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The linear stability of the Stuart vortices, which is a model of arrays of vortices often
observed in the atmosphere and the oceans, in rotating stratified fluids is investigated
by local and modal stability analysis. As in the case of the two-dimensional (2-D)
Taylor–Green vortices, five types of instability appear in general: the pure-hyperbolic
instability, the strato-hyperbolic instability, the rotational-hyperbolic instability, the
centrifugal instability and the elliptic instability. The condition for each instability and the
estimate of the growth rate derived by Hattori & Hirota (J. Fluid Mech., vol. 967, 2023,
A32) are shown to also be useful for the Stuart vortices, which supports their applicability
to general flows. The properties of each instability depend on stratification and rotation in a
way similar to the case of the 2-D Taylor–Green vortices. For the Stuart vortices, however,
the centrifugal instability and the elliptic instability become more dominant than the three
hyperbolic instabilities in comparison to the 2-D Taylor–Green vortices; this is explained
by the larger ratios of the maximum vorticity and the strain rate at the elliptic stagnation
points to the strain rate at the hyperbolic stagnation points. Direct correspondence between
the modal and local stability results is further established by comparing unstable modes
to solutions to the local stability equations; this is useful for identifying the types of
modes since the mechanism of instability is readily known in the local stability analysis.
This helps us to discover the modes of the ring-type elliptic instability, which have been
predicted only theoretically.

Key words: vortex instability, rotating flows, stratified flows

1. Introduction

Systems of large-scale vortices such as a vortex pair and an array of vortices are often
observed in the atmosphere of the Earth and other planets, such as Jupiter and Saturn, and
in the oceans (Thorpe 2005). For example, an array of counter-rotating vortices resembling
a von Kármán vortex street is often observed in the wake of an isolated island (Etling 1989;
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Potylitsin & Peltier 1998). On Jupiter, anticyclones and cyclones formed a von Kármán
vortex street for about 50 years (Youssef & Marcus 2003). These arrays of vortices can be
generated by instabilities of a jet flow and a shear flow (the Kelvin–Helmholtz instability),
the baroclinic instability and other mechanisms. The instability of an array of vortices,
which is sometimes regarded as a secondary instability, is one of the most fundamental
properties that are indispensable for understanding its dynamics and fate. The effect of
rotation and stratification on the instability is of great interest because, for example, it can
lead to preference in the sense of rotation of the vortices; in fact, the von Kármán vortex
street in the wake of an isolated island sometimes becomes asymmetric, with anticyclonic
vortices being nearly destroyed (Potylitsin & Peltier 1998; Stegner, Pichon & Beunier
2005).

There exist several types of instability in the vortices in rotating stratified fluids: the
elliptic instability (Miyazaki & Fukumoto 1992; Miyazaki 1993; Leblanc & Cambon 1998;
Leweke & Williamson 1998; Miyazaki & Adachi 1998; Leblanc 2000; Otheguy, Billant
& Chomaz 2006a; Le Dizès 2008; Aspden & Vanneste 2009; Guimbard et al. 2010),
the centrifugal instability (Rayleigh 1917; Kloosterziel & van Heijst 1991; Leblanc &
Cambon 1998; Potylitsin & Peltier 1998, 1999), the zigzag instability (Billant 2000; Billant
& Chomaz 2000a,b,c; Otheguy, Billant & Chomaz 2006b; Deloncle, Billant & Chomaz
2008; Waite & Smolarkiewicz 2008; Billant et al. 2010) and the radiative instability (Le
Dizès & Billant 2009), while the transient growth (Arratia, Caulfield & Chomaz 2013; Gau
& Hattori 2014) is also sometimes important. One of the important characteristics of the
arrays of vortices is that there exist hyperbolic points, which add the hyperbolic instability
to the above list of instabilities. The hyperbolic instability can be further classified into the
pure-hyperbolic instability (Friedlander & Vishik 1991; Lifschitz & Hameiri 1991; Sipp &
Jacquin 1998; Pralits, Giannetti & Brandt 2013), the strato-hyperbolic instability (Suzuki,
Hirota & Hattori 2018; Hattori et al. 2021) and the rotational-hyperbolic instability (Sipp,
Lauga & Jacquin 1999; Godeferd, Cambon & Leblanc 2001; Hattori & Hirota 2023).

The stability of arrays of vortices has been investigated by several authors. Leblanc
& Cambon (1998) investigated the linear stability of the Stuart vortices in rotating
non-stratified fluids by numerical analysis; the centrifugal, elliptic and pure-hyperbolic
instabilities were found. Leblanc & Godeferd (1999) showed the structures of a mode of the
pure-hyperbolic instability in the two-dimensional (2-D) Taylor–Green vortices by direct
numerical simulation. Potylitsin & Peltier (1998) investigated the stability of periodic
vortices in rotating stratified fluids by numerical analysis; the base flow is a quasi-steady
state obtained by relaxation at low Reynolds numbers. According to them, anticyclonic
vortices are strongly destabilized by weak rotation, but stabilized by strong rotation; they
also claimed that strong stratification stabilizes the vortices. These results were obtained
from numerical simulations with limited resolution at low Reynolds numbers. Potylitsin &
Peltier (1999) investigated the stability of the Stuart vortices in rotating non-stratified fluids
by numerical analysis. Three types of instability were found: the elliptic, the centrifugal
and the (pure) hyperbolic instabilities.

In our previous work (Hattori et al. 2021), the linear stability of a periodic array of
vortices in non-rotating stratified fluids has been investigated in detail; the effects of
rotation were studied in Hattori & Hirota (2023), while the base flow was fixed to the 2-D
Taylor–Green vortices. The latter work revealed several important aspects of the stability
of a periodic array of vortices in rotating stratified fluids. Five types of instability have
been shown to appear in general: the pure-hyperbolic instability, the strato-hyperbolic
instability, the rotational-hyperbolic instability, the centrifugal instability and the elliptic
instability. The condition for each instability and the estimate of the growth rate were
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obtained in the framework of local stability analysis and proved useful in predicting which
instability is dominant for a given set of parameters. However, our understanding is still
incomplete because the above results were limited to a particular base flow. Further studies
are needed to explore how the stability properties depend on multiple key parameters: the
rotation rate of the system, the strength of stratification and the vorticity distribution, which
is partially characterized by the strain rates at the stagnation points and the maximum
vorticity.

In this paper, we study the linear stability of the Stuart vortices in rotating stratified
fluids. We clarify how the growth rate and other characteristics of the instability depend
on rotation, stratification and vorticity distribution. There are important reasons for
studying the stability of the Stuart vortices after our detailed stability analysis of the
2-D Taylor–Green vortices (Hattori & Hirota 2023). First, the Stuart vortices are often
regarded as a model of vortices that develop in a mixing layer as a result of the
Kelvin–Helmholtz instability; understanding the stability of the Stuart vortices should
be important because mixing layers are observed frequently in the atmosphere and the
oceans. Next, it is important to investigate how the opposite-signed vortices, which exist
in the 2-D Taylor–Green vortices but do not in the Stuart vortices, affect the stability
properties. Finally, the instability condition and the estimate of the growth rate derived for
each instability in Hattori & Hirota (2023) has been shown to be effective only for the 2-D
Taylor–Green vortices; they should be tested for a different base flow that has different
magnitudes of strain rates and vorticity, to show their applicability to general base flows.
Although there are several works on the stability of the Stuart vortices with or without
rotation (Pierrehumbert & Widnall 1982; Leblanc & Cambon 1998; Potylitsin & Peltier
1999; Godeferd et al. 2001), there is no work on the effects of stratification on the stability
of the Stuart vortices. The stability of Kelvin–Helmholtz billows in stratified fluids was
studied by Aravind, Dubos & Mathur (2022); in their work, however, the vorticity of the
base flow and the gravity force are orthogonal, while they are parallel in the present work.
We also show the existence of an unstable mode predicted only by theory (the ‘ring mode’
of the elliptic instability; Le Dizès 2008).

