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Abstract

When many statistical hypotheses are evaluated simultaneously,
statisticians often recommend adjusting (or “correcting”) standard hy-
pothesis tests. In this paper, I (1) distinguish two senses of adjustment,
(2) investigate the prudential and epistemic goals that adjustment
might achieve, and (3) identify conditions under which a researcher
should not adjust for multiplicity in the two senses I identify. I ten-
tatively conclude that the goals of scientists and the public may be
misaligned with the decision criteria used to evaluate multiple testing
regimes.

Imagine a pharmaceutical company spends years developing a new can-
cer treatment. Because of the expense of drug development, the company
collects extensive data during human trials. In particular, researchers collect
data about hundreds of health outcomes other than cancer. When the data
is analyzed, researchers find that treatment is associated with a reduction
in breast cancer. Here’s an instance of a more general question.

Question: Should the pharmaceutical researchers alter their methods for
analyzing the cancer data because the treatment for efficacy was assessed in
many other ways?

According to many statisticians and scientists, “yes.” Let multiplicity
refer to the act of evaluating many statistical hypotheses simultaneously.
When multiplicity occurs, many statisticians and scientists recommend “cor-
recting”1 p-values so as to reduce the number of false positive results.2 Al-
though Bayesian statisticians reject the use of p-values, many likewise argue
that one’s statistical methods should be adjusted for multiplicity.3 This

1Henceforth, I say “adjust” rather than “correct” so as to avoid suggesting that ad-
justment is good or obligatory.

2See [Lehmann and Romano, 2008, Chapter 9]. The most common classical techniques
are Bonferroni’s method and [Benjamini and Hochberg, 1995]’s procedure.

3See [Berry and Hochberg, 1999] and [Scott and Berger, 2006] for discussions of
Bayesian approaches to multiplicity.
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raises a very general question.

Central Question: Under what conditions, if any, should statistical meth-
ods be adjusted for multiplicity? In what way should they be adjusted?
And why?

The central question is important because, as our computational power
grows, so does our ability to evaluate thousands of policy-relevant statistical
hypotheses in a matter of minutes.

Although statisticians have investigated the reliability of many adjust-
ment procedures, few have clarified the central question. What exactly is
adjustment? Can “adjustment” be defined without reference to particu-
lar statistical methods? If “adjusting” means “changing reported p-values”,
then devout Bayesian statisticians never adjust for multiplicity, as they avoid
calculating p-values!4 So is there a sense of “adjustment” that renders clas-
sical and Bayesian approaches comparable?

The normative dimensions of the central question have also yet to be
clarified. In what sense “should” one adjust for multiplicity? Is adjust-
ment rationally required to achieve certain goals? If so, which goals? Is
adjustment epistemically required to respect one’s evidence? Is it scientif-
ically required by norms of scientific inquiry? Is it ethically obligatory? If
adjustment is not obligatory, is it permissible or good in any sense?5

Finally, answers to those normative questions depend upon who or what
is adjusting. Researchers can adjust reported p-values. But so can journal
editors. Grant-giving agencies – like the National Institutes of Health (NIH)
– can also adjust for multiplicity in various ways. Which, if any, of these
decision-making bodies should adjust?

The main contribution of this paper is to (1) distinguish two senses of
adjustment, (2) investigate the prudential and epistemic goals that adjust-
ment might achieve, and (3) formulate more precise versions of the central
question. I also prove a new theorem characterizing when adjustment is
impermissible. I tentatively conclude that there is a mismatch between the
goals of scientists (both individually and collectively) and the guarantees
of existing adjustment procedures. This paper, thus, is a call for further
research: we must either prove existing adjustment methods achieve goals

4See [Rubin, 2021] for an attempt to answer the central question when “adjustment”
is interpreted narrowly about significance levels.

5Philosophers have focused on evidential questions. See [Kotzen, 2013] and [Mayo,
2018]. In contrast, most statisticians employ a quasi-decision-theoretic framework, which
seems most suited for questions of rationality.
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of actual scientific interest, or develop alternative procedures.

1 Basic Model

To distinguish types of adjustment, I introduce a model. Suppose N hy-
potheses are under investigation. Assume that any subset of the N hypothe-
ses might be true. Let Θ = {0, 1}N be the set of all binary strings/vectors
of length N . A vector θ ∈ Θ, therefore, specifies which of the N hypotheses
are true and which are false. Let Hk = {θ ∈ Θ : θk = 0} be the set of vectors
that say the kth hypothesis is true.

Suppose that, for each hypothesis Hk, there is some experiment Xk that
could be conducted (or observation that could be made); researchers believe
Xk could be informative about whether Hk holds. Formally, Xk is a random
variable, and for each θ ∈ Θ, let Pθ(X1, . . . , XN ) denote the probability
measure that specifies the chances of various experimental outcomes.

For simplicity, assume that, for all θ ∈ Θ, the N experiments are mutu-
ally independent with respect to Pθ. In symbols, let X⃗ = ⟨Xi1 , Xi2 , . . . , Xik⟩
be a random vector, representing some subset of the N experiments. Then
for all sequences x⃗ = (xi1 , . . . xik) representing the outcome of those k ≤ N
experiments:

Pθ(X⃗ = x⃗) =
∏
j≤k

Pθ(Xij = xij ). (1)

Further, suppose that the truth or falsity of the Hk entirely determines the
probabilities of the possible outcomes of the kth experiment, i.e., for all
k ≤ N and all r ∈ {0, 1}, there is a probability distribution Pk,r such that
Pθ(Xk = xk) = Pk,θk(Xk = xk). Together with the assumption of mutual
independence, this entails that:

Pθ(X⃗ = x⃗) =
∏
j≤k

Pij ,θij
(Xij = xij ) for all θ ∈ Θ. (2)

To assess whether a decision-maker should adjust for multiplicity, compare
two types of situations. In the first, the decision-maker learns the outcome
of a proper subset of the N tests.

