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Abstract

Background. Bipolar disorder (BD) is an overarching diagnostic class defined by the presence
of at least one prior manic episode (BD I) or both a prior hypomanic episode and a prior
depressive episode (BD II). Traditionally, BD II has been conceptualized as a less severe pres-
entation of BD I, however, extant literature to investigate this claim has been mixed.
Methods. We apply genomic structural equation modeling (Genomic SEM) to investigate
divergent genetic pathways across BD’s two major subtypes using the most recent GWAS
summary statistics from the PGC. We begin by identifying divergences in genetic correlations
across 98 external traits using a Bonferroni-corrected threshold. We also use a theoretically
informed follow-up model to examine the extent to which the genetic variance in each sub-
type is explained by schizophrenia and major depression. Lastly, transcriptome-wide SEM (T-
SEM) was used to identify neuronal gene expression patterns associated with BD subtypes.
Results. BD II was characterized by significantly larger genetic overlap across non-psychiatric
medical and internalizing traits (e.g. heart disease, neuroticism, insomnia), while stronger
associations for BD I were absent. Consistent with these findings, follow-up modeling revealed
a substantial major depression component for BD II. T-SEM results revealed 35 unique genes
associated with shared risk across BD subtypes.
Conclusions. Divergent patterns of genetic relationships across external traits provide support
for the distinction of the bipolar subtypes. However, our results also challenge the illness
severity conceptualization of BD given stronger genetic overlap across BD II and a range of
clinically relevant traits and disorders.

Introduction

Bipolar disorder (BD) is an overarching diagnostic class with two primary subtypes: bipolar I
disorder (BD I) and bipolar II disorder (BD II). BD I is characterized by at least one prior
manic episode (i.e. at least one week of manic symptoms), and BD II by both a prior hypo-
manic (i.e. at least four days of manic symptoms that are not functionally impairing) and
major depressive episode (American Psychiatric Association, 2013). The operationalization
of these subtypes reflects conceptualizations of BD I and II as part of an illness continuum
ranging from schizoaffective to unipolar depression, with BD I lying closer to the former
and BD II to the latter (Gershon, 1982). Although BD I is traditionally considered the
more clinically severe version of these two disorders, extant research to support this claim,
or more generally distinguish these two subtypes beyond their diagnostic definitions, is limited
and mixed. For example, comparisons of BD I and BD II have revealed mixed findings regard-
ing whether these subtypes display differences in comorbidity patterns (Baek et al., 2011;
Loftus et al., 2020), suicidal behaviors (Dunner, 2004; Karanti et al., 2020; Novick, Swartz,
& Frank, 2010), or neuroimaging outcomes (Hozer & Houenou, 2016). Further, while the
broad bipolar diagnostic class is associated with various negative health outcomes, including
physical inactivity and related comorbidities (McElroy & Keck, 2012), it is unclear whether
these associations are primarily driven by one of the two subtypes. The current study investi-
gates the etiological differences that characterize the underlying genetic risk pathways of these
two major BD subtypes.

Challenging the model that BD I is simply a more severe version of BD II genetic epidemi-
ology has found that the subtypes ‘breed true’. That is, relatives of individuals with a particular
BD subtype exhibit heightened risk for that subtype, indicating risk pathways are at least par-
tially unique to a given BD subtype (Andreasen, 1987; Heun & Maier, 1993). In the past dec-
ade, genome-wide association studies (GWAS) of complex phenotypes have started to unpack
the specific genetic variants associated with different outcomes. The most recent bipolar
GWAS from the Psychiatric Genomics Consortium (PGC) uncovered 64 significantly asso-
ciated genetic variants (Mullins et al., 2021). In addition, GWAS data for each BD subtype
were used to examine the overall genetic signal for BD I and BD II, revealing SNP-based
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heritability estimates h2SNP of 21.2% and 11.6%, respectively. The
genetic correlation (rg) was significantly different from 1, indicat-
ing the presence of subtype-specific signal. However, research into
what might explain this divergent genetic signal is limited.