This paper is organized as follows. In § 2 the problem is formulated; concise expressions
for the instability conditions and the estimates of the growth rates, which have been
introduced in Hattori & Hirota (2023) in the framework of local stability analysis, are
also summarized briefly. The methods of the numerical stability analysis are explained
in § 3. The results of local and modal stability analysis are presented together with their
comparison in § 4. We conclude in § 5.

2. Problem formulation

2.1. Governing equations
We consider the linear stability of the Stuart vortices in stably stratified and rotating fluids.
The Stuart vortices are a one-dimensional array of periodic vortices with vorticity of the
same sign (figure 1). The streamfunction and the vorticity are

ψ = log
(

C cosh y +
√

C2 − 1 cos x
)
, (2.1)

ωb = ωb(x, y) ez, ωb(x, y) = − 1(
C cosh y + √

C2 − 1 cos x
)2 , (2.2a,b)
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Figure 1. Stuart vortices: (a) streamlines and (b) contours of vorticity distribution for C = 1.2; (c) comparison
of vorticity distribution on y = 0 between C = 1.2 (solid line), 1.6 (dotted line) and 2 (dashed line). In (a), the
red, green and blue lines show the closed streamlines, the separatrix and the open streamlines, respectively.

where C � 1 is a constant. In the previous works (Leblanc & Cambon 1998; Godeferd
et al. 2001), a different expression, ψ = log (cosh y + ρs cos x), is used instead of the
above streamfunction; the two are related by ρs = √

1 − C−2, with a constant that does
not affect the flow field. Two adjacent vortices are connected by a hyperbolic point.
The vorticity is parallel to the vertical direction, which coincides with the direction of
gravity force. The effects of density stratification are taken into account by the Boussinesq
approximation. Then the Stuart vortices are steady in the absence of diffusion (Hattori &
Hirota 2023).

Viscosity is taken into account in general, while diffusion of density is neglected since
its effects are negligible (Hattori et al. 2021). The base flow is assumed steady because
the growth of instabilities is much faster than the time evolution of the base flow due
to viscous diffusion in the high-Reynolds-number flows considered in this paper. The
velocity, pressure and density fields are decomposed as

u = ub + u′, (2.3)

p = pb + p′, (2.4)

ρ = ρ0 + αz + ρ′, (2.5)

where (ub, pb, ρb = ρ0 + αz) and (u′, p′, ρ′) = (u′
x, u′

y, u′
z, p′, ρ′) are the base flow and

the disturbance, the direction of the gravity force is taken as −ez, and the base density is
assumed to be ρb = ρ0 + αz, with α = ∂ρb/∂z < 0 being a constant. The magnitude of the
disturbance is infinitesimally small. Then the governing equations in non-dimensionalized
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form are

∇ · u′ = 0, (2.6)

∂u′

∂t
+ (u′ · ∇)ub + (ub · ∇)u′ − 1

Ro
ez × u′ = −∇p′ − ρ′ez + 1

Re
∇2u′, (2.7)

∂ρ′

∂t
+ (ub · ∇)ρ′ − 1

F2
h

u′
z = 0, (2.8)

where Ro = U0/(2Ω0L0) is the Rossby number, Re = U0L0/ν is the Reynolds number,
Fh = U0/(L0N) is the Froude number based on the horizontal scale, N = √−αg/ρ0 is
the Brunt–Väisälä frequency, g is the acceleration of gravity, ν is the kinematic viscosity,
Ω0 is the angular velocity, and U0 and L0 are a characteristic velocity and a length scale,
respectively. As in our previous works (Suzuki et al. 2018; Hattori et al. 2021), we set
L0 = 2π, which is the spatial period in the x direction, while U0 is set to the maximum
velocity 1. In the following, the values are scaled by U0 and L0 unless stated explicitly.
It is pointed out that the minus sign of the Coriolis force in (2.7) is introduced because
the vorticity distribution of the Stuart vortices in (2.2a,b) is negative; Ro > 0 and Ro < 0
correspond to the cyclonic and anticyclonic cases, respectively.

In the local stability analysis, the disturbance is assumed to be in the form of a wave
packet:

u′ = (
û0 + δû1 + · · · ) exp

(
i
δ
Φ

)
, (2.9)

p′ = (
p̂0 + δp̂1 + · · · ) exp

(
i
δ
Φ

)
, (2.10)

ρ′ = (
ρ̂0 + δρ̂1 + · · · ) exp

(
i
δ
Φ

)
, (2.11)

where δ is a small parameter, and Φ is eikonal, satisfying DΦ/Dt = 0 (where
D/Dt = ∂/∂t + ub · ∇). Viscosity is neglected in the local stability analysis. Substituting
the above expressions into (2.6)–(2.8) yields a set of ordinary differential equations at the
leading order:

dX
dt

= U(X ), (2.12)

dk
dt

= −LTk, (2.13)

da
dt

=
(

2k̂k̂
T − I

)
La +

(
k̂k̂

T − I
)

rez − 1
Ro

(
k̂k̂

T − I
)

ez × a, (2.14)

dr
dt

= 1
F2

h
az, (2.15)

where Lij = ∂Ui/∂xj and k̂ = k/|k| (Friedlander & Vishik 1991; Lifschitz & Hameiri
1991; Leblanc 1997). Here, X is the position of the fluid particle, and k = ∇Φ is
the local wavevector, while a = û0 and r = ρ̂0 are the amplitudes of the disturbance
corresponding to velocity and density, respectively. The incompressibility condition (2.6)
leads to a · k = 0, which is satisfied for t > 0 if it holds at t = 0. The base flow is unstable
if the amplitude {a, r} grows without bound.
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The number of variables in (2.14) and (2.15) can be reduced from four to three by
introducing

p = k
k⊥

k⊥ · a⊥=−kkz

k⊥
az, q =

(
k

k⊥
k⊥×a⊥

)
· ez, s = k

k⊥
r (2.16a–c)

as in Bayly, Holm & Lifschitz (1996), where k⊥ = (kx, ky)
T, a⊥ = (ax, ay)

T and

L =
(

L⊥ 0
0 0

)
, H = L⊥

(
0 1

−1 0

)
. (2.17a,b)

Then the equations (2.14) and (2.15) reduce to

d
dt

⎛
⎝p

q
s

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d
dt

log
|k⊥|
|k|

2k2
z Hk⊥ · k⊥
|k|2 |k⊥|2 + k2

z

Ro k2
|k⊥|2
|k|2 kz

−ωz − Ro−1 − d
dt

log
|k⊥|
|k| 0

− 1
F2

hkz
0 − d

dt
log

|k⊥|
|k|

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝p

q
s

⎞
⎠ . (2.18)

2.2. Instability condition and estimate of growth rates
Here, we summarize the condition and the estimate of the growth rate for each instability
obtained in the framework of local stability analysis; see Hattori & Hirota (2023) for the
details. It is pointed out that our aim here is to give compact and useful expressions for the
instability condition and the growth rate for each instability, which are not always rigorous
but allow us to interpret the results in § 4 without difficulties. In the following, CPH , CSH ,
CRH , CC and CE are O(1) coefficients that depend on the parameters in general; the actual
dependence will be checked numerically in § 4.1 (figure 8).

(i) Pure-hyperbolic instability. The pure-hyperbolic (PH) instability is due to stretching
near the hyperbolic stagnation points. It occurs when

|Ro−1| < εh. (2.19)

The growth rate is estimated as

σ = CPH

(
ε2

h − Ro−2
)1/2

. (2.20)

(ii) Strato-hyperbolic instability. The strato-hyperbolic (SH) instability is a variant
of the pure-hyperbolic instability under stratification effects. It occurs when the
exponential growth near the hyperbolic stagnation points is connected with phase
shift due to the inertia-gravity waves in favour of exponential growth. It occurs when

|Ro−1| < εh and F−1
h � ωmax/2. (2.21a,b)

The growth rate is estimated as

σ = CSH

(
ε2

h − Ro−2
)1/2

. (2.22)
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Base flow εh εe ωmax

Stuart, C = 1.2 3.14 3.14 21.8
Stuart, C = 1.6 3.14 3.14 51.0
Stuart, C = 2 3.14 3.14 87.5
2-D Taylor–Green, εe/ωmax = 0 (HH2023) 3.14 0 6.28
2-D Taylor–Green, εe/ωmax = 0.2 (HH2023) 2.88 1.26 6.28

Table 1. Strain rates at hyperbolic and elliptic stagnation points, and maximum vorticity of the Stuart vortices
considered in the present paper. The values for the 2-D Taylor–Green vortices studied in Hattori & Hirota
(2023) (HH2023) are also included for comparison.