For simplicity, suppose that the researcher learns only the value of X1.
In the second, she learns the values of all N variables. Say that the decision-
maker should adjust for multiplicity if her (1) beliefs or (2) decisions about
H1 should differ in those two situations. Let’s clarify those two senses of
adjustment.
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2 Belief

For the Bayesian, beliefs are modeled by posterior probabilities, and so a
Bayesian adjusts for multiplicity if there is a value x1 of X1 such that

P (H1|X1 = x1) ̸= P (Hk|X1 = x1, . . . XN = xN ) (3)

for all values x2, . . . xN of X2, . . . XN for which P (X1 = x1, . . . XN = xN ) >
0. One could distinguish a weaker sense of adjustment, whereby Equation 3
holds for some values of X2, . . . XN . For critics of Bayesianism, one can
replace the probability functions in Equation 3 with another object repre-
senting belief.6

Should one ever adjust for multiplicity, in the strong sense just identi-
fied? Yes. Consider a Bayesian researcher who regards the hypotheses as
dependent, so that learning about one hypothesis provides evidence about
another. For example, suppose our hypothetical pharmaceutical researchers
consider two hypotheses: (1) The treatment is not effective in 33-year-old
women and (2) The treatment is not effective in 34-year-old women. A
researcher might reasonably believe that the first hypothesis is true if and
only if the second is. If so, acquiring data about 33-year-old women would
provide evidence about the efficacy of the treatment for 34-year-old women.
Here’s a toy model to illustrate such adjustment.

Example 1: Suppose each Xk is a binary random variable that represents
a test to retain or reject Hk. Assume there are α, β ∈ (0, 1) such that for all
θ ∈ Θ,

Pθ(Xk = 1) =

{
α if θk = 0

1− β if θk = 1

That is, each test Xk has a Type I error of α and Type II error of β.
To model a researcher who believes the hypotheses to be dependent,

suppose that the researcher assigns positive probability to precisely two
vectors in Θ, namely, 0 = ⟨0, . . . , 0⟩ – which says each Hk is true – and
1 = ⟨1, . . . , 1⟩ – which says each Hk is false. If π = P (0) = 1 − P (1)
represents the researcher’s prior degree of belief that all hypotheses are true,
then her posterior probability in H1 if she learns only that the first test is
negative equals the following:

P (H1|X1 = 0) =
π · (1− α)

π · (1− α) + (1− π) · β
. (4)

6For instance, one might represent belief using orderings [Mayo-Wilson and Saraf,
2022], ranking functions [Spohn, 2012], Dempster-Shafer functions [Dempster, 1968], etc.
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In contrast, if she learns two tests are negative, her posterior is:

P (H1|X1 = 0, X2 = 0) =
π · (1− α)2

π · (1− α)2 + (1− π) · β2
(5)

Finally, if she learns the second test is positive, her posterior will be:

P (H1|X1 = 0, X2 = 1) =
π · (1− α) · α

π · (1− α) · α+ (1− π) · β · (1− β)
(6)

If 0 < π < 1, then Equation 4 equals both Equation 5 and Equation 6 if
and only if α = (1 − β). If α ̸= (1 − β), therefore, the Bayesian researcher
adjusts for multiplicity in the strong sense defined in Equation 3.7

□

Example 1 illustrates the commonsense idea that when one believes two
hypotheses stand or fall together, evidence for/against one hypothesis is
evidence for/against the other. Thus, a Bayesian researcher will adjust for
multiplicity. Similarly, if the researcher believes evidence for one hypothesis
is evidence against another, she will adjust for multiplicity, as can be shown
by analogous calculations.

In short, if a researcher believes several hypotheses are dependent, she
will typically adjust her beliefs for multiplicity. Conversely, if the researcher
regards the hypotheses as mutually independent then she will not adjust for
multiplicity; in that case, it is easy to check that P (H1|X1) = P (H1|X1, . . . XN )
(again, assuming Equation 1 holds).8

On one hand, these results about the relationship between adjustment
and dependence in the toy Bayesian model above are not surprising. They
illustrate the intuition that a researcher who wants to know what to believe
about the effects of cigar smoking (i) will typically adjust her belief if she
acquires data about the effects of cigarette smoking but (ii) will not adjust
her beliefs if she acquires data about implicit bias.

On the other hand, the results begin to answer the central question. In
particular, they answer the objection that there is no principled way to de-
termine when to adjust [Perneger, 1998]. This objection is typically leveled

7Technically, our definition of adjustment compares the case in which the researcher
learns X1 to the case in which she learns the value of all N variables. The above equations
show the researcher adjust when there are precisely N = 2 hypotheses under investigation,
but similar calculations show adjustment is necessary when N > 2 as well.

8See [Berry and Hochberg, 1999, p. 218] for the calculation and discussion of the
conditions under mutual independence of the hypotheses is reasonable. The hypotheses
are mutually independent with respect to P if P (

⋂
i∈I θi = ri) = Πi∈IP (θi = ri) for all

I ⊆ {1, . . . , N} and all binary vectors (ri)i∈I .
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against classical methods – like Bonferroni’s or Benjamini-Hochberg’s – that
recommend adjusting significance thresholds downward as the number of hy-
potheses increases. Yet the objection applies equally to a simple objective
Bayesian method that I discuss below; the method adjusts for multiplicity
by uniformly decreasing the prior probabilities assigned to hypotheses as the
number of hypotheses grow.

