®b>0
3 - .
max {prlnax,pglax} otherwise
min _ min min __
s3 = max {s1 +8) a®b, 0}
max —_ : max max __
s3 = min {s1 +55 a®b, #(c)}
min  _ min min max __ ..,max max
my = m™ +mj | m{™ = m"™ + mJ

The setting of parameters in the sum is chosen to be as precise as possible while
maintaining soundness: if X; € y (a) and X, € y (b) then X; + X, € v (a + b). The
two cases for pgnin derive from: (first case) the overlap between the operands is
complete (the support of both is identical) and (second case) there is a possibility of
a non-overlapping state that is in support of one of the operands but not the other.
Likewise, the cases for p5™* derive from: (first case) there is a possibility of support
point overlap and (second case) there is no overlap possible between the operands.
The size parameters follow from the inclusion-exclusion principle and the mass
parameter is a mere sum that does not depend on where the operands distribute their
probability mass.

Together the abstract operation soundness claims (see Mardziel et al. (2013) for
the rest and their proofs) imply soundness of the abstract semantics:

Theorem 11.13 (Abstraction Semantics Soundness). If X € vy (a) then [stmt]]X €
y ((stmt)) a).

Abstract Normalization Critically, the dual-bounded probabilistic domain allows
us to soundly define the conditioning operation which in turn is defined primarily
via normalization operation. The normalization of a (sub) distribution produces a

def

distribution whose total mass is equal to 1: normal(X) = m - X. If a probabilistic

region a has m™" = 1 and m™*

= 1 then it represents a normalized distribution. We
define below an abstract counterpart to distribution normalization for transforming

an arbitrary probabilistic region into one containing only normalized distributions.
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Definition 11.14. Assuming mInlIl > 0, normal(a;) is the normalized region a;
with:
pmin — mln /mmax Smln = 3
2 = 2 - %
pmax —_ max/mmln Smax — Smax
2. = 2 - %
my" = my* =1 a = a

The normalization operator illustrates the interaction between under and over
approximation of probability in the abstraction: to ensure that the over-approximation
of a state’s probability (p™**) is sound, we must divide by the under-approximation
of the total probability mass (m™"). This results in abstract normalization that is
sound: If X € y (a) and X has non-zero mass, then normal(X) € y (normal(a)).

Together with soundness of abstract conjunction presented earlier in this section
we arrive at the main goal of this work.

Theorem 11.15 (Soundness of Conditioning). If X € vy (a) and exp has non-zero
marginal probability in X then X | exp € vy (a | exp).

We can now show how to use our abstraction to soundly over-approximate
quantities such as disparate impact ratio (Definition 11.1) and posterior Bayes
vulnerability (Definition 11.2). We define upper and lower bounds on the probability
of states as well as the marginal probability bounds for boolean expressions according
to a dual-bounded probabilistic region.

Definition 11.16. Given probabilistic region a and a boolean expression exp,
the upper and lower bounds on the marginal probability of exp are defined as
Apin (€xp) = m‘f‘i" and ap,x (exp) = m{'™* where the mass bound parameters are
those of the probabilistic region a; = {(exp)) a. The upper and lower state bounds
are the bounds on the probability of any single (possible) state and are defined

Amin = p‘l’flln and Ay = prlna".

Corollary 11.17. The marginal and state probability bounds are sound. That is, for
every X € y(a):
apin (€xp) < X (exp) < Apax (exp)
For every o € support(X):
Ay < X(07) < apgy

Notice that the state bounds quantities ap,;, and an,,x bound the probability of all
support states (state with non-zero probability). Quantities such as vulnerability can
thus be checked using state bounds without enumerating every possible state.

Returning to disparate impact ratio, let X be a distribution of individuals with
variable Z referring to minority status and presume we have X € y(a). Let
a < (stmt) (a | Z = minority) and b £ ((stmt) (a | Z = majority).
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([stme]X) (Y = + | Z = minority) < (@) (Y = +)
([stmz]X) (Y = + | Z = majority) ~ (b)), (Y = +)

Note that though the abstraction, its semantics, and operations allow us to soundly
check a disparate ratio bound, this check is outside the syntax and semantics of the
language modeled. Though some languages support both probabilistic interpretation
and subsequent manipulation of resulting distributions in the same host language,
this is not a goal of our toy language and manipulations of distributions like those
in the disparate impact ratio bound above have to be done in a separate language
hosting the probabilistic interpreter.