(iii) Rotational-hyperbolic instability. The rotational-hyperbolic (RH) instability is also
a variant of the pure-hyperbolic instability. It occurs when

|Ro−1| � εh. (2.23)

The growth rate is estimated as

σ = CRHεh. (2.24)

(iv) Centrifugal instability. The essential mechanism of the centrifugal (C) instability
was given by Rayleigh (1917). It occurs when positive energy is released by
interchanging fluid elements under conservation of angular momentum. Assuming
a monotonically decreasing vorticity distribution, the instability condition turns out
to be

−ωmax < Ro−1 < 0. (2.25)

The growth rate is estimated as

σ = CCωmax. (2.26)

(v) Elliptic instability. The elliptic (E) instability is caused by resonance due to strain at
elliptic stagnation points. It occurs when

F−1
h < 1

2ωmax and Ro−1 < −3
2ωmaxor Ro−1 > −1

2ωmax, (2.27a,b)

or
F−1

h > 1
2ωmax and −3

2ωmax < Ro−1 � 0. (2.28a,b)

The growth rate is estimated as
σ = CEεe. (2.29)

The coefficient CE can be expressed as a function of Fh and Ro at the elliptic
stagnation point (Leblanc 2000).

The values of the strain rates εh and εe at the hyperbolic and elliptic stagnation
points, respectively, and the maximum magnitude of vorticity ωmax, which appear in the
expressions above, are listed in table 1, which includes those for the 2-D Taylor–Green
vortices considered in Hattori & Hirota (2023) for comparison purposes. It is pointed out
that ωmax and εe of the Stuart vortices are larger than values for the 2-D Taylor–Green
vortices, while εh is not much different between the two base flows.
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3. Numerical procedure

3.1. Local stability analysis
The numerical method for local stability analysis is same as that in Hattori & Hirota
(2023). Equations (2.12)–(2.15) were integrated by the fourth-order Runge–Kutta method.
We consider periodic orbits of fluid particles throughout this paper. We also assume
that the wavevector k is time-periodic, which is a necessary condition for exponential
instability on the periodic orbits. It is known that k is time-periodic if it is perpendicular
to the streamline initially (Lifschitz & Hameiri 1993; Hattori & Fukumoto 2003):

k(0) · ub(X (0)) = 0. (3.1)

Then the time evolution of amplitude is described by a Floquet matrix F since the matrices
that appear in (2.14) are also time-periodic:

{a, r}(t + T) = F (T) {a, r}(t), (3.2)

where T is the period of k that coincides with that of the particle motion X (Lifschitz &
Hameiri 1993; Hattori & Fukumoto 2003). Our task is to calculate the eigenvalues {μi} of
F (T), which determines the growth rate as

σi = log |μi|
T

. (3.3)

The initial conditions should be specified to have particular solutions for a given set of
the Rossby number Ro and the Froude number Fh. One parameter, which is denoted by β
in the following subsections, is required for X (0) to identify a streamline in a 2-D flow.
We set

X (0) = (π, βyc, 0)T , (3.4)

where yc = cosh−1(1 + 2
√

1 − C−2) is the maximum of y on the separatrix. The elliptic
stagnation point corresponds to β = 0, while β = 1 corresponds to the separatrix. The
open streamlines corresponding to β > 1 are also considered.

Another parameter is required for k(0) to specify the direction of the wavevector that
satisfies (3.1); we take the angle between ez and k(0), which is denoted by θ0. It should
be pointed out that the magnitude of k(0) is arbitrary since the right-hand side of (2.14)
depends only on the direction of k and is independent of the magnitude after taking the
short-wave limit. For the amplitudes a(0) and r(0), three independent initial conditions
satisfying the incompressibility condition a(0) · k(0) = 0 are considered; the results do
not depend on the choice of the initial conditions since the space spanned by the three
initial conditions is common. As a result, we obtain the largest growth rate σ as a function
of β, θ0, Ro and Fh, namely σ = σ(β, θ0,Ro,Fh).

3.2. Modal stability analysis
In the modal stability analysis, (2.6)–(2.8) were solved numerically by the Fourier spectral
method (Peyret 2010), assuming periodic boundary conditions in all three directions as in
Hattori et al. (2021) and Hattori & Hirota (2023). Since the Stuart vortices are periodic in x
but not in y, the vortices are placed at y = nLy, and those with the opposite-signed vorticity
are placed at y = (n + 1/2)Ly, for n = 0,±1,±2, . . . , to make the base flow periodic in y.
The spatial period Ly is fixed at Ly = 4L0 = 8π, which is large enough to make the effects
of the periodic boundary condition in the y direction negligible (Hattori et al. 2021). The
time marching was performed by the fourth-order Runge–Kutta method.
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Since the base flow is 2-D, the time evolution of disturbances is separable in the vertical
direction. Thus we set

u′ = exp(i[μ(x/Lx)+ kzz])
Kx∑

kx=−Kx

Ky∑
ky=−Ky

ũkx,ky exp(i[kx(x/Lx)+ ky(y/Ly)]), (3.5)

with similar expressions for p′ and ρ′. In the above equation, we have included the Floquet
exponent iμ to consider Floquet modes in general. The number of the Fourier modes is
1024 × 4096, as in Hattori et al. (2021).

The growth rate and frequency were obtained by the method of Krylov subspaces
(Edwards et al. 1994; Julien, Ortiz & Chomaz 2004; Donnadieu et al. 2009; Hattori
et al. 2021; Hattori & Hirota 2023). Starting from randomized initial conditions,
(2.6)–(2.8) were integrated for a certain long time. Intermediate states {(u′(T0), ρ

′(T0)),
(u′(T0 +�T), ρ′(T0 +�T)), . . . , (u′(T0 + (NK − 1)�T), ρ′(T0 + (NK − 1)�T))} were
used as generators of the Krylov subspace. Then the eigenvalues and the eigenmodes
were obtained in the NK-dimensional Krylov subspace. In this method, the error of an
eigenvalue λ of a linear operator L can be evaluated by

ε = ‖Lv − λv‖
‖v‖ , (3.6)

where v is the corresponding approximate eigenvector. The error ε depends on the initial
time of the data T0, the interval between the data �T , and the dimension of the Krylov
subspace NK . In order to obtain eigenvalues accurately, several Krylov subspaces were
generated from different sets of parameters, and the eigenvalue with the smallest error
for each eigenmode was chosen. The actual values of the parameters were chosen after
trial and error; NK was 5, 10 or 20, and T0 = 92, 112, . . . , 192, while �T was fixed at
2. Typically, the error of the eigenvalue is ε = O(10−10) for the largest eigenvalue for a
fixed wavenumber kz, while it increases for subdominant eigenmodes. In the following, we
discarded the eigenmodes with ε � 10−3.

It turned out that the growth rates of the cyclonic case are sometimes difficult to obtain
because they are smaller than those of the anticyclonic case. Therefore, we applied a filter
that damps the anticyclonic modes and keeps the cyclonic modes unchanged, to obtain the
growth rates of the cyclonic case.