According to critics, the justification of such methods implies that one
should adjust/“correct” for any chosen set of hypotheses. But that’s absurd
because one would be required to adjust for every statistical hypothesis that
has ever been formulated. This motivates thinking the answer to the central
question is “One should never adjust for multiplicity, and intuitions to the
contrary are misleading.”

The toy results above show how simple Bayesian thinking can partially
answer the objection. Prior evidence or background theory may tell us that
certain hypotheses are dependent, and in such cases, belief adjustment will
almost certainly be necessary. Further research should investigate whether
the most common classical adjustment methods (see subsection 3.2) can ever
be interpreted as reflecting belief adjustment.

One might object that the above definition of adjusting “belief” is too
simple to model some common statistical practices. The problem is that the
same probability measure P appears on both sides of Equation 3. So the
definition is inapplicable for assessing whether “objective” Bayesian methods
require adjustment.

Recall, objective Bayesians maintain that the prior probability that one
assigns to hypothesis H may vary with the hypothesis space in which H
is embedded. For example, consider an attempt to identify which genes
are associated with which heritable diseases. For each gene and disease
under investigation, researchers may investigate a hypothesis Hg,d of the
form “Gene g is associated with the disease d.” In an objective Bayesian
analysis, each hypothesis Hg,d will typically receive lower prior probability
if there are 20, 000 genes under investigation than it would receive if there
were 10, 000 genes under consideration.

I will not compare the merits of objective versus subjective Bayesian
analysis.9 But simple objective Bayesian adjustment methods deserve fur-
ther scrutiny. Imagine our hypothetical pharmaceutical researcher wonders
about the effect of El Niño on the stock market. The mere contemplation of
a new hypothesis should not automatically cause the researcher to become
less confident in the efficacy of new cancer treatment.

9See [Goldstein, 2006] and [Berger, 2006] for opposing views.
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Yet considering additional – logically independent — hypotheses can
affect an objective Bayesian’s prior probabilities if those probabilities are
chosen in a mechanical fashion as a function of the number of hypotheses.

Objective Bayesians might respond that a prior distribution need not
represent anyone’s beliefs.10 Rather, a prior should be treated as part of
a decision rule. I agree, and I consider decision-making below. For now,
note that it is similarly implausible that a pharmaceutical researcher should
adjust her decisions about the efficacy of the cancer treatment after con-
templating of El Niño. Saying the researcher’s prior need not represent her
beliefs does not explain why adjustment is not necessary.

3 Decision

Scientists are rarely satisfied with an answer to the question, “What should
I believe?” They also want to know, “What should I do?” For instance, an
experimentalist might want to know which experiment she should conduct
next.

Imagine that, for each hypothesis Hk, there is some set of acts Ak that
the researcher might take. For instance, a researcher might announce that
the hypothesis Hk has been rejected or that it’s been retained. She might
collect more data about Hk or cease an experiment. And so on.

I call elements of Ak component acts, and I define a strategy to be a set
S of component acts such that, for all k, either S ∩ Ak is a singleton or
empty. That is, at most one act can be taken with respect to a hypothe-
sis. A decision rule d maps subsets of (values of) the observable variables
X1, . . . XN to strategies. I require that d(Xk1 = xk1 , . . . , Xkm = xkm) con-
tains precisely one element from each of the sets Akm . That requirement
says that a decision rule specifies actions only with respect hypotheses for
which the researcher has collected data, and that if researcher observes Xk,
then she must take some action in Ak.

I say that a decision rule d adjusts for multiplicity if there is some x1
such that

d(x1) ̸∈ d(x1, . . . xN ) (7)

for all values x2, . . . xN of X2, . . . XN .
Do any plausible decision rules require adjusting? Again, yes. For a

Bayesian, reporting one’s posterior probabilities is a decision. So belief ad-

10See [Gelman and Shalizi, 2013] for alternative interpretations of prior probabilities
used in Bayesian analyses.
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justment is a special case of decision-adjustment. A better question is, “can
there be decision-adjustment without belief adjustment, and what goals, if
any, does decision-adjustment achieve?”

Before discussing the standard approach for evaluating testing proce-
dures (in terms of the family-wise error rate or false discovery rate), I begin
with the most näıve, decision-theoretic approach for answering these ques-
tions. The näıve approach is worth sketching because (1) it is, I think,
the correct approach when it can be employed,11 and (2) it helps one iden-
tify the oddness of the goals that are presumed in standard discussions of
adjustment.

3.1 A Näıve Approach

Suppose a researcher assigns a utility u(S, θ) to each strategy S and vector
θ ∈ Θ specifying which of the N hypotheses are true. If we fix a vector
θ ∈ Θ, then the researcher’s expected utility (with respect to Pθ) can be
defined straightforwardly, whether she decides to observe one variable or all
N variables:12

E1
θ[d] =

∑
x1∈X1

Pθ(X1 = x1) · u(d(x1), θ)

EN
θ [d] =

∑
x⃗∈X

Pθ(X⃗ = x⃗) · u(d(x⃗), θ)

Here, X1 is the range of X1 and X is the range of the random vector
X⃗ = (X1, . . . , XN ). One can now apply standard decision-theoretic terms
to identify different senses in which a decision rule is good or bad.