Bivariate genomic methods such as LD-score regression
(LDSC; Bulik-Sullivan et al., 2015) allow for estimating genetic
overlap across two traits with GWAS summary statistics. As
these GWAS summary statistics are often publicly available and
need not come from the same participant sample, this offers
the unique opportunity to investigate genetic overlap across a
wide range of rare and even mutually exclusive outcomes.
Indeed, progress in understanding BD subtypes using phenotypic
approaches has likely been stymied, at least in part, by the prag-
matic difficulty of recruiting a participant sample of sufficient
size for both subtypes. Genomic structural equation modeling
(Genomic SEM; Grotzinger et al., 2019) is a multivariate frame-
work for modeling the genetic overlap estimated from LDSC. In
the present study, we apply Genomic SEM and its recent exten-
sions to examine genetic convergence and divergence across bipo-
lar subtypes. At the genome-wide level, we explicitly model and
statistically compare the genetic correlations across BD subtypes
and a range of cognitive, health, interpersonal, and psychiatric
outcomes. We go on to apply transcriptome-wide SEM
(T-SEM; Grotzinger, de la Fuente, Davies, Nivard, &
Tucker-Drob, 2022) to identify genes whose expression is asso-
ciated with general or subtype-specific BD risk. These results pro-
vide biological support for many of the clinically observed
differences in subtype-specific outcome measures, aid in the iden-
tification of elevated risk factors associated with each subtype, and
further our understanding of the etiological convergences and
divergences across bipolar subtypes.

Methods

GWAS datasets

GWAS summary statistics for BD I (25 060 cases, 449 978 con-
trols) and II (6781 cases, 364 075 controls) were utilized from
the most recent PGC Freeze 3 GWAS (Mullins et al., 2021).
Cases were defined using either medical records or internationally
recognized diagnostic manuals (i.e. DSM-IV, ICD-9, ICD-10)
administered by trained interviewers and clinicians. We utilize
publicly available European ancestry summary statistics for 104
external traits, selected based on a comprehensive consideration
of their clinical relevance across cognitive, interpersonal, health,
and psychiatric domains. Among this initial pool of 104 external
traits, 98 had h2SNP Z statistics greater than the recommended cut-
off of 4 put forth by the original LDSC developers for producing
interpretable estimates of genetic covariance (Bulik-Sullivan et al.,
2015). These 98 traits were carried forward for Genomic SEM
analyses. A summary of each dataset used in this study with sam-
ple characteristics (i.e. case/control numbers) is provided in
online Supplementary Table S1.

Genomic SEM

A standard set of quality control filters was first applied to all
GWAS summary statistics using the munge function within
Genomic SEM. This included filtering to HapMap3 SNPs and,
when this information was available, removing SNPs with a
minor allele frequency (MAF) < 0.01 and with an imputation
score (INFO) < 0.9. These ‘munged’ summary statistics were

subsequently used as input to the multivariable version of ldsc
implemented in Genomic SEM, which estimates the genetic
covariance and sampling covariance matrices across included
traits. The genetic covariance matrix contains SNP-based herit-
ability estimates on the diagonal and genetic covariances on the
off-diagonal. For binary traits, these estimates were converted to
the more interpretable liability scale using the population preva-
lence from the corresponding publication and the sum of effective
sample size across cohorts contributing to the GWAS (Grotzinger,
de la Fuente, Privé, Nivard, & Tucker-Drob, 2023). The sampling
covariance matrix contains squared standard errors on the diag-
onal (the sampling variances) and sampling covariances on the
off-diagonal, which index sampling dependencies that will arise
when there is participant sample overlap. LD weights used to esti-
mate the regression model in LDSC were obtained from 1000
Genomes Phase 3 European LD Scores, excluding the major
histocompatibility complex due to complex LD structure in this
region that can bias estimates.

