
6 Records

One of OCaml's best features is its concise and expressive system for declaring new

data types. Records are a key element of that system. We discussed records brie�y in

Chapter 2 (A Guided Tour), but this chapter will go into more depth, covering more of

the technical details, as well as providing advice on how to use records e�ectively in

your software designs.

A record represents a collection of values stored together as one, where each compo-

nent is identi�ed by a di�erent �eld name. The basic syntax for a record type declaration

is as follows:

type <record-name> =
{ <field> : <type>;
<field> : <type>;
...

}

Note that record �eld names must start with a lowercase letter.

Here's a simple example: a service_info record that represents an entry from the

/etc/services �le on a typical Unix system. That �le is used for keeping track of the

well-known port and protocol name for protocols such as FTP or SSH. Note that we're

going to open Core in this example rather than Base, since we're using the Unix API,

which you need Core for.

open Core
type service_info =
{ service_name : string;
port : int;
protocol : string;

}

Wecan construct a service_info just as easily aswe declared its type. The following

function tries to construct such a record given as input a line from /etc/services �le.

To do this, we'll use Re, a regular expression engine for OCaml. If you don't know how

regular expressions work, you can just think of them as a simple pattern language you

can use for parsing a string. (You may need to install it �rst by running opam install

re.)

#require "re";;
let service_info_of_string line =

let matches =
let pat = "([a-zA-Z]+)[\t]+([0-9]+)/([a-zA-Z]+)" in

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

86 Records

Re.exec (Re.Posix.compile_pat pat) line
in
{ service_name = Re.Group.get matches 1;
port = Int.of_string (Re.Group.get matches 2);
protocol = Re.Group.get matches 3;

}
;;

val service_info_of_string : string -> service_info = <fun>

We can now construct a concrete record by calling the function on a line from the �le.

let ssh = service_info_of_string "ssh 22/udp # SSH Remote Login
Protocol";;

val ssh : service_info = {service_name = "ssh"; port = 22; protocol =

"udp"}

You might wonder how the compiler inferred that our function returns a value of

type service_info. In this case, the compiler bases its inference on the �eld names

used in constructing the record. That inference is most straightforward when each �eld

name belongs to only one record type. We'll discuss later in the chapter what happens

when �eld names are shared across di�erent record types.

Once we have a record value in hand, we can extract elements from the record �eld

using dot notation:

ssh.port;;
- : int = 22

When declaring an OCaml type, you always have the option of parameterizing it by

a polymorphic type. Records are no di�erent in this regard. As an example, here's a

type that represents an arbitrary item tagged with a line number.

type 'a with_line_num = { item: 'a; line_num: int }

We can then write polymorphic functions that operate over this parameterized type.

For example, this function takes a �le and parses it as a series of lines, using the

provided function for parsing each individual line.

let parse_lines parse file_contents =
let lines = String.split ~on:'\n' file_contents in
List.mapi lines ~f:(fun line_num line ->
{ item = parse line;
line_num = line_num + 1;

})
;;

val parse_lines : (string -> 'a) -> string -> 'a with_line_num list =

<fun>

We can then use this function for parsing a snippet of a real /etc/services �le.

parse_lines service_info_of_string
"rtmp 1/ddp # Routing Table Maintenance Protocol
tcpmux 1/udp # TCP Port Service Multiplexer
tcpmux 1/tcp # TCP Port Service Multiplexer";;

- : service_info with_line_num list =

[{item = {service_name = "rtmp"; port = 1; protocol = "ddp"};

line_num = 1};

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

6.1 Patterns and Exhaustiveness 87

{item = {service_name = "tcpmux"; port = 1; protocol = "udp"};

line_num = 2};

{item = {service_name = "tcpmux"; port = 1; protocol = "tcp"};

line_num = 3}]

The polymorphism lets us use the same function when parsing a di�erent format,

like this function for parsing a �le containing an integer on every line.

parse_lines Int.of_string "1\n10\n100\n1000";;
- : int with_line_num list =

[{item = 1; line_num = 1}; {item = 10; line_num = 2};

{item = 100; line_num = 3}; {item = 1000; line_num = 4}]

6.1 Patterns and Exhaustiveness

Another way of getting information out of a record is by using a pattern match, as

shown in the following function.

let service_info_to_string
{ service_name = name; port = port; protocol = prot }
=
sprintf "%s %i/%s" name port prot

;;
val service_info_to_string : service_info -> string = <fun>

service_info_to_string ssh;;
- : string = "ssh 22/udp"

Note that the pattern we used had only a single case, rather than using several cases

separated by |'s. We needed only one pattern because record patterns are irrefutable,

meaning that a record pattern match will never fail at runtime. That's because the set

of �elds available in a record is always the same. In general, patterns for types with

a �xed structure, like records and tuples, are irrefutable, unlike types with variable

structures like lists and variants.