3.3. Realizability as a mode
As we will see later, in § 4, the instabilities that are found by local stability analysis
are not always found in modal stability analysis at finite Reynolds numbers since
high-wavenumber modes are damped by viscous damping. In this case, the corresponding
region of the instability in the (β, θ0) plane is often thin so that it is difficult to construct
an unstable mode. We use the realizability introduced in Hattori & Hirota (2023),

R =
∫

S
σ sin θ0 dβ dθ0, (3.7)

where S is the region of an instability in the (β, θ0) plane, to quantify the realizability
as a mode of each instability. The idea behind the above definition is that the eigenmode
corresponding to a wider unstable region in the (β, θ0) plane is less affected by viscous
damping because the corresponding mode also has a large spatial width and thereby the
radial wavenumber of the mode is small.
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4. Results

In this section, we show the results of local and modal stability analysis of the Stuart
vortices in rotating stratified fluids. For the parameter C, which controls the core size of
the vortices, we show most of the results for C = 1.2 and 2 to elucidate the dependence
on C or the ratio of the strain rates at the stagnation points to the maximum vorticity, and
to compare them to the results of our previous works (Suzuki et al. 2018; Hattori et al.
2021), while the results for C = 1.6 are also used to complement the dependence on C.
The ratio of the strain rate at the elliptic stagnation points to the maximum vorticity is
εe/ωmax = 0.144, 0.062 and 0.036 for C = 1.2, 1.6 and 2, respectively (table 1).

4.1. Results of local stability analysis
First, we show the growth rate σ(β, θ0,Ro,Fh) obtained by local stability analysis as
a function of β and θ0 for given values of Ro and Fh. Figure 2 shows the growth
rate for C = 1.2 in the absence of stratification (F−1

h = 0). The Rossby number is set
to Ro−1 = 0,±2,±5,±10,±15. The streamlines outside the separatrix, which can be
regarded as periodic modulo 2π in the x direction, are also considered as in Suzuki
et al. (2018); the separatrix, which connects the hyperbolic stagnation points, corresponds
to β = 1, while the inner and outer streamlines correspond to 0 � β < 1 and β > 1,
respectively.

In contrast to the case of the 2-D Taylor–Green vortices (Hattori & Hirota 2023), the
pure-hyperbolic instability occurs in the absence of rotation (figure 2a); the region of the
pure-hyperbolic instability, which is centred at β = 1, merges with that of the elliptic
instability emanating from (β, θ0) ≈ (0, 60◦) (Suzuki et al. 2018). It is stabilized by
rotation as the growth rate near β = 1 is much smaller for Ro−1 = ±2 (figures 2b,c) than
for Ro−1 = 0 (figure 2a). As the anticyclonic rotation becomes strong, the region of the
elliptic instability splits from the pure-hyperbolic instability (figure 2b); it approaches the
vortex core, while the maximum growth rate at θ0 = 0◦ increases for Ro−1 = −5 and
−10 (figures 2d, f ); it is stabilized for Ro−1 = −15 (figure 2h). For cyclonic rotation,
the region of the elliptic instability shrinks but survives with increasing Ro−1, while the
maximum growth rate decreases gradually (figures 2c,e,g,i). The centrifugal instability
occurs only for the anticyclonic rotation as in the case of the 2-D Taylor–Green vortices
(Hattori & Hirota 2023). The unstable region of the centrifugal instability is observed in
0.8 � β � 1 for Ro−1 = −2 (figure 2b); it approaches the vortex core with increasing
|Ro−1| as predicted by local stability analysis (Hattori & Hirota 2023) (figures 2b,d, f,h).
The unstable region becomes narrow at β ≈ 0.4 for Ro−1 = −15 (figure 2h). For
Ro−1 = 5,±10,±15, thin regions of weak instability emanating from (β, θ0) = (1, 90◦)
are observed (figures 2c, f,g,h,i); they are due to the rotational-hyperbolic instability. The
unstable region of the elliptic instability merges with that of the rotational-hyperbolic
instability for Ro−1 > 0. The occurrence and the growth rate of the instabilities are in
good agreement with prediction in § 2.2.

Figure 3 shows the growth rate for the Stuart vortices with C = 2 in the absence of
stratification (F−1

h = 0). The results are similar to the case C = 1.2 (figure 2). However, a
few remarkable differences are observed: the regions of the pure-hyperbolic instability and
the elliptic instability are almost separated at Ro−1 = 0 (figure 2a); the elliptic instability
is not completely stabilized at Ro−1 = −15. Most importantly, the growth rate of the
centrifugal instability is much larger than that for C = 1.2. These differences are consistent
with the prediction in § 2.2 as the value ωmax = 87.5 for C = 2 is much larger than
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Figure 2. Growth rate σ(β, θ0,Ro,Fh) as a function of β and θ0 obtained by local stability analysis. Stuart
vortices with C = 1.2 and F−1
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ωmax = 21.8 for C = 1.2; the elliptic instability occurs for Ro−1 > −(1/2)ωmax = −43.8,
while the growth rate of the centrifugal instability is CCωmax, which is much larger than
rates of other instabilities proportional to or smaller than εh or εe.

The results of stratified cases with F−1
h = 8 are shown in figure 4 for C = 1.2, and

figure 5 for C = 2, respectively. For Ro−1 = 0, the region of the pure-hyperbolic instability
is restricted to θ0 � 30◦, while the regions of the strato-hyperbolic instability are observed
near β = 1 at θ0 ≈ 40◦ and 60◦ for C = 1.2 (figure 4a), and at θ0 ≈ 50◦ for C = 2
(figure 5a). The pure-hyperbolic and strato-hyperbolic instabilities are also observed for
Ro−1 = ±2 with reduced growth rate (figures 4b,c and 5b,c), but they are stabilized for
|Ro−1| � 5. For C = 1.2, the elliptic instability is not completely stabilized but weak at
large θ0 because F−1

h = 8 is close to (1/2)ωmax = 10.9, at which the condition for the
elliptic instability changes; however, it survives near θ0 = 0◦, for which the effect of
stratification is weak; it is observed in 0.5 � β � 0.9, 0.3 � β � 0.6 and 0 � β � 0.3 for
Ro−1 = −2, −5 and −10, respectively (figures 4b,d, f ). For C = 2, the elliptic instability
is not stabilized at large θ0 since F−1

h = 8 is much smaller than (1/2)ωmax = 43.8, while
the growth rate is reduced. The region of the centrifugal instability appears at the same
position in β as for F−1

h = 0, but shrinks to small θ0 both for C = 1.2 and 2; however,
the maximum growth rate is independent of stratification since it occurs at θ0 = 0◦.
The rotational-hyperbolic instability is not observed since the growth rate is significantly
reduced by stratification.

Next, we focus on the maximum growth rate for fixed magnitudes of rotation
and stratification σmax(Ro,Fh) = maxβ,θ0 σ(β, θ0,Ro,Fh) as in the case of the 2-D
Taylor–Green vortices (Hattori & Hirota 2023). Figure 6 shows σmax(Ro,Fh) for
F−1

h = 8 as an example. It is pointed out that for C = 1.2, there are two lines of
the elliptic instability for −10.4 < Ro−1 < −1 because there exist two extrema, one
at β = 0 and the other at θ0 = 0◦, the latter being larger. For C = 1.2 (figure 6a),
all instabilities except the rotational-hyperbolic instability appear as the most unstable
instability in some intervals; the maximum growth rate for F−1

h = 8 is due to the
centrifugal instability in Ro−1 < −13.2 and −6.8 < Ro−1 < −4.4, the elliptic instability
in −13.2 < Ro−1 < −6.8, −4.4 < Ro−1 < −1.2 and 1.4 < Ro−1, the pure-hyperbolic
instability in −1.2 < Ro−1 < 1.2, and the strato-hyperbolic instability in 1.2 < Ro−1 <
1.4. For C = 2 (figure 6b), the maximum growth rate is dominated by the centrifugal
instability for Ro−1 < 0 as predicted in § 2.2, although a tiny region where the elliptic
instability is maximum exists (−0.6 < Ro−1 < −0.2). For Ro−1 > 0, the pure-hyperbolic
instability and the elliptic instability become maximum for 0 < Ro−1 < 1.8 and Ro−1 >
1.8, respectively.