Before running models, the genetic covariance and sampling
covariance matrices were transformed into genetic correlation
and sampling correlation matrices to examine differences in the
proportion of genetic overlap with other traits, accounting for dif-
ferences in the overall h2SNP of the two BD subtypes (results exam-
ining the genetic covariances are reported in online Supplementary
Table S2). These standardized LDSC matrices were then used as
input to a series of models specified within Genomic SEM. The
first was a saturated model in which the genetic overlap across
the BD subtypes and each external trait were estimated. Next, a
constrained model was specified in which the relationships between
each BD subtype and the external trait were fixed to both be equal.
The p value associated with the constrained model’s χ2 statistic
indicates decrement in model fit, relative to the fully saturated
model, due to imposing the equality constraint. Significant values
then indicate that the BD subtypes have significantly different rg’s
with the external trait. Separate models were run for each external
trait and a Bonferroni-corrected threshold ( p < 5.10 × 10−4 = 0.05/
98 traits) was applied to determine statistical significance.

To better contextualize our results within the existing illness
severity model of BD, we fit a series of theoretically informed mod-
els with MDD and SCZ as correlated predictors of both BD sub-
types in a genetic multiple regression model. This model assesses
the effect each disorder exerts on BD subtypes, while also modeling
the contribution of their risk pathways, enabling the estimation of
unique and shared contributions that these disorders have on each
subtype. We examined all four possible sets of model constraints
for this model, with comparisons not done in sequential order.
That is, for each of the four models, all other parameters were freely
estimated aside from the two parameters with an imposed equality
constraint. A final model was then estimated that included any
equality constraints that could be imposed without a significant
decrement in model fit. Significance was defined here using a
Bonferroni-corrected threshold for the four comparisons of p <
0.013. Lastly, the genetic variance for each BD subtype for this
model was partitioned based on the genetic signal shared with
MDD and SCZ. The residual or unique variance of each subtype
was then further broken down into shared and unique residual gen-
etic variance between the subtypes.

Transcriptome-wide SEM

We utilized T-SEM to identify tissue-specific gene expression
shared and unique to BD I and II (Grotzinger et al., 2022).
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Univariate transcriptome-wide association studies (TWAS)
uncover the relationship between gene-expression and a single
trait through summary-based transcriptomic imputation.
T-SEM reflects a multivariate extension of TWAS that allows
for examining unique and shared gene-expression across constel-
lations of genetically overlapping traits.

First, FUSION was used to perform univariate, summary-
based TWAS for both BD subtypes (Gusev et al., 2016).
Fourteen sets of publicly available functional weights were utilized
from two data resources: (i) the Genotype-Tissue Expression pro-
ject (GTEx v8), with functional weights for 13 brain tissue types,
and (ii) PsychEncode, with functional weights for the prefrontal
cortex (Gandal et al., 2018; The GTEx Consortium, 2020).
These univariate FUSION statistics were then used as input to
the read_fusion function in Genomic SEM, which backs out the
gene expression-phenotype covariances that are standardized
with respect to the phenotypic variance. This allows these gene
expression estimates to be added to the LDSC genetic covariance
matrices as they are now on the same scale. Finally, the userGWAS
function was used to estimate the effect of gene expression on a
latent BD factor defined by the two BD subtypes. As this was a
two-indicator factor, the factor loadings of the two BD subtypes
were constrained to be equal in order to ensure model
identification.

These analyses produced two sets of output: (i) the relation-
ship between gene expression and the latent BD factor and (ii)
a QGene statistic that identifies patterns of gene expression that
do not operate via the factor and are thereby likely to be subtype-
specific in their effect. We have previously demonstrated via simu-
lation that QGene is typically significant when a gene has direction-
ally discordant associations with the traits that define the factor or
shows a much stronger association with one trait (Grotzinger
et al., 2022). Thus, QGene operates to identify tissue-specific
gene-expression that is likely discordant between the two sub-
types. Hits on the factor were defined as genes that were signifi-
cant at a Bonferroni-corrected threshold of p < 5.90 × 10−7

(0.05/66 571 gene expression estimates) that were not also signifi-
cant for QGene. Finally, over-representation analysis (ORA) was
conducted using the WebGestalt package (Liao, Wang, Jaehnig,
Shi, & Zhang, 2019) to identify gene sets that are significantly
enriched among BD factor hits. We tested 11 520 gene sets,
which represent clusters of genes that have been previously iden-
tified to share functional properties or exhibit shared associations
with external traits.