Another important characteristic of record patterns is that they don't need to be

complete; a pattern can mention only a subset of the �elds in the record. This can be

convenient, but it can also be error prone. In particular, this means that when new �elds

are added to the record, code that should be updated to react to the presence of those

new �elds will not be �agged by the compiler.

As an example, imagine that we wanted to change our service_info record so that

it preserves comments. We can do this by providing a new de�nition of service_info

that includes a comment �eld:

type service_info =
{ service_name : string;
port : int;
protocol : string;
comment : string option;

}

The code for service_info_to_string would continue to compile without change.

But in this case, we should probably update the code so that the generated string

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

88 Records

includes the comment if it's there. It would be nice if the type system would warn us

that we should consider updating the function.

Happily, OCaml o�ers an optional warning for missing �elds in record patterns.

With that warning turned on (which you can do in the toplevel by typing #warnings

"+9"), the compiler will indeed warn us.

#warnings "+9";;
let service_info_to_string

{ service_name = name; port = port; protocol = prot }
=
sprintf "%s %i/%s" name port prot

;;
Line 2, characters 5-59:

Warning 9 [missing-record-field-pattern]: the following labels are

not bound in this record pattern:

comment

Either bind these labels explicitly or add '; _' to the pattern.

val service_info_to_string : service_info -> string = <fun>

We can disable the warning for a given pattern by explicitly acknowledging that we

are ignoring extra �elds. This is done by adding an underscore to the pattern:

let service_info_to_string
{ service_name = name; port = port; protocol = prot; _ }
=
sprintf "%s %i/%s" name port prot

;;
val service_info_to_string : service_info -> string = <fun>

It's a good idea to enable the warning for incomplete recordmatches and to explicitly

disable it with an _ where necessary.

Compiler Warnings

The OCaml compiler is packed full of useful warnings that can be enabled and disabled

separately. These are documented in the compiler itself, so we could have found out

about warning 9 as follows:

$ ocaml -warn-help | egrep '\b9\b'
9 [missing-record-field-pattern] Missing fields in a record pattern.
R Alias for warning 9.

You can think of OCaml's warnings as a powerful set of optional static analysis tools.

They're enormously helpful in catching all sorts of bugs, and you should enable them

in your build environment. You don't typically enable all warnings, but the defaults

that ship with the compiler are pretty good.

The warnings used for building the examples in this book are speci�ed with the

following �ag: -w @A-4-33-40-41-42-43-34-44.

The syntax of -w can be found by running ocaml -help, but this particular invocation

turns on all warnings as errors, disabling only the numbers listed explicitly after the A.

Treating warnings as errors (i.e., making OCaml fail to compile any code that

triggers a warning) is good practice, since without it, warnings are too often ignored

during development. When preparing a package for distribution, however, this is a bad

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

6.2 Field Punning 89

idea, since the list of warnings may grow from one release of the compiler to another,

and so this may lead your package to fail to compile on newer compiler releases.

6.2 Field Punning

When the name of a variable coincides with the name of a record �eld, OCaml provides

somehandy syntactic shortcuts. For example, the pattern in the following function binds

all of the �elds in question to variables of the same name. This is called �eld punning:

let service_info_to_string { service_name; port; protocol; comment
} =
let base = sprintf "%s %i/%s" service_name port protocol in
match comment with
| None -> base
| Some text -> base ^ " #" ^ text;;

val service_info_to_string : service_info -> string = <fun>

Field punning can also be used to construct a record. Consider the following updated

version of service_info_of_string.

let service_info_of_string line =
(* first, split off any comment *)
let (line,comment) =
match String.rsplit2 line ~on:'#' with
| None -> (line,None)
| Some (ordinary,comment) -> (ordinary, Some comment)

in
(* now, use a regular expression to break up the
service definition *)

let matches =
Re.exec
(Re.Posix.compile_pat
"([a-zA-Z]+)[\t]+([0-9]+)/([a-zA-Z]+)")

line
in
let service_name = Re.Group.get matches 1 in
let port = Int.of_string (Re.Group.get matches 2) in
let protocol = Re.Group.get matches 3 in
{ service_name; port; protocol; comment };;

val service_info_of_string : string -> service_info = <fun>

In the preceding code, we de�ned variables corresponding to the record �elds �rst,

and then the record declaration itself simply listed the �elds that needed to be included.