The effects of stratification on the maximum growth rate σmax(Ro,Fh) are shown
in figure 7; the realizability R is also plotted against Ro−1. The maximum growth
rate is unaffected by stratification except that of the elliptic instability for Ro−1 > 0,
which decreases with stratification. The realizability decreases with stratification for
all instabilities, but for the elliptic instability for −13.2 < Ro−1 < −6.8, R becomes
maximum at F−1

h = 10 ≈ ωmax/2 as the unstable region expands to large θ0. It is pointed
out that although the growth rate of the centrifugal instability increases with the magnitude
of rotation for C = 2, the realizability decreases with |Ro−1| for strong rotation; the
maximum of the growth rate would be at Ro−1 ≈ −30. The centrifugal instability is
stabilized at Ro−1 = ωmax = −87.5 according to (2.25).
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Figure 4. Growth rate σ(β, θ0,Ro,Fh) as a function of β and θ0 obtained by local stability analysis. Stuart
vortices with C = 1.2 and F−1
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The dominant instability for C = 1.2 changes as follows:

for Ro−1 � 0, PH → (SH →) E, (4.1)

for Ro−1 � 0, PH → E → C → E → C, (4.2)

as |Ro−1| increases. For C = 2, it changes as follows:

for Ro−1 � 0, PH → E, (4.3)

for Ro−1 � 0, PH → E → C, (4.4)

in the range |Ro−1| � 20.
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Figure 8. Coefficients that appear in § 2.2 as functions of Ro−1 obtained by local stability analysis, where
(a–d) show CPH , CC, CSH and CE, respectively, for C = 1.2, 1.6 and 2. In (c,d), F−1

h is fixed at 8; (e, f ) show
CSH and CE for selected values of F−1

h , while C is fixed at 1.2. The red lines in (d) and the dashed line in ( f )
show the branch corresponding to the ring-type elliptic instability that appears for all values of F−1

h .

In order to show the usefulness of the estimates of the growth rate in § 2.2, we evaluate
the coefficient of the growth rate introduced in § 2.2 as a function of Ro−1 for each
instability (figure 8). As in Hattori & Hirota (2023), the coefficients CPH and CC are
compared among C = 1.2, 1.6 and 2 as they are independent of stratification (figures 8a,b).
The coefficients CSH and CE at F−1

h = 8 are also compared among C = 1.2, 1.6 and
2 (figures 8c,d), while the effects of stratification are shown at C = 1.2 (figures 8e, f ).
It is pointed out that the horizontal axis is 1/(Roωmax) and 2/(Roωmax) in figures 8(b)
and 8(d), respectively, to take account of the instability condition for the centrifugal and
elliptic instabilities. This figure confirms that the coefficients are O(1) for all instabilities,
as in the case of the 2-D Taylor–Green vortices (Hattori & Hirota 2023). Moreover,
the coefficient of each instability is comparable in magnitude between the three base
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Base flow CPH CC CSH CE

Stuart, C = 1.2 0.76 0.12 0.47 1.00
2-D Taylor–Green, εe/ωmax = 0.2 (HH2023) 0.90 0.20 0.26 1.00

Table 2. Maximum values of coefficients appearing in estimates of growth rate. Comparison between the
Stuart vortices and the 2-D Taylor–Green vortices studied in Hattori & Hirota (2023) (HH2023).

flows; it is smaller for the centrifugal and strato-hyperbolic instabilities than for the
pure-hyperbolic and elliptic instabilities. The maximum values of the coefficients shown
in table 2 also support this result. It is also pointed out that the curves almost collapse
for the centrifugal instability (figure 8b), while some differences are observed for the
elliptic instability because of the different ratio of F−1

h to ωmax. For the elliptic instability,
the dependence of the coefficient on the rotation and stratification is also similar to the
case of the 2-D Taylor–Green vortices: the maximum is CE = 1.0 at Ro−1 ≈ −ωmax/2; it
decreases with stratification for Ro−1 > 0; for strong stratification F−1

h = 20 > ωmax/2,
it extends to strong anticyclonic rotation. For the other instabilities, the shapes of the
curves are different between the 2-D Taylor–Green vortices and the Stuart vortices; how
the coefficients depend on stratification and rotation depends on the vorticity distribution.
Thus the estimates of the growth rates in § 2.2 are expected to be generally applicable to
various base flows.

4.2. Results of modal stability analysis
In this subsection, we show the results of modal stability analysis. Although the numerical
domain contains not only the vortex with negative vorticity but also that with positive
vorticity, as in the case of the 2-D Taylor–Green vortices (Hattori & Hirota 2023), the
distance between the arrays is sufficiently large that the enstrophy of the unstable modes
is concentrated in one of the arrays; as a result, the enstrophy ratio φ is always close
to either 0 or 1 when Ro−1 /= 0. Thus we can distinguish between the unstable modes
on the cyclonic vortices and those on the anticyclonic vortices when Ro−1 /= 0, which is
different from the 2-D Taylor–Green vortices. When Ro−1 = 0, the same modes appear in
both arrays. The Floquet exponent is fixed at μ = 0 in this subsection and § 4.3, while it
is set to μ = 1/2 in § 4.4 to investigate the properties of the subharmonic modes.

Based on the local stability results, the strength of rotation is chosen from
Ro−1 = 0,±5,±10,±15. The case of no stratification (F−1

h = 0) and one case of strong
stratification (F−1

h = 8) are considered for C = 1.2, while the stratified case for C = 2
is omitted because it requires higher resolution (Hattori et al. 2021); the effects of
stratification can be inferred from the results for C = 1.2 and the local stability results.
The Reynolds number is fixed at Re = 104. There are non-oscillatory modes as well
as oscillatory modes. In the following, all modes for which structures are shown are
non-oscillatory (i.e. the complex parts of the eigenvalues are zero) except those shown
in figures 12(b) and 12(e).

4.2.1. Case C = 1.2
First, we show the results for C = 1.2. Figure 9 shows the growth rate σ = σ(kz,Ro,Fh)
obtained by modal stability analysis in the absence of stratification. The colours of the
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Figure 9. Growth rate σ(kz,Ro,Fh), for C = 1.2, F−1
h = 0. The Ro−1 values are (a) 0, (b) −5, (c) 5,

(d) −10, (e) 10, ( f ) −15, (g) 15. The circles in (b) correspond to the modes shown in figure 10.

lines show the approximate radius of the mode defined as

β̄ =

∫
Dγ

|ω′|2β ′ dx dy
∫

Dγ
|ω′|2 dx dy

, (4.5)
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where ω′ = ∇ × u′, Dγ denotes the region that contains the anticyclonic vortex for γ =
ac and the cyclonic vortex for γ = c, and β ′ is the approximate streamline parameter
calculated by

β ′ =
(
Ψ − Ψe

Ψh − Ψe

)1/2

. (4.6)

Here, Ψe and Ψh are the values of the streamfunction at the elliptic and hyperbolic
stagnation points, respectively. The above definition gives the same values for β at the
elliptic stagnation point and on the separatrix: β ′ = 0 at the elliptic stagnation point, and
β ′ = 1 on the separatrix. The modes shown by the yellow lines have large amplitudes
near the separatrix, while those shown by the blue lines are concentrated near the elliptic
stagnation point.