For instance, a researcher might desire a maximin decision rule, i.e., a
rule d such that minθ∈θ Ej

θ[d] ≥ minθ∈θ Ej
θ[e] for all decision rules e, where

j = 1 or j = N . Alternatively, she might be a Bayesian, i.e., she might al-
ways select a (subjective) expected utility maximizing strategy with respect
to her posterior. Recall, the subjective expected utility of a strategy S with
respect to a measure P is given by:

EP [S] :=
∑
θ∈Θ

P (θ) · u(S, θ) (8)

11See [Muller et al., 2006] for a defense of this decision-theoretic approach.
12For simplicity, I assume all of the sets in this paper are finite, including Θ, the ranges

of the random variables X1, . . . Xn, and the range of all decision rules. Under appropriate
measure-theoretic assumptions, the sums in the paper can be replaced with integrals if
one is interested in extending these ideas to continuous spaces.
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Thus, there is a Bayesian who will adjust for multiplicity if there is a
probability measure P , utility function u, and experimental outcomes x⃗ =
(x1, . . . , xN ) ∈ X such that three conditions hold:

1. P (X⃗ = x⃗) > 0,

2. a1 maximizes EP (·|X1=x1)[a] over all a ∈ A1, and

3. a1 ̸∈ S for some S that maximizes EP (·|X⃗=x⃗)[T ], where T ranges over
strategies containing a component act in every Ak.

We can now make the central question more precise in a second way.
For which utility functions do standard non-probabilistic decision rules like
maximin adjust for multiplicity in the sense of Equation 7? Similarly, for
which priors and utility functions does an expected utility maximizer adjust
for multiplicity?

For simplicity, assume that a decision-maker’s utilities are separable
across component acts in the following sense.13 Assume that, for each hy-
pothesis Hk, there is a “component” utility function uk : Ak × {0, 1} → R
that specifies the utilities u(a, 0) and u(a, 1) of taking action a ∈ Ak when
Hk is true and false respectively. Further, suppose that the utility of a
strategy u(S, θ) in state θ is the sum of the utilities of component acts, i.e.,

u(S, θ) =
∑
k≤N

∑
a∈S∩Ak

uk(a, θk) (9)

Utilities are separable when (a) the decision-maker can take component
acts in parallel and (b) payoffs for taking different component acts do not
interact. Such assumptions are most plausible when two conditions are
met. First, acts are cheap or the decision-maker has plentiful resources
(and so pursuing multiple projects in parallel is not prohibitively costly).
Second, the hypotheses concern unrelated phenomena (so that the impor-
tant theoretical consequences of a conjunction of hypotheses is the union
of the theoretical consequences of the conjuncts). If the decision-maker is
a grant-making institution like the NSF or NIH, then utilities associated
with projects in different scientific fields are plausibly separable. The size
of the institution makes funding projects in parallel possible, and it is rare
to find results in two disparate scientific fields that, when taken together,
yield important insights that neither result yields by itself.

The next theorem suggests that, when utilities are separable, adjustment
is never obligatory, and it is sometimes impermissible.14

13See [Cohen and Sackrowitz, 2005] for a similar assumption.
14See online supplemental materials for a proof.
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Theorem 1. Suppose utilities are separable in the sense of Equation 9.
Then there are maximin rules that do not adjust for multiplicity. If in addi-
tion the hypotheses of Θ as mutually independent with respect to P , then one
can maximize (subjective) expected utility with respect to P without adjust-
ing. It follows that if the maximin rule is unique, then no decision rule that
adjusts is maximin. Similar remarks apply to expected utility maximization.

One might object that individual scientists will rarely have separable
utilities for the reasons identified above. Component acts are often costly:
pursuing one project typically comes at the expense of pursuing another.
And even if the component acts are cheap (e.g., making an announcement),
it is rare that scientists investigate hypotheses that are so unrelated that,
if the conjunction were true, no further important insights would follow.
Scientists are highly specialized, and thus, they typically study hypotheses
that are related.

However, I have not identified necessary conditions for separability; util-
ity functions might be (approximately) separable for other reasons. More
importantly, Theorem 1 yields sufficient conditions for non-adjustment, not
necessary ones. So a suspicion that Theorem 1 is rarely applicable does not
justify decision adjustment for individual researchers. The theorem shifts
the burden to providing a positive argument for adjustment.

The reader might speculate that, given the extensive research on multi-
plicity, statisticians have (i) identified utility functions that plausibly repre-
sent the interests of scientists and (ii) shown that common adjustment pro-
cedures are uniquely maximin, or expected utility maximizing with respect
to those utility functions. Unfortunately, that’s not the case. Some clas-
sical procedures for multiple testing are, in fact, inadmissible (i.e., weakly
dominated) for plausible utility/loss functions.15 Thus, the criteria used to
justify standard classical testing procedures is more complex than it might
initially seem; I turn to those criteria now.

3.2 Family-Wise Error Rates and False Discovery Rates

Classical approaches to multiple testing typically aim to control either the
family-wise error rate (fwer) – which is the probability that a series of
tests yields at least one false positive – or the false discovery rate (fdr) –
which is the expected proportion of rejected null hypotheses that are true.

Statisticians routinely say that the fwer is rarely of interest. I agree.
The fwer is almost always maximized when all null hypotheses are false.

15Again, see [Cohen and Sackrowitz, 2005].
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But in many applications, researchers know that at least one null hypothesis
is false. Consider again genome-wide association studies that investigate the
associations between thousands of genes and multiple heritable diseases. If
at least one disease is known to be heritable and genes are the mechanism
for inheritance, then there must be at least one gene that is associated with
at least one disease!

