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I n t r o d u c t i o n . For a non-negative integer s and a finite simplicial complex 
K, let 0S(K) denote the s-dimensional Bett i number of K and l e t / s ( iT) denote 
the number of s-simplices of K. Our theorem, like Poincaré's, applies to 
combinatorial manifolds M, bu t it concerns the numbers fs (M) instead of the 
numbers 0S(M). One of the formulae given below is used by the au thor in (5) 
to establish a sharp upper bound for the number of vertices of w-dimensional 
convex poly topes which have a given number i of (n — 1)-faces. This amounts 
to est imating the size of the computat ion problem which may be involved in 
solving a system of i linear inequalities in n variables, and was the original 
motivat ion for our s tudy. 

A combinatorial n-manifoldl is a finite simplicial ^-complex Mn such t h a t 
for each s-simplex as £ Mn, the linked complex L(as, Mn) has the same 
homology groups as an (n — s — l ) -sphere; analogously, an Eulerian n-
manifold is defined here by the condition t ha t L(as, Mn) always has the same 
Eider characteristic 1 — { — \)n~s as an (n — s — l )-sphere, where of course 
the Euler characteristic of a finite complex K is the al ternat ing sum 

oo / oo \ 

x(K)= D (-1)7.(*)(= D (-l)'fi,(K)). 
S=0 \ 5=0 / 

Let En [Gn] denote the class of all Eulerian [orientable combinatorial] »-
manifolds, and for each M ^ En let 

P(M) = (Po(M), Pi(M), • • • , P*(M)) and f(M) = (f0(M),MM), • • • Jn(M)). 

Then define 

0(Cn) = {P(M): M G Cn] C ^tn+1andf(En) = {f(M): M G En\ C SRn+1. 

Poincaré's theorem (/3S(M) — /3n_s(M)) implies tha t the linear span of the 
set j3(Gn) is an [{n + 2)/2]-dimensional subspace of $tn+1 (where [k] denotes 
the greatest integer < k), and the theorem exhibits a convenient basis for 
t ha t subspace. The same results are obtained here for the linear span o f / ( E n ) , 
which has a convenient basis involving binomial coefficients in a simple way. 
For example, bases for the linear spans of / (E 6 ) C R 7 and f(E7) C R 8 are as 
follows : 

Received May 13, 1963. 
^ h i s is the definition of Lefschetz (8); it is not the currently popular use of the term. 
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E6: (2, 0, 0, 0, 0, 0, 0), (1, 3, 2, 0, 0, 0, 0), (0, 1, 4, 5, 2, 0, 0), (0,0,1, 5, 9, 7,2) ; 

E7: (1, 1, 0, 0, 0, 0, 0, 0), (0, 1, 2, 1, 0, 0, 0, 0), (0, 0, 1, 3, 3, 1, 0, 0), 
( 0 , 0 , 0 , 1 , 4 , 6 , 4 , 1 ) . 

(Note that (1, 3, 2) = (1, 2, 1) + (0, 1, 1), (1, 4, 5, 2) = (1, 3, 3, 1) 
+ (0 ,1 ,2 ,1) , etc.) 

Having a convenient basis for the linear span of f(En) leads to a useful 
characterization of the linear relations which must subsist among the numbers 
f8(M) for all M Ç Ew. It turns out that when n = 2u - 1 (whence x(M) = 0 
for all M e Ew) the numbers /„(M), /n_i(M), • • • ,fu(M) can be expressed 
linearly in terms of /M_i(ikf), . . . ,fi(M),fo(M) (the expressions being valid 
for all Me Ew), while when n = 2u - 2, the numbers /n(Af),/n_i(M), . . . , 
fM_i(M) admit linear expressions in terms of jfM_2(-M"), . . . ,fo(M), x(M). 

Our approach is of a purely combinatorial nature, involving neither sub
division nor homology. The arithmetical identities of §1 are used in §2 to 
prove the main result, a theorem concerning abstract incidence systems which 
exhibit some properties of those which are dual to Eulerian manifolds. Applica
tions to Eulerian manifolds and convex poly topes appear in §3. 

For the elementary properties of complexes and convex polytopes which are 
employed here, the reader may consult Alexandroff and Hopf (1) and Weyl 
(6). For a treatment of the Euler characteristic which is well suited to the 
present elementary combinatorial approach, see Hadwiger (3) or Klee (4). 