You can take advantage of both �eld punning and label punningwhenwriting a function

for constructing a record from labeled arguments:

let create_service_info ~service_name ~port ~protocol ~comment =
{ service_name; port; protocol; comment };;

val create_service_info :

service_name:string ->

port:int -> protocol:string -> comment:string option ->

service_info =

<fun>

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

90 Records

This is considerably more concise than what you would get without punning:

let create_service_info
~service_name:service_name ~port:port
~protocol:protocol ~comment:comment =

{ service_name = service_name;
port = port;
protocol = protocol;
comment = comment;

};;
val create_service_info :

service_name:string ->

port:int -> protocol:string -> comment:string option ->

service_info =

<fun>

Together, �eld and label punning encourage a style where you propagate the same

names throughout your codebase. This is generally good practice, since it encourages

consistent naming, which makes it easier to navigate the source.

6.3 Reusing Field Names

De�ning records with the same �eld names can be problematic. As a simple example,

let's consider a collection of types representing the protocol of a logging server.

We'll describe three message types: log_entry, heartbeat, and logon. The

log_entry message is used to deliver a log entry to the server; the logon message

is sent when initiating a connection and includes the identity of the user connecting

and credentials used for authentication; and the heartbeatmessage is periodically sent

by the client to demonstrate to the server that the client is alive and connected. All of

these messages include a session ID and the time the message was generated.

type log_entry =
{ session_id: string;
time: Time_ns.t;
important: bool;
message: string;

}
type heartbeat =
{ session_id: string;
time: Time_ns.t;
status_message: string;

}
type logon =
{ session_id: string;
time: Time_ns.t;
user: string;
credentials: string;

}

Reusing �eld names can lead to some ambiguity. For example, if we want to write

a function to grab the session_id from a record, what type will it have?

let get_session_id t = t.session_id;;

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

6.3 Reusing Field Names 91

val get_session_id : logon -> string = <fun>

In this case, OCaml just picks the most recent de�nition of that record �eld. We can

force OCaml to assume we're dealing with a di�erent type (say, a heartbeat) using a

type annotation:

let get_heartbeat_session_id (t:heartbeat) = t.session_id;;
val get_heartbeat_session_id : heartbeat -> string = <fun>

While it's possible to resolve ambiguous �eld names using type annotations, the

ambiguity can be a bit confusing. Consider the following functions for grabbing the

session ID and status from a heartbeat:

let status_and_session t = (t.status_message, t.session_id);;
val status_and_session : heartbeat -> string * string = <fun>

let session_and_status t = (t.session_id, t.status_message);;
Line 1, characters 45-59:

Error: This expression has type logon

There is no field status_message within type logon

Why did the �rst de�nition succeed without a type annotation and the second

one fail? The di�erence is that in the �rst case, the type-checker considered the

status_message �eld �rst and thus concluded that the record was a heartbeat. When

the order was switched, the session_id �eld was considered �rst, and so that drove

the type to be considered to be a logon, at which point t.status_message no longer

made sense.

Adding a type annotation resolves the ambiguity, no matter what order the �elds are

considered in.

let session_and_status (t:heartbeat) = (t.session_id,
t.status_message);;

val session_and_status : heartbeat -> string * string = <fun>

We can avoid the ambiguity altogether, either by using nonoverlapping �eld names

or by putting di�erent record types in di�erent modules. Indeed, packing types into

modules is a broadly useful idiom (and one used quite extensively by Base), providing

for each type a namespace within which to put related values. When using this style,

it is standard practice to name the type associated with the module t. So, we would

write:

module Log_entry = struct
type t =
{ session_id: string;
time: Time_ns.t;
important: bool;
message: string;

}
end
module Heartbeat = struct
type t =
{ session_id: string;
time: Time_ns.t;
status_message: string;

}

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

92 Records

end
module Logon = struct
type t =
{ session_id: string;
time: Time_ns.t;
user: string;
credentials: string;