For Ro−1 = 0 (figure 9a), most of the modes are due to the pure-hyperbolic instability,
while some modes of the elliptic instability with small β̄ are observed; there are also
mixed-type modes of the pure-hyperbolic and elliptic instabilities at low wavenumbers
(Hattori et al. 2021). For Ro−1 = −5 (figure 9b), the modes with large β̄ shown by the
yellow lines correspond to the centrifugal instability; an example of the mode structures
is shown in figure 10(a). On the other hand, the modes with small β̄ shown by the blue
lines, which form peaks at low wavenumbers, and the brown lines, which extend to high
wavenumbers, correspond to the elliptic instability; examples of the mode structures are
shown for a peak at kzL0 = 50.3 in figure 10(b) and a high wavenumber at kzL0 = 158.3
in figure 10(c). The maximum growth rate of the elliptic instability mode is 2.14, which is
larger than that for Ro−1 = 0. For Ro−1 = −10 (figure 9d), the values of the approximate
radius β̄ of the centrifugal instability modes decrease to approximately 0.6 (shown by
the brown lines) as predicted by local stability analysis. The narrow peaks of the elliptic
instability disappear. However, the branches with small β̄ shown by the blue lines are
due to the elliptic instability. The maximum growth rate of the centrifugal instability
is 2.02, which is close 2.03 for Ro−1 = −5, while the maximum growth rate of the
elliptic instability is 2.72, which is larger than 2.14 for Ro−1 = −5. For Ro−1 = −15
(figure 9f ), only the centrifugal instability survives with reduced growth rate. For Ro−1 >
0 (figures 9c,e,g), a few branches at low wavenumbers, which correspond to the elliptic
instability, are found for each case.

The types of instability observed for each value of Ro−1 and the growth rates are
in reasonable agreement with the local stability results. The pure-hyperbolic, elliptic
and centrifugal instabilities are observed, while the strato-hyperbolic instability is not
observed. The maximum growth rate of the elliptic instability at Ro−1 = −10 is σ ≈ 2.72,
which is slightly smaller than 3.04 obtained by local stability analysis; this is due to viscous
effects as shown in § 4.3. The approximate radius of the centrifugal instability and elliptic
instability decreases with the magnitude of rotation for Ro−1 < 0. The elliptic instability is
stabilized for Ro−1 = −15, which satisfies −3ωmax/2 < Ro−1 < −ωmax/2 (§ 2.2). Only
the elliptic instability survives for Ro−1 � 5.

Figure 11 shows the growth rate σ = σ(kz,Ro,Fh) for a stratified case (F−1
h = 8). The

cyclonic cases (Ro−1 > 0) are omitted because no branch was found for Ro−1 � 5. For
Ro−1 = 0 (figure 11a), all modes except those shown by the blue line, which is due to the
elliptic instability, are the pure-hyperbolic instability modes. For Ro−1 = −5 (figure 11b),
the branches with β̄ � 0.6 (brown lines and blue lines) are due to the elliptic instability,
while those with β̄ close to 1 (yellow lines) are the centrifugal instability modes. The
maximum growth rate of the elliptic instability modes is σ = 1.81, which is larger than
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Figure 10. Mode structures shown by contours of ω′
z on the (x, y) plane, for C = 1.2, F−1

h = 0 and Ro−1 =
−5. The contours of ω′

z are drawn for |ω′
z|/|ω′

z|max = 0.1, 0.3, 0.5, 0.7, 0.9; the red and blue lines correspond
to positive and negative values, respectively. (a) Centrifugal instability mode with kzL0 = 158.3, σ = 1.86
and β̄ = 0.885. (b) Elliptic instability mode with kzL0 = 50.3, σ = 2.14 and β̄ = 0.377. (c) Elliptic instability
mode with kzL0 = 158.3, σ = 1.52 and β̄ = 0.640.

σ = 1.34 of the centrifugal instability modes. It is pointed out that the elliptic instability
is divided into two types: a ring-type elliptic (rE) instability mode (figures 12a,b) with
β̄ ≈ 0.5 shown by the brown lines in figure 11(b), which corresponds to the unstable
region attached to θ0 = 0◦ in the local stability analysis, and a usual mode with β̄ � 0.4
shown by the blue lines in figure 11(b), which appears near the elliptic stagnation point
(figure 12c). We also point out that the azimuthal wavenumbers of the inertial waves
composing the ring-type elliptic instability modes in figures 12(a) and 12(b) are different:
(m,m + 2) = (−1, 1) in figure 12(a), while (m,m + 2) = (0, 2) for the oscillating mode
shown in figure 12(b). The centrifugal instability modes shown in figures 12(d) and 12(e)
have large amplitude near the separatrix in accordance with local stability results. It is also
pointed out that the radius of the ring-type mode of the elliptic instability (figures 12a,b)
is different from that of the centrifugal instability mode (figure 12d) for the same values
of F−1

h and Ro−1, which confirms that their instability mechanisms are different (see also
§ 4.3 for further confirmation). The centrifugal instability mode shown in figure 12(d)
is symmetric and non-oscillatory, while that shown in figure 12(e) is antisymmetric and
oscillatory; the azimuthal wavenumbers of these modes are 0 and 1, respectively. Although
the two branches of the centrifugal instability have nearly same maximum growth rates at
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Figure 11. Growth rate σ(kz,Ro,Fh), for C = 1.2, F−1
h = 8. The Ro−1 values are (a) 0, (b) −5, (c) −10,

(d) −15. The circles in (b) correspond to the modes shown in figure 12.

Ro−1 = −5, the antisymmetric oscillatory branch has larger growth rate than the
symmetric non-oscillatory branch at stronger rotation Ro−1 = −10. The antisymmetric
oscillatory mode can be dominant at finite Reynolds number in non-rotating stratified
fluids (Yim & Billant 2016).
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Figure 12. Mode structures shown by contours of ω′
z on the (x, y) plane, for C = 1.2, F−1

h = 8 and
Ro−1 = −5. The contours of ω′

z are drawn as in figure 10. (a) Ring-type elliptic instability mode with
kzL0 = 158.3, σ = 1.72 and β̄ = 0.517. (b) Oscillating ring-type elliptic instability mode with kzL0 = 158.3,
σ = 1.16, ω = 7.26 and β̄ = 0.517. (c) Elliptic instability mode with kzL0 = 62.8, σ = 0.768 and β̄ = 0.400.
(d) Centrifugal instability mode with kzL0 = 158.3, σ = 1.32 and β̄ = 0.915. (e) Oscillating centrifugal
instability mode with kzL0 = 158.3, σ = 1.27, ω = 3.24 and β̄ = 0.907. For the oscillating modes, the
frequency ω is also given.

For Ro−1 = −10 (figure 11c), the growth rate of the elliptic instability modes, for which
β � 0.3 (blue lines), becomes large, with the maximum growth rate being σ = 2.63, while
the growth rate of the centrifugal instability is σ = 1.23, which is slightly smaller than
that for Ro−1 = −5. The maximum growth rate will be compared to those obtained by the
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Figure 13. Growth rate σ(kz,Ro,Fh), for C = 2, F−1
h = 0. The Ro−1 values are (a) 0, (b) −5, (c) +5,

(d) −10, (e) +10.

local stability analysis in § 4.3. For Ro−1 = −15 (figure 11d), only one weak branch of the
centrifugal instability is observed.

4.2.2. Case C = 2
Next, we show the results for C = 2. Figure 13 shows the growth rate σ = σ(kz,Ro,Fh)

plotted against the wavenumber kz for the non-stratified case (F−1
h = 0). As in the case C =

1.2, the pure-hyperbolic instability modes with β̄ close to 1 (yellow lines) and the elliptic
instability modes with β̄ � 0.5 (brown lines) are observed for Ro−1 = 0. For Ro−1 =
−5 and −10, only the centrifugal instability modes are observed (figure 14); this is in
accordance with the local stability results as the growth rate of the centrifugal instability
is much larger than those of the other instabilities for C = 2. The maximum growth rate
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Figure 14. Mode structures shown by contours of ω′
z on the (x, y) plane, for C = 2, F−1

h = 0 and Ro−1 = −5.
The contours of ω′

z are drawn as in figure 10. Centrifugal instability mode with kzL0 = 158.3, σ = 4.32 and
β̄ = 0.842.

is σ = 4.44 and 5.56 for Ro−1 = −5 and −10, respectively, which are smaller than the
values 4.99 and 7.38 predicted by the local stability analysis because of the viscous effects.

For Ro−1 = 5 and 10, a few branches of the elliptic instability are observed. The growth
rates are close to those for C = 1.2 as predicted by local stability analysis, while the
branches extend to high wavenumbers because the core size of the Stuart vortices is smaller
for C = 2, as shown in figure 1(c).