Helpful comments were supplied by C. B. Allendoerfer, E. H. Spanier, and 
H. S. Zuckerman. D. Gale and E. C. Zeeman have observed that our approach 
has several points of similarity with those of Somerville (9) and Fieldhouse (7). 

1. Some arithmetical identities. This section contains some arithmetical 
identities involving binomial coefficients which are to be employed in §2. 
Although these may appear in the literature, we have not found them there, 
and thus include their proofs as an aid to the reader.2 We agree that (̂ ) is 
defined in the usual way for all integers n and r—positive, zero, or negative 
(cf. 2, p. 40), and shall use freely the basic recursion relation 

(n\ _ / n — l \ f n — l \ 
\r) ~ \ r / + V - 1/ * 

1.1. PROPOSITION. For all non-negative integers j and k, 

Proof. Let 

^«-(-«•(jX't'). 
whence 

a l t e rna t ive (and simpler) proofs have been supplied to the author by J. Riordan. 
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^.«-(-^(vK'iDIC+rO+te1)] 
= V(i,j-l,k) + V(i,j-l,k-l) 

-<-»- (r!)[(*+i-2)+Cîi72) 
+ (*îi72)+('l^2)] 

= F(*,j - 1, *) + F(t, j - 1, k - 1) - V(i - l , i - 1, k) 

- 2V(i - 1, j - l , k - l ) - V ( i - l,j - l , k - 2). 

Now let 

uv,k) = i va,j,k). 
Corresponding to the five terms V(-,j — 1, •) in the above expression for 
V(i,j, k), we obtain the five bracketed terms in the equation 

U(j, k) = [U(j -l,k)+ V(j,j - 1, *)] 
+ [U(j - 1, k - 1) + V(j,j - l , k - 1)] 
- [V(-l,j-l,k) + U(j- l,k)] 

- 2[V(-l,j - 1, k - 1) + U(j - l , k - 1)] 
- [(V(-l,j - 1, * - 2) + U(j - l , k - 2)] 

= -U(j- l,k- 1 ) - £ / ( j - l , * - 2 ) . 

Now, clearly, when m = 0, 

Z7(m, *) = ( -«•C-J 
for all integers k (positive, negative, or zero). Suppose the same is known for 
m = j — 1 and consider the case of U(j, k). We have 

U(j, k) = -U(j - 1, k - 1) - £/(j - 1, k - 2) 

= - ( - I ) * - 1 ' 

so the proof of 1.1 is completed by mathematical induction. 

t-hU-j-ïï-^'Ul 
1.2. PROPOSITION. For 0 < j < k, 

2k-

Proof. Let 

2k - j - */ 

2fc &(&, i) = 
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and note that 

(1) h(k - 1, i) = h(k, i + 1) - h(k, i). 

Indeed, (1) asserts that 

2k - i - 2(i - A _ 2k - i - 1 
& - 1 \k -2/ ~ k 

which reduces at once to 

i - k + 

(i - l\_L [l - l\~] _2k - i(i - A 
V& — 1 / "^ Vjfe — 2 / J & Vjfe - 1 / ' 

1 \& - 2 / \& - 1/ ' 

which is easily verified. 
Now let 

T(k,j) = Z ( 
2=2*;-2 j -^'Ct-i-iK * • ) . 

We want to show that T(kyj) = 0 whenever 0 < j < k. Since effective 
summation in the expression for T(k,j) is over the range max (2k — 2/, k) 
< i < 2& — j , it is easily verified that T(k, k — 1) = 0 for k > 2, and in 
particular T(2, m) = 0 whenever 0 < m < 2. Now suppose it is known that 
T(k — 1, m) = 0 whenever 0 < m < k — 1 and that T(k, m) = 0 whenever 

j < m < k (where j < k — 1). We can show that T(k,j) — 0 by proving 
that 

(2) T(k,j) + r (* ,7 + 1) + T(k - 1, j ) + T(k - 1J - 1) = 0. 