In the next section we show how to use the state probability bound, an indicator
of the probability of any support point in a distribution, to construct a vulnerability-
based privacy monitor.

Powerset Bounds Single regions are firmly on the tractability side of the tractabil-
ity/accuracy trade-off. Probabilistic regions can be additively combined using a
probabilistic powerset construction of Section 11.4. There an abstract probability
distribution is composed of a set of simpler abstract probability distributions (in
our case dual-bounded probabilistic regions). The set represents all distributions
equal to the distribution sum of the distributions represented by each of the abstract
elements:

y: {aj}j — {X er:X= ZXj where X € y(aj)}
>

For sound base probabilistic abstractions as per Theorem 11.13 and with sound
event probability bounds as per Corollary 11.17, the powerset construction provides
similarly sound results. Details including the set operations taking part of the abstract
interpretation, the probability bound definitions, and proofs can be found in Mardziel
et al. (2013).

Widening A distinguishing aspect of abstract interpretation as compared to other
static analysis techniques is its handling of looping programs. Recall the semantics
of while:

def

[stmt]X = [stme]|([stmei N([exp, 1X)) + [—exp, 1X

where stmt = while exp, do stmt;

Notice the first term includes the evaluation of the same while statement as we
are defining the semantics of. We rewrite this as a monotonic sequence Y; via a
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recursive definition X; (along with the abstract version of the same):

X() déf X ao déf a
Xiv1 = [[stmt |([exp 1X)) ;1 = (stmy)) ((expy ) a;)
Yo £ [-exp, IX; by € > (mexphar  (114)
=0 i=0

The result of [[stmt]X is the fixed-point of the sequence Y;, a point i at which
Y;:1 = Y;. The problem is that reaching the fixed-point may require large number of
iterations. Given the motivation of large state spaces, it is plausible that the number
of iterations in a loop is likewise large. Worse yet, in the abstract version of the
semantics where abstractions may include concretely unrealizable distributions due
to precision loss, the fixed-point may not be achieved in any finite number of steps
even if the while loop terminates concretely.

Abstract interpretation employs the widening operator to make sure fixed-point
computations take only a finite number of iterations. Let E be an ordering on
abstractions respecting the subset relation in their concretizations ( a C b implies

y(@) Cy(b)).

Definition 11.18. A widening operator V is a binary operator that defines for every
ascending chain of abstractions ¢; C ¢;41, a chain ¢ o o, €, = ¢;Ve;y that
over-approximates the original chain (¢; C ¢;) and has a finite fixed-point (¢, = ¢;
for some finite 7).

The abstract semantics of a while loop written as b,, of Equation 11.4 constitutes
an ascending chain and it can thus be over-approximated with a chain having a finite
fixed-point by employing widening. Practically, for a widening operator to be defined
for an abstraction, it must come with an ordering and must be able to represent
potentially infinite concrete states. For example, the interval domain constraints
allows for variable bounds to be one-sided or even unbounded. That is, constraints for
variables to ranges like [¢, +o0], [—o0, ¢], and [—o0, + 0], for constant ¢, are possible.
The state abstractions discussed in this chapter all come with widening operators
including the powerset constructions.

Widening for probabilistic abstractions, however, is another matter. For the integer-
valued programs discussed, the techniques we described rely heavily on counting
states. Merely admitting infinite state counts into the counting arguments of this
section result in total loss of precision, distribution representations whose probability
bounds are uselessly between 0 and 1. As a result, defining abstractions with
non-trivial widening operators for probabilistic semantics with sound conditioning
remains an open problem.
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11.7 Privacy Monitor

In this section demonstrate an application of state bounds to an implementation of
an online query privacy monitor. Such a monitor allows clients to query private
information while owner can measure how much has been revealed by the queries
and can decide to block queries that would otherwise reveal too much. Mardziel
et al. (2011) motivate the use of such a system for retaining individual control
over personal information while selling partial access to entities such as advertiser
who might themselves derive full financial benefit from only limited access. A
birthday cake merchant, for example, might be content with knowing that a user’s
birthday is within the next week in order to offer them a coupon (as in the program
Birthday,,,,,). An online query scheme allows the merchant to get the information
they need and nothing else. On the other hand, repeated queries reveal additional
information hence the proposed system tracks the knowledge of each querying party
while interacting with the monitor.