Results

Genetic overlap with external traits

A significant rg of 0.83 (S.E. = 0.01) was observed between the two
subtypes. Among the 98 examined external traits, 22 exhibited
significant divergences at a Bonferroni-corrected significance
threshold, and 44 were significantly associated with the broad
BD construct. Genetic correlations for the top 25 most significant
divergences across BD subtypes are presented in Fig. 1. A full list
of genetic correlations for each BD subtype is presented in online
Supplementary Table S3 and Fig. S1. Significant rg’s for the broad
BD construct are presented in online Supplementary Fig. S2
(online Supplementary Table S4 for the full list).

Across a broad range of psychiatric, interpersonal, and non-
psychiatric medical outcomes, significant divergences in the
underlying genetic risk pathways between each BD subtype are

observed, with BD II consistently exhibiting greater levels of
shared risk with external outcomes. We consider more specific
results across different domains of external traits directly below.

Psychiatric disorders and symptoms

We identified several differences where BD II exhibited elevated
risk-sharing relative to BD I across a range of disorders. For
example, BD II had higher genetic overlap with ADHD (BD I:
rg = 0.11, S.E. = 0.04; BD II: rg = 0.37, S.E. = 0.06, χ2 p = 2.85 ×
10−7), a finding that replicated when splitting across ADHD diag-
nosed in childhood (BD I: rg = 0.09, S.E. = 0.03; BD II: rg = 0.33,
S.E. = 0.06, χ2 p = 7.53 × 10−6), and adulthood (BD I: rg = 0.12,
S.E. = 0.04; BD II: rg = 0.45, S.E. = 0.07, χ2 p = 1.04 × 10−7). BD II
also showed a stronger relationship with a number of disorders
in the internalizing space, including anxiety disorders (BD I: rg
= 0.28, S.E. = 0.04; BD II: rg = 0.56, S.E. = 0.07, χ2 p = 2.12 × 10−6),
MDD (BD I: rg = 0.34, S.E. = 0.03; BD II: rg = 0.64, S.E. = 0.05, χ2

p = 4.06 × 10−14), and recurrent MDD (BD I: rg = 0.40, S.E. =
0.05; BD II: rg = 0.73, S.E. = 0.09, χ2 p = 2.37 × 10−5).

In addition to the disorders themselves, several differences
were observed between BD subtypes and psychiatric symptoms
or closely linked personality traits. These differences can generally
be described as reflecting a stronger association between different
aspects of internalizing and BD II relative to BD I. This included
insomnia (BD I: rg = 0.06, S.E. = 0.03; BD II: rg = 0.26,
S.E. = 0.06, χ2 p = 5.78 × 10−5); feeling fed up (BD I: rg =−0.04,
S.E. = 0.03; BD II: rg = 0.23, S.E. = 0.05, χ2 p = 1.34 × 10−9); mood
instability (BD I: rg = 0.15, S.E. = 0.04; BD II: rg = 0.42, S.E. = 0.07,
χ2 p = 4.48 × 10−5); feelings of worry (BD I: rg = 0.13, S.E. = 0.03;
BD II: rg = 0.30, S.E. = 0.05, χ2 p = 3.46 × 10−4); and neuroticism
(BD I: rg = 0.14, S.E. = 0.03; BD II: rg = 0.40, S.E. = 0.05, χ2

p = 1.47 × 10−9).