To verify (2) we note that 

Hk,j) = Y! (-i)* 
2k—2 j \2k - j - i) 

h(k, i) 

and 
2k-j-l 

T{kj + i)= £ ( - i ) \ 9 , , 
2Jc-2j-2 \6K — J 

J + l h(k,i), 

with summation always on i, and from (1) it follows that 

2k-j-S 

T(k-l,j)= £ (-1)*-1 

2k-2j-Z 
( j ) 
\2k - j - i - 1/ 

h(k, i) 
\2k - j - i - \ 

2k-j-2 / . \ 

2k-2j—2 \2k — j — Î — 2/ 
h(k, i), 

2k j 

T(k-\j-i)= j : i-iy-1 

2k-2j+l 

,Hi y ' \ 2 h - j - i - 1/ 
h{k, i). 
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Then (2) is proved by showing that for each i, the net coefficient of h(k, i) 
on the left side of (2) is equal to zero. For example, when 2k — 2j + 1 < i 
< 2k — j — 3, this coefficient is equal to (—1)* times the number 

( j )+( i + i ) - ( j ) 
\2k - j - i) ^ \2k - j - i - l / \2k - j - i - 1/ 

- ( j ) - ( j + l ) ~ ( j ~ l ) 
\2k - j - i - 2 / \2Jfe - j - i) \2k - j - i - l j ' 

which is equal to zero by the basic recursion used in justifying (1). The other 
cases are even simpler. 

2. A theorem on certain incidence systems. By the term incidence 
system we shall mean a finite set X with an associated incidence function <j> 
and dimension function ô; cj> is a symmetric real-valued function on X X X 
(that is, </>(x, y) = </>(y, x) for all x, y £ X) and 5 is a function on X to a set 
of integers. For each element y of X and each integer i, we define 

xeX,8(x) = i 

In the case of special interest, <f> assumes only the values 0 and 1 and is thus 
the characteristic function of an incidence relation (a symmetric subset of 
XXX); in this case, nt(y) is merely the number of ^-dimensional elements 
of X which are incident to y. 

The characteristic %{y) of an element y G X is defined as the alternating sum 

x(y)= £ (-1)^(30. 
2=0 

For d > 1, the system (X, </>, 5) will be called a d-system provided it satisfies 
the following conditions: 

(i) max{8(x): x G X) = d — 1; 
(ii) x(y) = l for all y G X with <5(;y) > 0; 
(iii) whenever y £ X and 0 < ô(y) < i < d — 1, then 

^ y ) = \i - 6{y)) * 

Note that these conditions are all satisfied when X is the simplest triangulation 
of a (d — l)-sphere (that is, the system of all proper faces of a ^-simplex), 
0(x, y) = 1 when x and y are incident (x C y or x 3 3/) and = 0, otherwise, 
and 8 is the usual dimension function. 

2.1. THEOREM. Suppose the incidence system (X, 0, 5) is a d-system, with 
d = 2u — 1 or d = 22/. For 0 < s < d — 1, let fs denote the number of s-dimen-
sional elements of X, and let 

u = \*L (-1)% 
^ s=0 
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For 1 < j < u, let yf denote the 2u-vector (yd
 j0, . . . , T ^ M - D ) » where 

d 
{2u- s)\ ( j ) 

\2u — j — s/ 
J 

when d = 2u — 1, 

when d = 2u. 
\2u — j — s/ 

Then the vector f = (/0, . . . ,/2M-i) ^ linearly dependent on the u vectors 
yd\, . • • , ydu- Further, fd = 0 when d = 2u. 

Proof. For i and j between 0 and d — 1, let 

gij = X </>0, 30-
x,yeX; 6(x) = i, 5(y)=j 

Then, of course, g^ = g^. It follows from Condition (iii) that fis^iy) = 1 
for all y G X, and then from Condition (ii) that 

8 ( ! / ) - l 

E (-1)*/*,(,) = 1 - ( -D Hv) 

Using this equation in conjunction with (iii), we see that for 1 < m < d — 1, 

(i - (-Dm)fm = gmo - gml +... + (-lr'W-D 

' J V. d -
d — m ^)/1 + --- + ( - i r - 1 ( ' : w + 1)/. \d — m)J u \d — m)J x ' • * • • ^ ^ \ ^ __ w 

Hence, we obtain the following equations £ m for 1 < m < d — 1: 

(oddW)£m: 0 = ^ : J / 0 - ( ^ _ J i ) f l + . . . 

+ V d-tn )f™-i-2f™> 

(even „) E„: 0 - (, t J / . - (j I ^ + . . . + {< ~ ~ + % , 

And we have also 

Ed: o = /o - / ! + . . . + ( - l )* -Vd- i - 2/d. 