The effects of stratification can be inferred from the results for C = 1.2, although the
stratified case is omitted for C = 2. The growth rate of the centrifugal instability will
decrease with the strength of stratification. Then the ring-type elliptic instability modes
can be captured depending on the strength of rotation, while the normal elliptic instability
modes will disappear for strong stratification.

4.3. Comparison between local and modal stability analysis
In this subsection, we compare the local stability results and the modal stability results.
Direct correspondence between the local and modal stability analysis has been established
in Suzuki et al. (2018), Hattori et al. (2021) and Hattori & Hirota (2023) for the 2-D
Taylor–Green vortices. It would give a firm physical origin of the unstable modes also for
the Stuart vortices because the mechanism of the instability is clear in the local stability
analysis; it will further support the usefulness of the local stability analysis.

Figure 15 compares the structures of unstable modes to the corresponding solutions
to the local stability equations for three modes shown in figure 12: the ring-type elliptic
instability mode with kzL0 = 158.3, σ = 1.72 and β = 0.48, the elliptic instability mode
with kzL0 = 62.8, σ = 0.768 and β = 0.80, and the centrifugal instability mode with
kzL0 = 158.3, σ = 1.32 and β = 0.05, where C = 1.2, F−1

h = 8 and Ro−1 = −5. As
in Hattori & Hirota (2023), the horizontal divergence ∇h · u′

h = ∂u′/∂x + ∂v′/∂y, the
vertical component of vorticity ω′

z and the density ρ′ of the unstable mode on a streamline
of nearly largest amplitude of ω′

z are plotted against time of fluid particle motion that
is dictated by (2.12) (figures 15a,c,e); the corresponding variables p, q and s defined by
(2.16a–c) of the solution to the local stability equations on the same streamline are shown
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Figure 15. Comparison between modal and local stability analysis, for C = 1.2, F−1
h = 8 and Ro−1 = −5.

(a,c,e) The values of ∇h · u′
h = ∂u′/∂x + ∂v′/∂y, ω′

z and ρ′ of the unstable eigenmode obtained by modal
stability analysis are shown as functions of time of a fluid particle on the streamline where ω′

z is maximum.
(b,d, f ) The corresponding values of p, q and s on the same streamline are multiplied by e−σ t to compensate
the exponential growth. (a,b) Ring-type elliptic instability mode with kzL0 = 158.3, σ = 1.72 and β = 0.48.
(c,d) Elliptic instability mode with kzL0 = 62.8, σ = 0.768 and β = 0.80. (e, f ) Centrifugal instability mode
with kzL0 = 158.3, σ = 1.32 and β = 0.05.

in figures 15(b), 15(d) and 15( f ), where the values are multiplied by e−σ t to compensate
the exponential growth. We observe good agreement between the modal and local results,
while there are some differences in magnitude for the centrifugal instability mode. The
characteristics of each mode are similar to those of the 2-D Taylor–Green vortices; the
phase change is 2π for the elliptic instability, while the variables do not change their signs
for the centrifugal instability mode. In addition, the structures of the ring-type elliptic
instability are similar to those of the elliptic instability; this confirms the nature of the
ring-type elliptic instability, while they are apparently different in figure 12.

Figure 16 compares the growth rates obtained by the local and modal stability analysis
for F−1

h = 0 and F−1
h = 8, with C being fixed at 1.2; the growth rate σmax(Ro,Fh) obtained
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Figure 16. Growth rate σmax(Ro,Fh) as a function of Ro. Comparison between local stability analysis (lines)
and modal stability analysis (solid circles); the growth rate for the inviscid case is also estimated by subtracting
the viscous contribution for the modal stability analysis (open circles). Here, C = 1.2 and (a) F−1

h = 0,
(b) F−1

h = 8.

by local stability analysis is shown by lines as a function of Ro−1 for each instability, while
the maximum growth rate obtained by modal stability analysis is shown for selected values
of Ro−1 by solid circles. For the latter, the corrected growth rate in the absence of viscous
effects was also estimated by subtracting the viscous contribution as

σinv = σ − 1
Re

∫
u′ · ∇2u′ dx dy dz∫

|u′|2 dx dy dz
, (4.7)

and is included as open circles. For F−1
h = 0, the modal stability growth rates are slightly

smaller than σmax(Ro,Fh); this is reasonable since the modal stability growth rate cannot
exceed the local stability results. For F−1

h = 8, however, the difference between the modal
and local growth rates depends on the type of instability; it is similar to the case of F−1

h = 0
for the elliptic instability, while the difference is larger than F−1

h = 0 for the centrifugal
instability. For example, the ratios of the corrected modal growth rate to the local growth
rate at Ro−1 = −10 are 92 % and 56 % for the elliptic instability and the centrifugal
instability, respectively. This difference is understood in terms of the realizability. As
shown in figure 7, the realizability of the centrifugal instability, which is the dominant
instability for Ro−1 < −13.2 and −6.8 < Ro−1 < −4.4, decreases significantly with F−1

h ,
while it does not change very much for the elliptic instability, which is dominant for
−13.2 < Ro−1 < −6.8. The significantly reduced realizability corresponds to the narrow
range of θ0 in the unstable region on the (β, θ0) plane; then an eigenmode constructed
at a finite wavenumber should include an area of small growth rate on the (β, θ0) plane,
leading to the reduced growth rate.

4.4. Subharmonic modes
So far, we have been concerned with disturbances that have the same spatial period as
the base flow in the x direction, which are sometimes called fundamental modes. In this
subsection, we investigate the properties of the subharmonic modes by setting the Floquet
exponent in (3.5) to iμ = i/2. The base flow parameter is fixed at C = 1.2.
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Figure 17. Growth rate σ(kz,Ro,Fh) for subharmonic modes, C = 1.2. The (F−1
h ,Ro−1) values are

(a) (0, 0), (b) (8, 0), (c) (0,−5), (d) (8,−5), (e) (0,+5). The low-wavenumber modes are compared in ( f ).

Figure 17 shows the growth rate of the subharmonic modes for (F−1
h ,Ro−1) = (0, 0),

(8, 0), (0,−5), (8,−5), (0,+5). There are two important differences from the caseμ = 0.
First, long-wave modes marked by L appear near kzL0 = 0 for all cases; the growth

rates are compared in figure 17( f ), including an additional case (F−1
h ,Ro−1) = (8,+5).

the maximum growth rate at kzL0 = 0 is nearly the same for all cases. The bandwidth
of the unstable wavenumber decreases for cyclonic rotation, while it increases for the
anticyclonic case with stratification. The corresponding unstable modes with kzL0 = 0.1
shown in figure 18 are pairing modes that displace the vortex in the direction x = y,
while the neighbouring vortex is displaced in the opposite direction (Pierrehumbert &
Widnall 1982); the mode for (F−1

h ,Ro−1) = (0, 0) (figure 18a) is nearly identical to that
for (F−1

h ,Ro−1) = (8,−5) (figure 18b), showing that the mode structure does not depend
very much on the stratification and rotation.
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Figure 18. Mode structures shown by contours of ω′
z on the (x, y) plane, for C = 1.2. (a,b) The

subharmonic modes of long-wave instability with kzL0 = 0.1 are compared between (a) (F−1
h ,Ro−1) = (0, 0)

and (b) (8,−5). (c) The subharmonic mode (μ = 1/2) and (d) the fundamental mode (μ = 0) of
pure-hyperbolic instability with kzL0 = 158.3 are compared. The contours of ω′

z are drawn as in figure 10.

Second, the growth rates of the pure-hyperbolic instability modes are smaller than the
case μ = 0; the maximum growth rates at (F−1

h ,Ro−1) = (0, 0) and (8, 0) are 1.73 and
1.07, respectively, for μ = 1/2, while they are 1.92 and 1.50 for μ = 0. This smaller
growth rate of the subharmonic mode can be understood by the mode structures shown
in figure 18(c). The mode has small amplitudes near the hyperbolic stagnation points to
match the reversed phase in the neighbouring regions, while the corresponding mode for
μ = 0 has large amplitudes there. As a result, the effects of strain near the hyperbolic
stagnation points are weaker for the subharmonic modes, leading to smaller growth rates.