Theoretically informed follow-up analysis

We went on to run a theoretically informed follow-up analysis
with MDD and SCZ as correlated predictors of each subtype.
All four equality constraints resulted in significant decrements
in model fit ( ps≤ .013), indicating that MDD and SCZ do not
exhibit equal genetic overlap within or across the BD subtypes.
The fully saturated multiple regression model with no constraints
was used to partition the genetic variance of each BD subtype into
the following groups: the genetic variance explained by MDD; the
genetic variance explained by SCZ; the genetic variance shared
between MDD and SCZ; and the genetic variance shared between
(i.e. covarying residuals) and unique (i.e. unique residuals) to each
subtype (Fig. 2). The genetic variance in BD I reflected: 37.9%
(S.E. = 5.5%) SCZ, 1.7% (S.E. = 1.0%) MDD, 5.3% (S.E. = 1.3%)
shared variance between MDD and SCZ, 22.8% (S.E. = 4.7%)
shared residual variance with BD II, and 32.3% (S.E. = 4.1%)
residual variance unique of BD II. BD II was partitioned into
13.5% (S.E. = 4.3%) SCZ, 27.2% (S.E. = 6.7%) MDD, 12.8% (S.E. =
1.7%) shared variance between MDD and SCZ, 19.3% (S.E. =
4.9%) shared residual variance with BD I, and 27.3% (S.E. =
4.2%) residual variance unique of BD I. Taken together, these
findings indicate that BD I and II are associated with both shared
and unique genetic pathways across MDD and SCZ, while BD I
and II have greater relative associations with MDD and SCZ,
respectively. These results further demonstrate that neither of
the BD subtypes are merely a reflection of amalgamated genetic
components of MDD and SCZ. Rather, both subtypes have a
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large residual genetic component that has sizeable unique and
shared components across the subtypes.

Interpersonal and social functioning

We observed patterns of increased genetic risk shared between BD
II and outcomes related to interpersonal and social functioning.
More specifically, BD II was more strongly associated with
increased loneliness (BD I: rg = 0.09, S.E. = 0.03; BD II: rg = 0.32,
S.E. = 0.05, χ2 p = 1.18 × 10−6) and financial difficulties (BD I:
rg = 0.06, S.E. = 0.04; BD II: rg = 0.28, S.E. = 0.06, χ2 p = 1.20 × 10−5).

Non-psychiatric medical conditions and health traits

Non-psychiatric medical disorders more strongly associated with
BD II included ischemic heart disease (BD I: rg =−0.01, S.E. =
0.03; BD II: rg = 0.23, S.E. = 0.06, χ2 p = 5.41 × 10−7), diabetes mel-
litus (BD I: rg =−0.08, S.E. = 0.03; BD II: rg = 0.16, S.E. = 0.06, χ2

p = 8.04 × 10−6), hypertension (BD I: rg =−0.003, S.E. = 0.025; BD
II: rg = 0.17, S.E. = 0.04, χ2 p = 1.76 × 10−5), and asthma (BD I: rg
= 0.06, S.E. = 0.03; BD II: rg = 0.23, S.E. = 0.05, χ2 p = 6.33 × 10−5).
In addition to the conditions themselves, BD II also exhibited
stronger associations with symptoms and negative health traits,
such as negative self-ratings of health (BD I: rg = 0.05, S.E. = 0.03;
BD II: rg = 0.29, S.E. = 0.05, χ2 p = 1.74 × 10−10), physical inactivity
(BD I: rg =−0.04, S.E. = 0.04; BD II: rg = 0.21, S.E. = 0.07, χ2 p =

7.44 × 10−5), number of cigarettes smoked per day (BD I: rg =
0.03, S.E. = 0.04; BD II: rg = 0.27, S.E. = 0.07, χ2 p = 1.08 × 10−4),
and nonspecific chest pain (BD I: rg = 0.06, S.E. = 0.04; BD II: rg =
0.29, S.E. = 0.07, χ2 p = 4.46 × 10−4).