These equations are redundant, and we shall be concerned only with those 
having odd indices, that is, with 

&: «-{/- 1}- ~ 2A. 
£ 3 : 0 

d 
d - 3/ 

<f - 2 
d-Z 1/2 - 2/,, 

terminating with f^u-i, or in other words with 
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(oddd) Ed: 0 = / o - / i + / 8 - / a + • • • + / * - i - 2/, 

or 

(even d) Ed^: 0 = df0 - (d - l)fx + (d - 2)f2 - (d - 3)/8 

+ . . . + 2 / w - 2/tf_L 

For 1 < r < u and 0 < 5 < 2u — 1, let /3d
 rs be the coefficient of fs in the 

equation I^r-i , where, of course, /3d
rs = 0 for s > 2r — 1. The w vectors 

P\ = (0%, . . . , ^K2 M -D) e $R2w, 1 < r < «, 

are linearly independent because the u X u submatrix 

(/&) (1 < r < w, 1 < odd 5 < 2u - 1) 

is triangular and has exclusively — 2's along its main diagonal. Let L denote 
the ^-dimensional linear subspace of $i2u which is spanned by {/̂ i, . . . , /3d

u\ 
and let L° denote the orthogonal supplement of L, consisting of all vectors 
7 = (To, • . . , 72«-i) € 9?2M such that 

2 M - 1 

E Pis is = o 
s=0 

for 1 < r < u. Then, of course, / £ L°, and we shall show below that {yd
u 

. . • , yd
u\ C L°. Since L° is a ^-dimensional linear space and since the u vectors 

ydj (1 < 3 < w) a r e easily seen to be linearly independent, it will follow that 
/ i s a linear combination of the 7<VS- This is the first assertion of 2.1. The second 
assertion of 2.1 is that if d = 2u, then fd = 0, or in other words the 2^-vector 
(1, — 1, . . . , 1 — 1) is orthogonal to the 2w-vector / = (f0, . . . ,/2W-i). For 
this it suffices (in view of the first assertion) to show that (1, — 1, . . . , 1 — 1) 
is orthogonal to each of the vectors yd

1 (1 < j < u). But recalling the defini
tion of the vectors yd

j1 we note that if d = 2u and 1 < j < uy then 

2M-1 2u-l / • \ 2u-j / . \ 

s <-»-^ - s <-•>• u -,•- .) - {-i)"" 5-,(-i>* (y 
-<- i ) '5<-D'(j) = o, 

where the final equality follows from 1.1. with & = 0. 
To complete the proof we must show that 

2 « - 1 

[d, r,j]: E fis y% = 0 for 1 < r < u, 1 < j < u. 
6=0 

Recalling the definition of /3d
rs, we see that /3d

r(2r_D = — 2, while 

When d = 2-# — 1 and 2r — 1 is not between 2w — 2j and 2^ — j , the left 
side of [d, r, j] is given by 
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2ti-l / • \ 2u-j / . \ 

S ""&u -s) U. - j - J = .-£., *•<"" -s) w -j -,) 

-,l„(- i )'(2„^->»-»i-2"r;i) 

where the last equality comes from the substitution i = 2u — j — s. But 

so the above sum is equal to 

( -D -V - 2r + 2) g <-Df O C - J + 2) 

where the next-to-last equality comes from 1.1 and the final equality results 
from the fact that 

( 3 ) - « 
\d - 2r + 2 - j / 

when 2r — 1 is not between 2u — 2j and 2w — j . 
Now suppose that d = 2u — 1 but 2u — 2/ < 2r — 1 < 2u — j . Correcting 

the preceding computation to account for the special value of f3d
r^r-i), we 

see that the left side of [d, r,j] is equal to 

« - 2 - + 2 i - 2/+ 2 - j + - - (-2 - < - ^ (V-(
2
2; ; ;})) 

-(2u-(2r-l))(2u_jJ{2r_1))=0. 

Suppose, finally, that d = 2u. When 2r — 1 is not between 2u — 2/ and 
2u — j , the left side of [d, r, j] is given by 

si±2, ^ l ; \d - j - sj\d -2r+lJ 

-<-.>"£ (-»'©C_'2V+1) 
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where we have used 2.1 and the fact that d — 2r + 1 — j is <0 or >j. When 
d — 2/ < 2r — 1 < d — j , correction for the special value of /3d

r(2r-i) leads 
again to the value 0, as in the preceding paragraph. This completes the proof 
of 2.1. 