}
end

Now, our log-entry-creation function can be rendered as follows:

let create_log_entry ~session_id ~important message =
{ Log_entry.time = Time_ns.now ();
Log_entry.session_id;
Log_entry.important;
Log_entry.message

};;
val create_log_entry :

session_id:string -> important:bool -> string -> Log_entry.t = <fun>

Themodule name Log_entry is required to qualify the �elds, because this function is

outside of the Log_entry module where the record was de�ned. OCaml only requires

the module quali�cation for one record �eld, however, so we can write this more

concisely. Note that we are allowed to insert whitespace between the module path and

the �eld name:

let create_log_entry ~session_id ~important message =
{ Log_entry.
time = Time_ns.now (); session_id; important; message };;

val create_log_entry :

session_id:string -> important:bool -> string -> Log_entry.t = <fun>

Earlier, we saw that you could help OCaml understand which record �eld was

intended by adding a type annotation. We can use that here to make the example even

more concise.

let create_log_entry ~session_id ~important message : Log_entry.t =
{ time = Time_ns.now (); session_id; important; message };;

val create_log_entry :

session_id:string -> important:bool -> string -> Log_entry.t = <fun>

This is not restricted to constructing a record; we can use the same approaches when

pattern matching:

let message_to_string { Log_entry.important; message; _ } =
if important then String.uppercase message else message;;

val message_to_string : Log_entry.t -> string = <fun>

When using dot notation for accessing record �elds, we can qualify the �eld by the

module as well.

let is_important t = t.Log_entry.important;;
val is_important : Log_entry.t -> bool = <fun>

The syntax here is a little surprising when you �rst encounter it. The thing to keep

in mind is that the dot is being used in two ways: the �rst dot is a record �eld access,

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

6.4 Functional Updates 93

with everything to the right of the dot being interpreted as a �eld name; the second

dot is accessing the contents of a module, referring to the record �eld important from

within the module Log_entry. The fact that Log_entry is capitalized and so can't be a

�eld name is what disambiguates the two uses.

Qualifying a record �eld by the module it comes from can be awkward. Happily,

OCaml doesn't require that the record �eld be quali�ed if it can otherwise infer the

type of the record in question. In particular, we can rewrite the above declarations by

adding type annotations and removing the module quali�cations.

let message_to_string ({ important; message; _ } : Log_entry.t) =
if important then String.uppercase message else message;;

val message_to_string : Log_entry.t -> string = <fun>

let is_important (t:Log_entry.t) = t.important;;
val is_important : Log_entry.t -> bool = <fun>

This feature of the language, known by the somewhat imposing name of type-

directed constructor disambiguation, applies to variant tags as well as record �elds, as

we'll see in Chapter 7 (Variants).

6.4 Functional Updates

Fairly often, you will �nd yourself wanting to create a new record that di�ers from an

existing record in only a subset of the �elds. For example, imagine our logging server

had a record type for representing the state of a given client, including when the last

heartbeat was received from that client.

type client_info =
{ addr: Unix.Inet_addr.t;
port: int;
user: string;
credentials: string;
last_heartbeat_time: Time_ns.t;

}

We could de�ne a function for updating the client information when a new heartbeat

arrives as follows.

let register_heartbeat t hb =
{ addr = t.addr;
port = t.port;
user = t.user;
credentials = t.credentials;
last_heartbeat_time = hb.Heartbeat.time;

};;
val register_heartbeat : client_info -> Heartbeat.t -> client_info =

<fun>

This is fairly verbose, given that there's only one �eld that we actually want to

change, and all the others are just being copied over from t. We can use OCaml's

functional update syntax to do this more tersely.

The following shows how we can use functional updates to rewrite

register_heartbeat more concisely.

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

94 Records

let register_heartbeat t hb =
{ t with last_heartbeat_time = hb.Heartbeat.time };;

val register_heartbeat : client_info -> Heartbeat.t -> client_info =

<fun>

The with keyword marks that this is a functional update, and the value assignments

on the right-hand side indicate the changes to be made to the record on the left-hand

side of the with.

Functional updates make your code independent of the identity of the �elds in the

record that are not changing. This is often what you want, but it has downsides as

well. In particular, if you change the de�nition of your record to have more �elds, the

type system will not prompt you to reconsider whether your code needs to change to

accommodate the new �elds. Consider what happens if we decided to add a �eld for

the status message received on the last heartbeat:

type client_info =
{ addr: Unix.Inet_addr.t;
port: int;
user: string;
credentials: string;
last_heartbeat_time: Time_ns.t;
last_heartbeat_status: string;

}

The original implementation of register_heartbeat would now be invalid, and

thus the compiler would e�ectively warn us to think about how to handle this new �eld.