T-SEM

For each BD subtype, 66 571 tissue-specific gene expression esti-
mates were obtained. Univariate TWAS for each of the disorders
revealed 211 hits for BD I and one hit for BD II (online
Supplementary Table S5 for BDI hits; online Supplementary
Table S6 for BD II hits). T-SEM revealed 76 hits on the BD factor
(Fig. 3 for Miami plot; online Supplementary Table S7 for list of
all T-SEM hits). As many genes are present across multiple tis-
sues, these 76 hits reflect 35 unique gene IDs. The top 5 most sig-
nificant hits for the BD factor were: LINC02033, GNL3, ZSCAN9,
FADS1, and PRSS16. Follow-up ORA analyses indicated signifi-
cant enrichment for the BD factor gene expression hits and a
gene-set previously implicated in the overarching bipolar diagnos-
tic class ( p = 1.83 × 10−6; (Liao et al., 2019). Online
Supplementary Fig. S3 visually depicts that T-SEM is working
as expected. More specifically, we observe that univariate BD I
TWAS hits that were identified as hits for the BD factor were
far more significant for BD II than genes that were hits for BD
I but not the overarching BD factor. Thus, T-SEM is functioning
to identify patterns of gene expression specifically associated with

Figure 1. Top 25 most significant genetic correlations between BD subtypes and external traits. Traits sorted top to bottom by ascending χ2difference p values.
Error bars depict 95% confidence intervals. Dashed bars represent traits not surpassing a Bonferroni-corrected significance threshold of 5.10 × 10−4 (0.05/98 traits).
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shared risk pathways across the BD subtypes. No QGene hits sur-
passed a Bonferroni-corrected significance threshold. A list of the
top 10 most significant QGene hits is provided in online
Supplementary Table S8, many of which showed divergent direc-
tions of effects across subtypes.

Discussion

Providing support for a diagnostic manual that describes separate
BD subtypes, the current findings identified 22 clinically relevant
traits and disorders that had significantly discrepant genetic overlap
with BD I and II. Challenging the notion that BD II is simply a less
severe presentation along the BD continuum, BD II was found to
have significantly larger genetic correlations across all divergent
outcomes. Although the point estimate for the genetic correlation
between BD I and SCZ was larger, the difference from BD II was
nonsignificant and the genetic correlation between BD II and
SCZ was still sizeable. It is also striking that BD I’s elevated associ-
ation with SCZ does not also result in greater downstream associa-
tions with the other outcomes examined.

The specific traits found to be more strongly associated with
BD II can generally be summarized as reflecting different dimen-
sions of the internalizing space, including the disorders them-
selves (i.e. anxiety disorders; MDD), their symptoms (insomnia;
feeling fed up; feeling worried), and their clinical correlates (lone-
liness; negative self-ratings of health). These results are broadly
consistent with prior phenotypic findings indicating larger

associations, relative to BD I, between BD II and: frequency of
depressive episodes (Baek et al., 2011), comorbid anxiety disor-
ders (Mantere et al., 2006), general psychiatric comorbidity
(Karanti et al., 2020), reduced social functioning (Baek et al.,
2011), and insomnia (Steinan et al., 2016). Though it did not sur-
pass Bonferroni-corrected significance threshold, the point esti-
mate for the genetic correlation with BD II was higher relative
to BD I for both suicide attempts and self-harm ideation, which
we highlight as this has also been described phenotypically
(Tondo, Miola, Pinna, Contu, & Baldessarini, 2022). Given the
pattern of current and prior findings, it is perhaps unsurprising
that BD II has also been linked to a greater burden of illness
(Dell’Osso et al., 2015).