Thus, some researchers now insist that multiple testing regimes should
control the fdr. If the fdr is identical to one’s loss function, are existing
regimes maximin? Do they ever minimize subjective expected loss? The
answer to both questions is clearly “no.” One minimizes the fdr (or fwer)
by retaining all null hypotheses. Thus, as is standard in classical hypothesis
testing, existing multiple-testing procedures typically (i) fix a threshold for
fdr and (ii) attempt to maximize power (i.e., the probability of a false
negative) subject to the constraint that the fdr is below the threshold.
Assuming utility is identified with (some kind of) power, statisticians have
identified testing regimes that are maximin among the set of procedures that
maintain fdr and/or fwer below a threshold.16

I will not rehearse standard objections to maximin reasoning,17 nor to the
bizarre two-step procedure in which one first culls testing procedures using
fdr and then applies maximin. Instead, I emphasize that the decision
criteria just described (1) treat all null hypotheses equally, (2) treat null
hypotheses differently from alternatives, and (3) ignore effect sizes. However,
there are virtually no circumstances in which such equal treatment and
dismissal of effect size reflects either scientific or public interest.

Consider a recent influential genome-wide study in which researchers
tested roughly 14,000 genes for associations with seven common diseases,
which included bipolar disorder and Crohn’s disease [Consortium, 2007].
Although the authors of the study reported adjusted p-values, they also
laudably applied many statistical techniques, incorporated background ge-
netic knowledge, and avoided making policy recommendations based solely
on adjusted p-values. Why did they not simply apply a testing procedure
with good power subject to control of fdr?

All seven diseases they considered are serious, but the incidence varies
widely, as does the cost and efficacy of available treatments. From a public
health perspective, therefore, it would be inappropriate to treat every hy-

16Just as there are multiple notions of “Type I error” when many hypotheses are tested
(e.g., fwer or fdr), so there are multiple notions of “power” that might be invoked, such
as the probability of at least one false negative, the “average” power, and more. For a
discussion and proof of optimality of certain classical procedures, see [Rosset et al., 2022].

17See [Savage, 1954, Chapters 9-10], for example.
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pothesis of the form “Gene g is associated with disease d” equally and to
ignore the strength of such associations.

One might object that the severity of the diseases does not affect the
evidence for the various hypotheses. Does adjustment somehow reflect one’s
evidence?

Answering that question is beyond the scope of this paper; I lack the
space to explore the relationship among evidence, belief, and decision.18

But I am skeptical of both (a) the importance of the question and (b) an
answer that involves classical procedures that control fdr or fwer.

Concerning (a), philosophers and scientists alike should be wary of direc-
tives to ignore the suffering caused by diseases and instead coldly evaluate
only the evidence for empirical hypotheses. I admit that a subjective ex-
pected utility analysis of genome wide studies seems daunting. I have no idea
how to define a prior over a roughly 100,000 (i.e., approximately 7 · 14, 000)
dimensional parameter space that incorporates expert knowledge. Nor do I
have any idea how to define a utility function that balances considerations
of the severity and incidence of different diseases. But I stress that mechan-
ical use of multiple testing procedures amounts to a refusal to engage with
questions of ethical importance, not an answer.

Concerning (b), like many classical procedures, decision criteria that
first cull tests by fwer or fdr treat null hypotheses differently from
the alternatives. But if evidential strength is divorced from pragmatic and
ethical considerations, it is hard to see how the asymmetric treatment of
null and alternative hypotheses could reflect anything evidential: what could
distinguish a hypothesis H from its negation ¬H, evidentially speaking?

4 Conclusions

The goals of scientists and of the public may be misaligned with the decision
criteria used to evaluate multiple testing regimes. Thus, I urge two broad
projects for future research.

First, in scientific contexts in which large numbers of statistical hypothe-
ses can be tested, scientists and philosophers must study the interests of the
affected parties. The differential funding provided for medical research – in
comparison to academic philosophy, for instance – is typically justified by its
social importance. Scientists should make good on that promise to advance
collective interests.19

18[Royall, 1997] clearly distinguishes questions about belief, decision, and evidence.
19See also [Longino, 1990], [Kitcher, 2003], and [Douglas, 2009].
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Second, statisticians must prove existing testing procedures advance the
interests of affected parties, or they must develop alternative procedures
altogether. Otherwise, we all stand to be bamboozled by Bonferroni.
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Online Appendix to Bamboozled by Bonferroni

Conor Mayo-Wilson

In this document, we prove Theorem 1 in the body of the paper. To
ensure this online appendix is self-contained, some definitions appearing in
the body of the paper are copied below.

1 Basic Model

Suppose N hypotheses are under investigation, and let Θ = {0, 1}N be the
set of all binary strings of length N . A vector θ ∈ Θ specifies which of the
N hypotheses are true. For each k ≤ N , let Hk = {θ ∈ Θ : θk = 0} be
the set of vectors that say the kth hypothesis is true. For each k ≤ N , let
Xk be a random variable representing an experiment. For each θ ∈ Θ, let
Pθ(X1, . . . , XN ) denote the probability measure that specifies the chances
of various experimental outcomes.