But the version using a functional update continues to compile as is, even though it

incorrectly ignores the new �eld. The correct thing to do would be to update the code

as follows:

let register_heartbeat t hb =
{ t with last_heartbeat_time = hb.Heartbeat.time;

last_heartbeat_status = hb.Heartbeat.status_message;
};;

val register_heartbeat : client_info -> Heartbeat.t -> client_info =

<fun>

These downsides notwithstanding, functional updates are very useful, and a good

choice for cases where it's not important that you consider every �eld of the record

when making a change.

6.5 Mutable Fields

Like most OCaml values, records are immutable by default. You can, however, declare

individual record �elds as mutable. In the following code, we've made the last two

�elds of client_info mutable:

type client_info =
{ addr: Unix.Inet_addr.t;
port: int;
user: string;

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

6.6 First-Class Fields 95

credentials: string;
mutable last_heartbeat_time: Time_ns.t;
mutable last_heartbeat_status: string;

}

The <- operator is used for setting a mutable �eld. The side-e�ecting version of

register_heartbeat would be written as follows:

let register_heartbeat t (hb:Heartbeat.t) =
t.last_heartbeat_time <- hb.time;
t.last_heartbeat_status <- hb.status_message;;

val register_heartbeat : client_info -> Heartbeat.t -> unit = <fun>

Note that mutable assignment, and thus the <- operator, is not needed for initial-

ization because all �elds of a record, including mutable ones, are speci�ed when the

record is created.

OCaml's policy of immutable-by-default is a good one, but imperative programming

is an important part of programming in OCaml. We go into more depth about how (and

when) to use OCaml's imperative features in Chapter 9 (Imperative Programming).

6.6 First-Class Fields

Consider the following function for extracting the usernames from a list of Logon

messages:

let get_users logons =
List.dedup_and_sort ~compare:String.compare
(List.map logons ~f:(fun x -> x.Logon.user));;

val get_users : Logon.t list -> string list = <fun>

Here, we wrote a small function (fun x -> x.Logon.user) to access the user �eld.

This kind of accessor function is a common enough pattern that it would be convenient

to generate it automatically. The ppx_fields_conv syntax extension that ships with

Core does just that.

The [@@deriving fields] annotation at the end of the declaration of a record type

will cause the extension to be applied to a given type declaration. We need to enable

the extension explicitly,

#require "ppx_jane";;

at which point, we can de�ne Logon as follows:

module Logon = struct
type t =
{ session_id: string;
time: Time_ns.t;
user: string;
credentials: string;

}
[@@deriving fields]

end;;
module Logon :

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

96 Records

sig

type t = {

session_id : string;

time : Time_ns.t;

user : string;

credentials : string;

}

val credentials : t -> string

val user : t -> string

val time : t -> Time_ns.t

val session_id : t -> string

module Fields :

sig

val names : string list

val credentials :

([< `Read | `Set_and_create], t, string) Field.t_with_perm

val user :

([< `Read | `Set_and_create], t, string) Field.t_with_perm

val time :

([< `Read | `Set_and_create], t, Time_ns.t)

Field.t_with_perm

...
end

end

Note that this will generate a lot of output because fieldslib generates a large

collection of helper functions for working with record �elds. We'll only discuss a few

of these; you can learn about the remainder from the documentation that comes with

fieldslib.

One of the functions we obtain is Logon.user, which we can use to extract the user

�eld from a logon message:

let get_users logons =
List.dedup_and_sort ~compare:String.compare

(List.map logons ~f:Logon.user);;
val get_users : Logon.t list -> string list = <fun>

In addition to generating �eld accessor functions, fieldslib also creates a submod-

ule called Fields that contains a �rst-class representative of each �eld, in the form of

a value of type Field.t. The Field module provides the following functions:

Field.name Returns the name of a �eld

Field.get Returns the content of a �eld

Field.fset Does a functional update of a �eld

Field.setter Returns None if the �eld is not mutable or Some f if it is, where f is a

function for mutating that �eld

A Field.t has two type parameters: the �rst for the type of the record, and the second

for the type of the �eld in question. Thus, the type of Logon.Fields.session_id is

(Logon.t, string) Field.t, whereas the type of Logon.Fields.time is (Logon.t,

Time.t) Field.t. Thus, if you call Field.get on Logon.Fields.user, you'll get a

function for extracting the user �eld from a Logon.t:

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

6.6 First-Class Fields 97

Field.get Logon.Fields.user;;
- : Logon.t -> string = <fun>

Thus, the �rst parameter of the Field.t corresponds to the record you pass to get,

and the second parameter corresponds to the value contained in the �eld, which is also

the return type of get.