Several mechanisms may explain the observed pattern of dif-
ferences. Results from the follow-up model suggest that relative
to BD I, there is greater genetic overlap between BD II and
MDD that is unique of shared signal with SCZ. This substantially
larger proportion of MDD signal within BD II may explain ele-
vated genetic risk sharing between BD II and the external traits
significantly diverging from BD I. Indeed, the phenotypic litera-
ture has found that many of BD II’s elevated genetic correlations
(i.e. insomnia, interpersonal deficits, physical inactivity) are also
strongly associated with MDD (Barrett & Barber, 2007; Schuch
et al., 2017; Staner, 2010). In addition, BD II’s diagnostic criteria,
requiring both a prior hypomanic and depressive episode, creates
more potential symptom combinations, which may result in
higher levels of heterogeneity within this diagnostic class. In
turn, this heterogeneity may result in a greater number of distinct
symptom clusters within BD II, thereby giving rise to a greater
number of potential associations with external traits. Results
from the follow-up model also reveal a large proportion of unique
SCZ signal within BD I. The lack of a meaningful quantity of this
signal in BD II may provide an explanation for BD I’s significantly
increased rates of psychotic symptoms, relative to its counterpart
(Aminoff et al., 2022).

We find that BD subtypes are not simply blends of MDD and
SCZ, with approximately half of the genetic variance unexplained
by these two predictors. These large residual genetic variance
components were also found to contain both shared and unique
signal across the BD subtypes. Taken together, this tentatively
supports BD as a separate diagnostic class with distinguishable
subtypes within this diagnostic class. The considerable proportion
of unique variability within each subtype also supports their
stratification in recent GWAS of the overarching disorder class.
Further stratification in future GWAS of BD may also increase
the power to detect additional divergences, whereas collapsing
across the two disorders will mask subtype-specific signal and
obscure relationships with external traits. Indeed, in the most
recent BD GWAS, stratifying the disorder by subtype increased
the SNP-based heritability estimate for BD I relative to the over-
arching disorder class (Mullins et al., 2021).

Epidemiological meta-analyses have estimated overall lifetime
comorbidity rates of 17% across ADHD and BD (Schiweck
et al., 2021). When stratifying by BD subtypes, meta-analyses
find no significant differences in ADHD comorbidity between
BD I and II (Schiweck et al., 2021). Interestingly, our results are
contrary to those found in epidemiological meta-analyses and
indicate that genetic signal from BD II is likely driving the rela-
tionships previously observed between BD and the broader
ADHD construct (Schiweck et al., 2021).

Results from T-SEM characterize patterns of gene expression
that are specifically associated with the shared risk pathways

Figure 2. Major depression and schizophrenia as correlated predictors of the bipolar
subtypes. (a) Standardized results using Genomic SEM to construct a model with
MDD and SCZ as correlated predictors of BD I and II. Solid and dashed single headed
arrows represent regression paths. Curved double headed arrows represent correla-
tions among the (residual) genetic variance components for each trait. Each U repre-
sents residual variances for BD type I and II. (b, c) Percent variance within BD I and II
accounted for by signal unique to MDD, unique to SCZ, shared by MDD and SCZ,
unique to each subtype (unique residuals) and shared between the subtypes (shared
residuals). Numbers in parentheses in both panels reflect the corresponding stand-
ard error.
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across these two subtypes. Reaffirming the grouping of these sub-
types within an overarching BD class, we identify 35 unique gene
IDs associated with general bipolar risk. At the same time, many
genes were significant for BD I, but not the overarching BD factor,
indicating again that BD is most appropriately modeled as two
separate subtypes characterized by both shared and unique risk
pathways. We consider here the prior research on a few of the
top BD factor hits. One of the top hits, FADS1, has been found
to be involved in the metabolism of eicosatetraenoic and docosa-
hexaenoic acid, which have been proposed to be beneficial for
mood disorders (Yamamoto et al., 2023). Knockdown of gene
expression for another top hit, GNL3, in human neuronal cell cul-
tures was shown to cause aberrant proliferation and differenti-
ation (Meng et al., 2020).