The primary tool for monitor is the upper state probability bound with which
posterior vulnerability can be soundly estimated. Given a program (the query)
stmt processing variable X distributed according to prior states X to output ¥ and
X € v (a), we bound the posterior Bayes vulnerability given output y:

max {([fIX) (X = x| ¥ =y)} < ({stmr))a| ¥ = y)na =V (a,stm, )

Specifically, the right hand inequality gives us a conservative overestimate of
the risk in revealing the output y of the program stmt to an adversary whose prior
knowledge is X € vy (a) where risk is the likelihood that the adversary can guess
value of the secret X correctly in one try. We will refer to the vulnerability bound
based on the abstraction a as V (a, stmt, y).

A common objection to privacy properties such as this is that they depend on
having the right model of what potential adversaries know. Abstraction alleviates
this problem. We need not know X exactly but only that whatever the adversary
knowledge actually is, we capture it in the abstraction a. We return to this point in
Section 11.9.

A monitor serves as the gateway to the protected information and will, given a
security parameter or vulnerability threshold ¢, make sure that the risk (in terms
of vulnerability) never rises beyond ¢. This application presumes a querier only
observes its interactions with the monitor (it does not infer anything about the secret
from any other source).

Given a vulnerability threshold ¢, a secret state o, prior adversary knowledge a
with X(o) > 0 for some X € vy (a), a query stmt whose output on the secret state
is the value y of variable Y the dynamic monitor has three components: one to
determine whether a query should be answered, one to determine what to return to

https://doi.org/10.1017/9781108770750.012 Published online by Cambridge University Press


https://doi.org/10.1017/9781108770750.012

382 Calderon et al: Probabilistic Abstract Interpretation

the querier, and one to revise adversary knowledge:

i <

Allow,(stmi) : a — true if'V(a,stmt, y) < t Yy

false otherwise
Observe,(stmt,y) : a { Y it Allowt(st@t)
deny otherwise

Y = if All
Posterior, (stmt, y) : a — { ((stmn)a) | ( y) ! owt(stn?t)
a otherwise

Note that in the Allow component, by way of a test for all possible outputs y,
we are evaluating the “worst-case” posterior vulnerability (K&pf and Basin, 2007).
Compared to making this check for conditional vulnerability given only the actual
output y from stmt evaluated on secret o, the worst-case has the benefit of being
simulatable (Kenthapadi et al., 2005) in that it can be determined without knowledge
of the secret value 0. The outcome of the vulnerability check in the Allow component,
therefore, leaks no information about it beyond what is assumed to be known by the
adversary.

Chaining applications of the monitor on a sequence of programs stmt; whose
outputs are y;, we define a;| = Posterior;(stmt;, y;) (a;) as the sequence of knowl-
edge revisions of a Bayesian adversary proposing queries stmt; and observing
Observe; (stmt;, ;).

Theorem 11.19. Assume a Bayesian adversary has prior knowledge X € 7y (ag)
consistent with secret o (X(o) > 0) and prior vulnerability bounded by threshold
t (max, X(0) < t). Let y; be a the set of query outputs sampled from [[stmt;]o. If
the adversary observes nothing but the sequence Observe; (stmt;, y;) (a;), then at no
stage will they have a likelihood of more than t of guessing the correct secret o in a
single try.

We say that y; are sampled in the theorem as stmt may contain probabilistic
statements so more than one output value is possible. The theorem is principally based
on the soundness of our abstraction for modeling probabilistic program semantics
and conditioning. At each stage in the sequence, the abstraction a; includes what the
Bayesian adversary knows about the secret given their initial prior knowledge and
the outputs of the queries before that point, noting query rejections do not reveal
anything about the secret.

Example 11.20. Let us consider the sequence of queries, starting from prior
according to Demograhpics,,,,,, evaluating Birthday ,,,, which returns 0, and then
evaluating Birthday261,,,,, which has TODAY = 261. In concrete interpretation
we have distributions:

Sstm,
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¢ X( = [Demograhpics,,,,, €. At this point Xy(o) = @, meaning we could
reasonably employ the privacy monitor for any threshold ¢ above W.

e X; = ([Birthday,,,,, [ Xo) | (OUTPUT = 0). At this point we have X;(0) = 3%
for states o that have o-(BDAY) € {0, --,259,267,--- ,364} (and for some values
of BYEAR). Thus if the threshold ¢ was below 3581W the monitor would have
already rejected this first query.

e X) = ([Birthday261,,,,1X;).