The type of Field.get is a little more complicated than you might naively expect

from the preceding one:

Field.get;;
- : ('b, 'r, 'a) Field.t_with_perm -> 'r -> 'a = <fun>

The type is Field.t_with_perm rather than Field.t because �elds have a notion of

access control that comes up in some special cases where we expose the ability to read

a �eld from a record, but not the ability to create new records, and so we can't expose

functional updates.

We can use �rst-class �elds to do things like write a generic function for displaying

a record �eld:

let show_field field to_string record =
let name = Field.name field in
let field_string = to_string (Field.get field record) in
name ^ ": " ^ field_string;;

val show_field :

('a, 'b, 'c) Field.t_with_perm -> ('c -> string) -> 'b -> string =

<fun>

This takes three arguments: the Field.t, a function for converting the contents of

the �eld in question to a string, and a record from which the �eld can be grabbed.

Here's an example of show_field in action:

let logon = { Logon.
session_id = "26685";
time = Time_ns.of_string "2017-07-21 10:11:45 EST";
user = "yminsky";
credentials = "Xy2d9W"; };;

val logon : Logon.t =

{Logon.session_id = "26685"; time = 2017-07-21 15:11:45.000000000Z;

user = "yminsky"; credentials = "Xy2d9W"}

show_field Logon.Fields.user Fn.id logon;;
- : string = "user: yminsky"

show_field Logon.Fields.time Time_ns.to_string logon;;
- : string = "time: 2017-07-21 15:11:45.000000000Z"

As a side note, the preceding example is our �rst use of the Fn module (short for

�function�), which provides a collection of useful primitives for dealing with functions.

Fn.id is the identity function.

fieldslib also provides higher-level operators, like Fields.fold and Fields.iter,

which let you walk over the �elds of a record. So, for example, in the case of Logon.t,

the �eld iterator has the following type:

Logon.Fields.iter;;
- : session_id:(([< `Read | `Set_and_create], Logon.t, string)

Field.t_with_perm -> unit) ->

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

98 Records

time:(([< `Read | `Set_and_create], Logon.t, Time_ns.t)

Field.t_with_perm -> unit) ->

user:(([< `Read | `Set_and_create], Logon.t, string)

Field.t_with_perm ->

unit) ->

credentials:(([< `Read | `Set_and_create], Logon.t, string)

Field.t_with_perm -> unit) ->

unit

= <fun>

This is a bit daunting to look at, largely because of the access control markers, but

the structure is actually pretty simple. Each labeled argument is a function that takes

a �rst-class �eld of the necessary type as an argument. Note that iter passes each of

these callbacks the Field.t, not the contents of the speci�c record �eld. The contents

of the �eld, though, can be looked up using the combination of the record and the

Field.t.

Now, let's use Logon.Fields.iter and show_field to print out all the �elds of a

Logon record:

let print_logon logon =
let print to_string field =
printf "%s\n" (show_field field to_string logon)

in
Logon.Fields.iter
~session_id:(print Fn.id)
~time:(print Time_ns.to_string)
~user:(print Fn.id)
~credentials:(print Fn.id);;

val print_logon : Logon.t -> unit = <fun>

print_logon logon;;
session_id: 26685

time: 2017-07-21 15:11:45.000000000Z

user: yminsky

credentials: Xy2d9W

- : unit = ()

One nice side e�ect of this approach is that it helps you adapt your code when

the �elds of a record change. If you were to add a �eld to Logon.t, the type of

Logon.Fields.iter would change along with it, acquiring a new argument. Any code

using Logon.Fields.iter won't compile until it's �xed to take this new argument into

account.

Field iterators are useful for a variety of record-related tasks, from building record-

validation functions to sca�olding the de�nition of a web form from a record type.

Such applications can bene�t from the guarantee that all �elds of the record type in

question have been considered.

https://doi.org/10.1017/9781009129220.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.008