We assume that, for all θ ∈ Θ, the N experiments are mutually inde-
pendent with respect to Pθ. In symbols, let X⃗ = ⟨Xi1 , Xi2 , . . . , Xik⟩ be a
random vector, representing some subset of the N experiments. Then:

Pθ(X⃗ = x⃗) =
∏
j≤k

Pθ(Xij = xij ) (1)

for all x⃗ = (xi1 , . . . xik). Further, suppose that the truth or falsity of the Hk

determines the probabilities of the possible outcomes of the kth experiment,
i.e., for all k ≤ N and all r ∈ {0, 1}, there is a probability distribution Pk,r

such that Pθ(Xk = xk) = Pk,θk(Xk = xk). Together with the assumption of
mutual independence, this entails that:

Pθ(X⃗ = x⃗) =
∏
j≤k

Pij ,θij
(Xij = xij ) for all θ ∈ Θ. (2)

1.1 Decision Adjustment

For each k ≤ n, let Ak denote a set of component acts, and define a strategy
to be a set S of component acts such that, for all k, either S ∩ Ak is a

1
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singleton or empty. That is, at most one act can be taken with respect to a
hypothesis Hk. A decision rule d maps subsets of (values of) the observable
variables X1, . . . XN to strategies. I require that d(Xk1 = xk1 , . . . , Xkm =
xkm) contains precisely one element from each of the sets Akm .

A decision rule d adjusts for multiplicity if there is some x1 such that

d(x1) ̸∈ d(x1, . . . xN ) (3)

for all values x2, . . . xN of X2, . . . XN .

1.2 Maximin and Bayes Rules

Suppose a researcher assigns a utility u(S, θ) to each strategy S and vector
θ ∈ Θ specifying which of the N hypotheses are true. If we fix a vector
θ ∈ Θ, then the researcher’s expected utility (with respect to Pθ) can be
defined straightforwardly, whether she decides to observe one variable or all
N variables:1

E1
θ[d] =

∑
x1∈X1

Pθ(X1 = x1) · u(d(x1), θ)

EN
θ [d] =

∑
x⃗∈X

Pθ(X⃗ = x⃗) · u(d(x⃗), θ)

Here, X1 is the range of X1 and X is the range of the random vector X⃗ =
(X1, . . . , XN ).

A decision rule d is called maximin if minθ∈θ Ej
θ[d] ≥ minθ∈θ Ej

θ[e] for all
decision rules e, where j = 1 or j = N .

Recall, the subjective expected utility of a strategy S with respect to a
measure P is given by:

EP [S] :=
∑
θ∈Θ

P (θ) · u(S, θ) (4)

Thus, there is a Bayesian who will adjust for multiplicity if there is a
probability measure P , utility function u, and experimental outcomes x⃗ =
(x1, . . . , xN ) ∈ X such that three conditions hold:

1. P (X⃗ = x⃗) > 0,

1For simplicity, I assume all of the sets in this paper are finite, including Θ, the ranges
of the random variables X1, . . . Xn, and the range of all decision rules. Under appropriate
measure-theoretic assumptions, the sums in the paper can be replaced with integrals if
one is interested in extending these ideas to continuous spaces.
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2. a1 maximizes EP (·|X1=x1)[a] over all a ∈ A1, and

3. a1 ̸∈ S for some S that maximizes EP (·|X⃗=x⃗)[T ], where T ranges over
strategies containing a component act in every Ak.

For simplicity, assume that a decision-maker’s utilities are separable
across component acts in the following sense. Assume that, for each hy-
pothesis Hk, there is a “component” utility function uk : Ak × {0, 1} → R
that specifies the utilities u(a, 0) and u(a, 1) of taking action a ∈ Ak when
Hk is true and false respectively. Further, suppose that the utility of a
strategy u(S, θ) in state θ is the sum of the utilities of component acts, i.e.,

u(S, θ) =
∑
k≤N

∑
a∈S∩Ak

uk(a, θk) (5)

2 Theorem and Proof

Theorem 1. Suppose utilities are separable in the sense of Equation 5.
Then there are maximin rules that do not adjust for multiplicity. If in addi-
tion the hypotheses of Θ as mutually independent with respect to P , then one
can maximize (subjective) expected utility with respect to P without adjust-
ing. It follows that if the maximin rule is unique, then no decision rule that
adjusts is maximin. Similar remarks apply to expected utility maximization.

Before proving the theorem, we introduce some notation. Given any
decision rule d and k ≤ N , we define a function dk : X → Ak by dk(y⃗) :=
Ak ∩ d(y⃗). In other words, dk picks out the kth component act from each
strategy recommended by d.

EN
θ [d] =

∑
y⃗∈X

Pθ(y⃗) · u(d(y⃗), θ)

= (Pθ(x⃗) · u(d(x⃗), θ)) +

∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(d(y⃗), θ)


=

 ∑
1≤k≤N

Pθ(x⃗) · uk(dk(x⃗), θ)

+

∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(d(y⃗), θ)


by separability

= (Pθ(x⃗) · u1(d1(x⃗), θ)) +

 ∑
1<k≤N

Pθ(x⃗) · uk(dk(x⃗), θ)

+

∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(d(y⃗), θ)


3

https://doi.org/10.1017/psa.2024.13 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2024.13


Call the first, second, and third summands in the previous equation T1(θ, x⃗, d),
T2(θ, x⃗, d), and T3(θ, x⃗, d) respectively.

Proof of Theorem 1: The outline of the proof is identical for both maximin
and subjective expected utility (SEU) maximization. We first pick any deci-
sion rule d that is maximin (or maximizes SEU). Such a rule exists because
we have assumed all the relevant sets to be finite. If d does not adjust for
multiplicity, we’re done. Otherwise, there is some vector x⃗ = (x1, . . . xN )
such that d(x1) ̸∈ d(x⃗). Define a new decision rule – call it e – such that
e is alike d in all respects except the following. Let a1 ∈ A1 be such
that d(x1) = {a1}, and let b1 be the unique element of A1 ∩ d(x⃗). De-
fine e(x⃗) = (d(x⃗) \ b1) ∪ {a1}. And as we said, define e(y⃗) = d(y⃗) for all
y⃗ ̸= x⃗ (regardless of length). We claim that e is also maximin (or maximizes
SEU). By repeating this process some finite number of times, we’ll obtain a
decision rule that is maximin (or maximizes SEU) and that does not adjust
for multiplicity.