The monitor now needs to determine whether to evaluate the report the output
of the second birthday query. Were the output of this query to be 0, we would

have posterior X,(o) = ﬁ but if the query returned 1, we would instead have

Xy(o) = ﬁ, pinpointing the day of the year exactly. Thus for any threshold below
%, the monitor must reject this query, regardless of whether it would return O or 1

on the true value of BDAY.

The example above is described in terms of concrete probabilistic semantics.
Given soundness of the corresponding abstract semantics, the safe enforcement of
the posterior vulnerability can also be done in the abstract (Theorem 11.19).

11.8 Related Work

The work presented in this chapter has connections to techniques for program analysis,
notably abstraction interpretation, and methods for measuring and enforcing privacy.
We briefly summarize the most related of these works. When considering privacy,
we specifically consider works that do, and do not, require modeling prior knowledge
when assessing information leakage.

Abstract Interpretation Static program analyses such as abstract interpreta-
tion(Cousot and Cousot, 1977) and symbolic execution (King, 1976; Cadar et al.,
2008) model program behaviour over large sets of inputs or starting conditions with
the goal of discovering or verifying the absence of undesirable conditions that would
be difficult or close to impossible to verify with mere test cases or dynamic analyses.
Static techniques employ forms of abstraction to explore the space of executions.
The form of abstraction varies and has implications on the differences between the
analyses both in terms of their tractability, precision, and soundness in modeling
programs. The aspects of abstract interpretation that distinguish it from other static
analysis techniques include its limits on the complexity of representation and the
use of the widening operator to handle looping programs.

Abstract domains impose limits on the complexity of an analysis by abstract
interpretation (recall domains of Section 11.4). Powerset domains typically restrict
the number of disjuncts in a representation and the disjuncts themselves are limited by

https://doi.org/10.1017/9781108770750.012 Published online by Cambridge University Press


https://doi.org/10.1017/9781108770750.012

384 Calderon et al: Probabilistic Abstract Interpretation

their underlying domain whose basic logical queries such as satisfiability are trivial
or at least easy. This distinguishes abstract interpretation from analyses in which
logical representation can grow ever more complex and employ more expressive
theories, sometimes to the point where success of analysis depends primarily on an
undecidable logical satisfiability test for an enormous formula employing potentially
incomplete theories.

The abstract interpretation of probabilistic programs has been tackled by Monniaux
(2001) who defined probabilistic program semantics based on over-approximating
probabilities of program states. In other work, Di Pierro et al. (2005) described
abstract interpretation for probabilistic lambda calculus, and Smith (2008) who
used probabilistic abstract interpretation for verification of quantitative program
properties. Such works are limited in their (lack of) sound handling of conditioning
which is a necessary component of a wide variety of quantitative privacy notions.
A theoretical investigation of probabilistic abstract interpretation as built atop
traditional abstractions can be found in Cousot and Monerau (2012).

Dynamic Probabilistic Programming Dynamic analysis works characterizes prop-
erties of concrete program evaluations. Such an analysis has the benefit of not
requiring an abstraction of semantics and hence can be easily adopted to full-featured
languages. The analysis described in this chapter, on the other hand, works well for
programs containing only linear expressions over integer-valued variables. Adapting
such analyses to richer programs is possible but will invariably suffer in precision
when modeling language features not specifically designed for in the abstraction.

In the context of this chapter’s privacy application, the pertinent aspect of a
probabilistic programming system is its ability to accurately or soundly approximate
probability or a privacy criterion. Though generally lacking ability to derive exact
probability or bounds, dynamic techniques and sampling have been used in privacy
contexts. Kopf and Rybalchenko (2010), for example, use sampling to derive
information flow bounds.

More recently, Sweet et al. (2018) have shown that sampling can be used to
improve the precision of the abstract distribution representation discussed in this
chapter. However, in this and other sampling techniques, the soundness guarantees
become somewhat subtle. In the case of (Sweet et al., 2018), for example, the authors
provide for a confidence bound (a probability over the sampling process) that the
derived probability values (like posterior Vulnerability) are within a certain range.