Limitations and future directions

Several limitations of this work should be noted, with the most
important being the restriction to only European samples based
on limited data availability in other ancestries. To increase the
representativeness of these findings we hope that, as datasets
increase in size over the next several years, these analyses can
be extended to other ancestral groups. An interpretive caveat of
this work stems from recently described potential bias in genetic
correlations due to cross-trait assortative mating (Border et al.,
2022). However, due to the magnitude of genetic correlation
and phenotypic similarity between these subtypes, cross-trait
assortative mating alone is highly unlikely to account for the
entirety of the genetic overlap (Grotzinger & Keller, 2022).
Misdiagnosis represents another potential source of bias. For
example, misdiagnosis of BD I as BD II (and vice versa) would
inflate their genetic correlation (Wray, Lee, & Kendler, 2012),
which in turn may underestimate the etiological divergences

reported above. In addition, the use of discrete diagnostic categor-
ies in the original discovery GWAS may result in bias from pre-
vailing clinical intuitions regarding differential diagnosis and
symptom presentation. Simulations, however, have indicated
that unrealistically large levels of misdiagnosis are required to
explain the high levels of genetic overlap observed across psychi-
atric disorders (The Brainstorm Consortium et al., 2018).
Nonetheless, potential bias from misdiagnosis highlights the
importance of item-level GWAS summary statistics (i.e. individual
symptoms or symptom counts), which can circumvent biases at
the diagnostic level.

As GWAS datasets increase in size, future work should seek to
include schizoaffective disorder bipolar type in subsequent ana-
lyses of etiological divergences of disorders within the BD diag-
nostic class. The present study is restricted to modeling the
genetic variance–covariance across included traits, where the
absence of environmental variance–covariance in our analyses is
an interpretive limitation. The current findings should be
re-evaluated using methods that can jointly model genetic and
environmental influences (e.g. family-based studies) when pos-
sible. However, we highlight that the ability of Genomic SEM to
include even independent participant samples and traits in the
same statistical models offered a pragmatic approach to survey a
wide array of clinical disorders and correlates, including those
with low base rates in the population. This is unlikely to be feas-
ible using alternative methods that also model the environment
but require the set of traits to be measured in the same participant
sample. Future work applying Genomic SEM can begin to con-
sider the role of the environment by including summary statistics
stratified by environmental exposures (i.e. high and low socio-
economic status) to obtain a more comprehensive picture of
how environmental factors influence subtype divergences.
Although we did not identify any significant QGENE hits, we

Figure 3. Miami plot of gene expression hits on the bipolar factor. The top and bottom orange bar represents Z statistics surpassing a Bonferroni-corrected sig-
nificance threshold of 7.50 × 10−7 (0.05/66 571 imputed gene expression estimates). Positive and negative values depict upward and downward patterns of gene
expression associated with the BD factor, respectively. The most significant genes are labeled as dots colored to reflect their tissue expression.
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were likely underpowered for these analyses and future work
should continue to reevaluate patterns of gene expression that
may underlie genetic divergence across the BD subtypes.
Finally, we highlight that the current conclusions should be inter-
preted as specifically reflecting common variant genetic architec-
ture for SNPs with a MAF > 1%. While a recent whole exome
sequencing study of BD found a similar pattern of findings across
subtypes, this should be reevaluated in future work as the results
were noted by the study authors to be tentative given the relatively
small subtype sample sizes (Palmer et al., 2022).

Conclusions

We apply Genomic SEM to explore shared and unique genetic
architecture across BD subtypes. At the level of genetic overlap
of common SNPs, BD II was found to exhibit greater associations
with phenotypes characteristic of internalizing disorders (i.e. anx-
iety, insomnia, and low physical activity), psychiatric symptoms,
and adverse medical outcomes. At the level of tissue-specific
gene expression, T-SEM results uncovered 35 unique genes asso-
ciated with signal shared across BD subtypes, with extant litera-
ture implicating the top hits in key neuronal and metabolic
functions. Through a genetic lens, these results collectively sup-
port a diagnostic system that distinguishes these subtypes, while
challenging the illness severity conception of BD that places BD
II at the lower end of severity. The genetic divergence implicated
by our results also strongly supports treating these as two separate
entities in future genetic studies to avoid obscuring subtype spe-
cific risk pathways.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723002957
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