First, we consider the case in which d is maximin. Because d itself is
maximin, to show that e is maximin, it suffices to show that:

min
θ∈Θ

E1
θ[e] ≥ min

θ∈Θ
E1
θ[d] and (6)

min
θ∈Θ

EN
θ [e] ≥ min

θ∈Θ
EN
θ [d] (7)

The first equation follows immediately from the definition of e since e(x) =
d(x) for all x ∈ X1, i.e., the values of e and d do not differ on vectors of
length 1. So we need to show only that minθ∈Θ EN

θ [e] ≥ minθ∈Θ EN
θ [d].

Using the decomposition described above, we first show that T2(θ, x⃗, d) =
T2(θ, x⃗, e) and that T3(θ, x⃗, d) = T3(θ, x⃗, e) for all θ and x⃗.

To show T2(θ, x⃗, d) = T2(θ, x⃗, e) for all θ, let θ be arbitrary. Notice first
that, by the definition of e, we know that dk(y⃗) = ek(y⃗) for all k > 1 and
for all y⃗ (including x⃗). It follows that for all θ and all y⃗:∑

1<k≤N

Pθ(y⃗) · uk(dk(y⃗), θ) =
∑

1<k≤N

Pθ(y⃗) · uk(ek(y⃗), θ) (8)

which is exactly what T2(θ, x⃗, d) = T2(θ, x⃗, e) asserts.
To show T3(θ, x⃗, d) = T3(θ, x⃗, e), again note that by definition of e, we

know that d1(y⃗) = e1(y⃗) for all y⃗ ̸= x⃗. It follows that:

Pθ(y⃗) · u(d1(y⃗), θ) = Pθ(y⃗) · u(e1(y⃗), θ) for all θ and all y⃗ ̸= x⃗. (9)
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Equation 9 and Equation 8 together entail∑
1≤k≤n

Pθ(y⃗) · uk(dk(y⃗), θ) =
∑

1≤k≤n

Pθ(y⃗) · uk(ek(y⃗), θ) for all θ and y⃗ ̸= x⃗

(10)
Because u is separable, Equation 10 implies that for all y⃗ ̸= x⃗

Pθ(y⃗) · u(d(y⃗), θ) = Pθ(y⃗) · u(e(y⃗), θ) for all θ and y⃗ ̸= x⃗ (11)

And that immediately entails:∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(d(y⃗), θ) =
∑
y⃗ ̸=x⃗

Pθ(y⃗) · u(e(y⃗), θ) for all θ and y⃗ ̸= x⃗ (12)

Notice the previous equation asserts T3(θ, x⃗, d) = T3(θ, x⃗, e), as desired.
So to show that e is maximin, it therefore suffices to show that minθ∈Θ T1(θ, x⃗, e) ≥

minθ∈Θ T1(θ, x⃗, d), where recall:

T1(θ, x⃗, e) = Pθ(x⃗) · u1(e1(x⃗), θ)

and similarly for T1(θ, x⃗, d).
For the sake of contradiction, suppose that

min
θ∈Θ

Pθ(x⃗) · u1(e1(x⃗), θ) < min
θ∈Θ

Pθ(x⃗) · u1(d1(x⃗), θ) (13)

Because the likelihood function factors (by Equation 1), it follows that

min
θ∈Θ

Pθ(x1) ·
∏
k≥2

Pθ(xk)

·u1(e1(x⃗), θ) < min
θ∈Θ

Pθ(x1) ·
∏
k≥2

Pθ(xk)

·u1(d1(x⃗), θ)

That inequality cannot be strict unless
∏

k≥2 Pθ(xk) > 0 for at least one θ.
It follows that:

min
θ∈Θ

Pθ(x1) · u1(e1(x⃗), θ) < min
θ∈Θ

Pθ(x1) · u1(d1(x⃗), θ)

Recall, d1(x⃗) = {b1}, and so the last equation becomes:

min
θ∈Θ

Pθ(x1) · u1(e1(x⃗), θ) < min
θ∈Θ

Pθ(x1) · u1(b1, θ)

By separability, the previous equation entails:

min
θ∈Θ

Pθ(x1) · u(e(x1), θ) < min
θ∈Θ

Pθ(x1) · u({b1}, θ)

5
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And since e(x1) = d(x1), we obtain that:

min
θ∈Θ

Pθ(x1) · u(d(x1), θ) < min
θ∈Θ

Pθ(x1) · u({b1}, θ)

Now if we add
∑

y∈X1\{x1} Pθ(y) · u(d(y), θ) under the minimum on both
sides of the equation, we get:

min
θ∈Θ

 ∑
y∈X1\{x1}

Pθ(y) · u(d(y), θ)

+ Pθ(x1) · u(d(x1), θ) <

min
θ∈Θ

 ∑
y∈X1\{x1}

Pθ(y) · u(d(y), θ)

+ Pθ(x1) · u({b1}, θ)

The left-hand side of that inequality is minθ∈Θ E1
θ[d]. And if we let f be the

decision rule that is exactly alike d except f(x1) = {b1}, then the right-hand
side is minθ∈Θ E1

θ[f ]. So we’ve shown:

min
θ∈Θ

E1
θ[d] < min

θ ∈Θ
E1
θ[f ]

which contradicts the assumption that d is maximin. That finishes the proof
of the claim about maximin.