Privacy with Background Knowledge Assumptions Measurement of adversary
knowledge of private data as it is informed by a program’s output has been a
well-studied problem since Robling Denning (1982). Clark et al. (2005) define a
static analysis that bounds the secret information a straight-line program can leak
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in terms of equivalence relations between the inputs and outputs. Backes et al.
(2009) automate the synthesis of such equivalence relations and quantify leakage by
computing the exact size of equivalence classes. Kopf and Rybalchenko (2010) extend
this approach, improving its scalability by using sampling to identify equivalence
classes and using under- and over-approximation to obtain bounds on their size. Mu
and Clark (2009) present a similar analysis that uses over-approximation only. In
all cases, the inferred equivalence classes can be used to compute entropy-based
metrics of information leakage.

Along with tools, there is a growing number of quantitative information flow
measures in the literature, varying according to the operational interpretation of risk.
Instances include Bayes vulnerability (Smith, 2009) and Bayes risk (Chatzikokolakis
et al., 2008), Shannon entropy (Shannon, 1948), and guessing entropy (Massey,
1994). The g-vulnerability framework (Alvim et al., 2012) is meant to encompass a
more general set of operational interpretations.

Two important aspects of all of these works are (a) whether they deal with absolute
or relative information and (b) whether they incorporate background knowledge.

For the first, an example absolute measure is posterior vulnerability discussed
in this chapter. Relative measures compare the absolute measurements before and
after an adversary makes an observation from some scrutinized system. Relative
measurements of information further have variants which do not assume particular
background knowledge on the adversary’s part but instead quantify the worst-case
difference in prior and posterior over all possible distributions. Channel capacity in
FLowCheck (McCamant and Ernst, 2008) and various definitions of maximum
leakage measures in the quantitative information flow literature are examples.

The reliance on having a sense of background knowledge of adversaries is the
problematic assumption motivating other popular approaches such as differential
privacy (Dwork, 2008). Unlike the approaches mentioned above, differential privacy
lacks a clear connection to harms induced by privacy loss and attempts at connecting
its privacy parameter to harms invariably make assumptions as problematic as those
regarding background knowledge (Kifer and Machanavajjhala, 2011).

Though we make the assumption of having adversary background knowledge in
our work, our use of probabilistic programming and abstract interpretation alleviates
it. First, for cases where a secret is generated by a program which is known by the
adversary, the distribution representing their background knowledge can be derived
by probabilistic evaluation of said generating program. An over-approximation
of the knowledge can likewise be generating using the techniques described in
this chapter. Second, probabilistic programs can be viewed as tools for modeling
background knowledge and can bring to bear their benefits specifically in terms
of concisely describing distributions arising from generative processes. Finally,
probabilistic abstract interpretation makes the process easier by not requiring the
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exact background knowledge of all adversaries to be known as long as it can be
approximated in some abstraction. To this end, we can extend our toy probabilistic
language with the “possibilistic” choice statement:

stmt ::= poss stmt| and stmt; | ...

The meaning of possibilistic choice is that either branch can occur. This cannot be
modeled in the concrete semantics but can be approximated in the abstract semantics
by making sure that when b = [[poss stmt; and stmt;]|a then y ([stmt1]]a) € vy (b)
and y ([[stmtz]]a) C 7y (b). That is, the abstraction of possibility must include the
abstractions of both branches. As an adversary modeling tool, this lets us remain
uncertain which of the branches generates the true adversary knowledge, as long as
one of them does.

The techniques described in this chapter can incorporate such a modeling tool by
virtue of the imprecise but sound representations employed. The numeric abstractions,
however, were not designed with this use-case in mind. Taking advantage of this
feature of abstract interpretation for the purpose of modeling uncertainty in knowledge
is an open problem.

11.9 Conclusions

In this chapter we have described a probabilistic programming approach with
sound probability and inference bounds suitable for specifying fairness and privacy
properties. Based on abstract interpretation, the technique allows one to trade off
precision for speed of analysis all the while preserving a general soundness criterion.
Probabilistic abstract interpretation therefore offers a unique set of benefits from
among the probabilistic programming toolkit.

The field of abstract interpretation is an active area of research and offers many
open problems. New domains, combinators, and algorithms for efficiently and
accurately representing program states and reasoning about larger and more feature
rich programs are proposed regularly. Considerations for probability, however, are
not as thoroughly investigated. Fundamental aspects of abstraction such as widening
remain unavailable for languages with sound conditioning and thus pose a hurdle to
the wider adoption of the otherwise extremely successful program analysis technique
to probabilistic applications.
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