Besides the above two differences, however, the growth rates of the subharmonic modes
are nearly the same as those of the fundamental modes; this is because the centrifugal
instability modes and the elliptic instability modes are contained inside the separatrix so
that the mode structures are unaffected by the matching condition for the phase at the
hyperbolic stagnation points. The subharmonic pairing instability mode is dominant for
strong cyclonic rotation or strong stratification without rotation, while the pure-hyperbolic,
elliptic and centrifugal instability modes are dominant in the other cases.

4.5. Comparison to previous works on Stuart vortices
Here, we compare the present results with previous works on the stability of the Stuart
vortices. Table 3 lists previous works that investigated the effects of rotation on the stability
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Work Method ρs Range of Ro−1

Pierrehumbert & Widnall (1982) Modal [0, 0.3] 0
Leblanc & Cambon (1998) Local/modal 0, 0.1, 0.2, 0.33 [−12.6, 6.3]
Potylitsin & Peltier (1999) Modal 0.33, 0.75 [−0.5, 0.1]
Godeferd et al. (2001) Local 0.33, 0.75, 0.90 [−22, 0]
Present Local/modal 0.55, 0.78, 0.87 [−20, 20]

Table 3. Previous works on stability of Stuart vortices. Comparison of the method of stability analysis, the
parameter ρs for the Stuart vortices and the range of the Rossby number.

of the Stuart vortices, while a pioneering work, Pierrehumbert & Widnall (1982), without
rotation is also included. In this table, the values of the Rossby number were converted
taking account of the difference in the definition. It is pointed out that the range of
the Rossby number is limited to weak rotation in the modal stability analysis, although
Leblanc & Cambon (1998) considered strong rotation up to Ro−1 = −12.6. Also, the
results in the previous works are rather limited. In Potylitsin & Peltier (1999), the results
are shown for only two values of the wavenumber (kz = 2 and 3) with weak rotation. In
Leblanc & Cambon (1998), the structure of the fundamental modes is shown only for
the elliptic instability at kz = 2; they could not find the centrifugal instability mode or the
pure-hyperbolic instability mode by modal stability analysis, although they were discussed
by local stability analysis. In this regard, the present work has explored much broader
aspects of the instability of the Stuart vortices by (i) showing the growth rate as a function
of wavenumber up to large values of kz, (ii) investigating the effects of strong rotation as
well as weak rotation, and (iii) clarifying the effects of stratification.

The magnitude of the growth rate is compared between the present work and the
previous works; here, we should take account of the different scaling. The growth rates
of the pairing instability, the pure-hyperbolic instability, the elliptic instability and the
centrifugal instability obtained in the previous modal stability results (Pierrehumbert
& Widnall 1982; Leblanc & Cambon 1998; Potylitsin & Peltier 1999) under the
present scaling are typically σ ∼ 0.3 × L0/U0 ≈ 1.9 without rotation, while they can
be σ ∼ 0.5 × L0/U0 ≈ 3.1 with rotation. These are close to the growth rates obtained
for C = 1.2 or ρs = 0.55 in the present study. The maximum growth rate of the
centrifugal instability obtained by local stability analysis of Godeferd et al. (2001) was
σ ∼ 0.8 × L0/U0 ≈ 5.0 for ρs = 0.75; this is close to σ = 6.1 for C = 1.6 or ρs = 0.78
in the present study.

5. Concluding remarks

The linear stability of the Stuart vortices in rotating stratified fluids has been studied
by local and modal stability analysis. As in the case of the 2-D Taylor–Green vortices
(Hattori & Hirota 2023), five types of instability are identified by local stability analysis:
the pure-hyperbolic instability, the strato-hyperbolic instability, the rotational-hyperbolic
instability, the centrifugal instability and the elliptic instability. The effects of stratification
and rotation on each instability were investigated in detail. The pure-hyperbolic instability
is dominant only when both rotation and stratification are weak. For strong anticyclonic
rotation, the elliptic instability or the centrifugal instability becomes dominant depending
on εe/ωmax, the ratio of the strain rate and the vorticity at the elliptic stagnation point,
and the magnitude of rotation; further stronger rotation stabilizes both instabilities.
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For strong cyclonic rotation, the elliptic instability becomes dominant, although the
growth rate is smaller than the anticyclonic cases. Most of these results were confirmed
by modal stability analysis, although there are a few differences: unstable modes of
the strato-hyperbolic instability and the rotational-hyperbolic instability were not found
because their growth rates and the realizability are smaller than for the other instabilities;
when stratification is strong, the growth rate of the centrifugal instability modes is
smaller than that predicted by local stability analysis. The effects of stratification on the
subharmonic modes were also investigated. The maximum growth rate at kz = 0 does not
differ very much between the non-stratified case F−1

h = 0 and the stratified case F−1
h = 8;

the range of the unstable wavenumber decreases for cyclonic rotation, while it increases
for the anticyclonic case with stratification. The zigzag and radiative instability were not
found in the present work. According to Billant et al. (2010), the zigzag instability occurs
for a counter-rotating vortex pair, but does not for a co-rotating vortex pair. Thus it will
not occur for the Stuart vortices. It may not be easy to find the radiative instability in the
present case because it is not a strong instability (Park & Billant 2013).

We emphasize that the condition and the estimate of the growth rate of each instability
summarized by Hattori & Hirota (2023) are useful not only for the 2-D Taylor–Green
vortices (Hattori & Hirota 2023) but also for the Stuart vortices. In fact, the magnitudes
of the coefficients that appear in the estimates in § 2.2 are similar to those for the 2-D
Taylor–Green vortices (Hattori & Hirota 2023); in addition, the coefficients depend on
rotation and stratification in a similar way for the two different base flows. Therefore,
the conditions and the estimates of the growth rates would serve as useful sources of
information for the instability of vortices in rotating stratified fluids in general; they
can be used to predict which instability is dominant once the values of the strain
rates and the maximum vorticity are available. In fact, the differences between the 2-D
Taylor–Green vortices and the Stuart vortices are understood by the differences of these
values characterizing the vorticity distribution: the ratio of the strain rates εe/εh is larger
for the Stuart vortices than for the 2-D Taylor–Green vortices, which explains why the
elliptic instability is more dominant than the hyperbolic instabilities for the Stuart vortices;
the ratios of the strain rates to the maximum vorticity εh/ωmax and εe/ωmax are smaller
for the Stuart vortices, which explains why the centrifugal instability becomes dominant
in wide ranges of parameters. It is also pointed out that the local stability analysis further
proved valuable as direct correspondence between the local unstable solutions and the
unstable eigenmodes has been established also for the Stuart vortices; however, this does
not apply to the subharmonic modes caused by global pairing.

Another important contribution of the present work is the discovery of the ring-type
modes of the elliptic instability. The ring-type elliptic instability, which was predicted
theoretically by Le Dizès (2008), is of much interest because it can be dominant depending
on the parameter values. Its mechanism was identified successfully by the local stability
analysis; namely, the resonance curve of the elliptic instability in the (β, θ0) plane bends,
eventually touching the line θ0 = 0◦, which happens for vortices with non-constant angular
velocity (Hattori & Fukumoto 2003; Hattori & Hijiya 2010), so that it avoids the stabilizing
effect of stratification. In this regard, the ring-type elliptic instability will also be observed
for an isolated vortex in rotating stratified fluids under strain.

Some future works might be as follows. The effects of rotation and stratification on
other flows possessing hyperbolic stagnation points, which include vortex pairs and wake
vortices such as the von Kármán vortex street, are of interest. How each instability evolves
in nonlinear regime is of great interest. Some of them can destroy vortices, while some can
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promote merging of vortices or creation of strong vorticity (Hattori 2016, 2018), which will
be studied by direct numerical simulation.
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