Next we prove the claim about expected utility maximization. Suppose
that (I) d adjusts for multiplicity maximizes SEU with respect to the prob-
ability measure P and (II) that the hypotheses (i.e., members of Θ) are
mutually independent with respect to P . To say that d maximizes SEU
with respect to P means that

1. EP (·|X1=y)[d(y)] ≥ EP (·|X1=y)[a1] for all a1 ∈ A1 and all y ∈ X1, and

2. EP (·|X⃗=y⃗)[d(y⃗)] ≥ EP (·|X⃗=y⃗)[S] for all for all strategies S ⊂
⋃

k≤N Ak

and all y⃗ ∈ X .

As above, let x⃗ be the vector witnessing the fact that d adjusts for
multiplicity, and define a decision rule e as in the first half of the proof.

Because e(y) = d(y) for all y ∈ X1, it follows immediately that e(y)
maximizes SEU with respect to P (·|X1 = y) for all y ∈ X1 (because d(y) is
a maximizer!).

So it remains to be shown that e(y⃗) maximizes SEU with respect to
P (·|X⃗ = y⃗) for all y⃗ ∈ X . Because e(y⃗) = d(y⃗) for all y⃗ ̸= x⃗ and because d
is an SEU maximizer, it suffices to show that

EP (·|X⃗]=x⃗)[e(x⃗)] ≥ EP (·|X⃗=x⃗)[d(x⃗)]

6
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To show that, notice we can decompose EP (·|X⃗=x⃗)[e(x⃗)] as follows:

EP (·|X⃗=x⃗)[e(x⃗)] =
∑
θ∈Θ

P (θ|X⃗ = x⃗) · u(e(x⃗), θ)

=
∑
θ∈Θ

∑
k≤N

P (θ|X⃗ = x⃗) · uk(ek(x⃗), θk) by separability

=
∑
θ∈Θ

P (θ|X⃗ = x⃗) · u1(e1(x⃗), θ1) +
∑
θ∈Θ

∑
1<k≤N

P (θ|X⃗ = x⃗) · uk(ek(x⃗), θk)

Now notice that because ek(y⃗) = dk(y⃗) for all k > 1, the second summand
above – that is, the double sum – is equal to the same term in which dk is
substituted for ek. So it suffices to show that∑

θ∈Θ
P (θ|X⃗ = x⃗) · u1(e1(x⃗), θ1) ≥

∑
θ∈Θ

P (θ|X⃗ = x⃗) · u1(d1(x⃗), θ1) (14)

By Bayes rule and our assumptions about mutual independence of the hy-
potheses (and of the random variables), we have that for all θ:

P (θ|X⃗ = x⃗) =
Pθ(X⃗ = x⃗) · P (θ)

P (X⃗ = x⃗)

=

∏
k≤N Pθk(Xk = xk) · P (θk)

P (X⃗ = x⃗)

=

∏
k≤N P (Xk = xk|θk) · P (θk)

P (X⃗ = x⃗)

=

∏
k≤N P (θk|Xk = xk) · P (Xk = xk)

P (X⃗ = x⃗)

=

∏
k≤N P (θk|Xk = xk) ·

∏
k≤N P (Xk = xk)

P (X⃗ = x⃗)

=

∏
k≤N P (Xk = xk)

P (X⃗ = x⃗)
·
∏
k≤N

P (θk|Xk = xk)

It follows that Equation 14 holds if and only if:∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk)·u1(e1(x⃗), θ1) ≥
∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk)·u1(d1(x⃗), θ1)

(15)
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Recall that e1(x⃗) = d(x1) by construction, and so the last inequality holds
if and only if∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk) · u(d(x1), θ1) ≥
∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk) · u1(b1, θ1)

(16)
Now rewrite the term on the left-hand-side of Equation 16. To do so, perform
the outside sum in two steps, by first summing over values of θ1 and then
by summing over the values of θ2, . . . , θN . In other words, observe that we
can rewrite the left-hand-side of the equation as follows:∑
θ∈Θ

∏
k≤N

P (θk|Xk = xk) · u1(d(x1), θ1)

=
∑
θ1

∑
θ2,...θN

∏
k≤N

P (θk|Xk = xk) · u1(d(x1), θ1)

=
∑
θ1

∑
θ2,...θN

(P (θ1|X1 = x1) · u1(d(x1), θ1)) ·

 ∏
1<k≤N

P (θk|Xk = xk)


=

∑
θ2,...θN

∑
θ1

(P (θ1|X1 = x1) · u1(d(x1), θ1)) ·

 ∏
1<k≤N

P (θk|Xk = xk)


by reordering the sums

=
∑

θ2,...θN

 ∏
1<k≤N

P (θk|Xk = xk) ·

∑
θ1

P (θ1|X1 = x1) · u1(d(x1), θ1)


=

∑
θ2,...θN

 ∏
1<k≤N

P (θk|Xk = xk) ·

 ∑
υ∈Θ:υ1=θ1

P (υ|X1 = x1) · u(d(x1), υ)


as u(d(x1), θ1)) = u1(d(x1), υ) if υ1 = θ1 by separability

=
∑

θ2,...θN

∏
1<k≤N

P (θk|Xk = xk) · EP (·|X1=x1)[d(x1)]

= EP (·|X1=x1)[d(x1)] ·
∑

θ2,...θN

∏
1<k≤N

P (θk|Xk = xk)
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