2.2. COROLLARY. Suppose that d is a positive integer with d = 2u — 1 or 
d = 2u, and I is a set of integers which includes at least one from each of the u 
pairs {0, 1}, {2, 3}, . . . , {2u — 2, 2u — 1}. / / two d-systems (%, <£, <5) and 
(X', 4>f, b') are such that ft = / / for all i £ I (where the numbers ft and f/ are 
as in 2.1), then fs = / / for 0 < 5 < 2u — 1. 

Proof. Upon examination of the basis system yd
ly . . . , yd

u, this is seen to 
follow at once from 2.1. 

The following is also an immediate consequence of 2.1. 

2.3. COROLLARY. With hypotheses and notation as in 2.1, let H denote the set 
of all vectors £ = (£0, . . . , £2M-i) G 9î2" such that 

2u-l 

E u. = o. 
Then E includes all vectors % such that 

2u-l 

S £* ydjs = o 

for 1 < j < u. 

The next theorem is the one whose dual (given in 3.2 below) will be applied 
in (5). 

2.4. THEOREM. Suppose d is a positive integer with d = 2u — 1 or d = 2u, 
and t is an integer with 0 < t < u — 1. Then there is a vector 

2 M - 1 

fl = (If, . . . , eSi-i) such that ft = £ £ 7 , 

whenever the numbers fs are obtained from a d-sy stem as in 2.1. In particular, 

U = É ( - 1 ) ^ 2 ( * 2 J ) / , wfcen d = 2u - 1, 

/ o = | ( - l ) ^ ( 2 - 9 ( : : 1
1 ) / i **end = 2u. 

Proof. The first assertion of 2.4 is an easy consequence of 2.3. To justify 
the specific formulae for /0 it suffices (in view of 2.3) to show that: 

for d = 2u — 1 and 1 < j < u, 
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for d = 2u and 1 < j < u, 

Recalling the formulae for yd
js (which depend on the parity of d), we see that 

the statements are easily verified when j = u, while for 1 < j < u they both 
amount to the assertion that 

But here the effective range of summation is only for 2u — 2j < i < 2u — j , 
since otherwise 

L -j - »)=°-
and the desired conclusion follows from 1.2. 

3. Application to Eulerian manifolds and convex polytopes. A cell-
complex is a finite family K of convex polytopes (the cells of K) such that each 
face of a member of K is a member of K, and the intersection of any two 
members of K is a face of both. An n-dimensional cell-complex Kn will be 
called a simple n-manifold provided that for 0 < s < i < n, each s-cell of Kn 

is a face of I ) '̂-cells of Kn. 
\ * - s ) 

3.1. PROPOSITION. Suppose K is a simple n-manifold and d = n + 1. For 
a, T £ K, let </>((7, r) = 1 w/^m o- C T or a 3 r, tmJ $(cr, r) = 0 otherwise. Let 
8 be the usual dimension function. Then (K, 0, 3) is a d-system and hence the 
results 2.1-2 A apply to the numbers fo, . . . ,fd1 where j \ is the number of s-cells 
of K for 0 < s < n, and 

h= E (-D7-

Proof. Conditions (i) and (iii) (in the definition of a ^-system) are obviously 
satisfied, and Condition (ii) follows from the fact that when a cell-complex 
is formed in the natural way from a convex polytope, its Euler characteristic 
must be equal to 1. 

Now we recall (from the Introduction) the notion of an Eulerian n-manifold. 
This is a finite simplicial ^-complex Mn such that for each s-simplex as G Mn, 
the Euler characteristic of the linked complex L(as, Mn) is equal to 
1 — ( — \)n~s. Here, as usual, L(as, Mn) is the set of all simplexes a of Mn 

such that a C~\ (js = 0 and the join of a and as is a simplexo f Mn. 

3.2. THEOREM. Let En denote the class of all Eulerian n-manifolds. For 
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M G En and 0 < 5 < n, let fs(M) denote the number of s-simplices of M and 
let x(M) denote the Euler characteristic 

£ i-iyuM). 
5=0 

If n = 2u — 1 and M 6 En, then x(M) = 0 and the 2u-vector (fo(M), . . . , 
fn(M)) is a linear combination of the u row-vectors of the u X (2u) matrix Jn: 

|~1 1 1 
1 2 1 

1 3 3 1 

[_ (s)(0 © • • • C-2) C-i) (:)J 
(where zeros have been omitted). Further, 

If n = 2u - 2 and M G Ew, then the 2u-vector (|x(M),f0(M), . . . ,fn(M)) 
is a linear combination of the u row-vectors of the u X (2u) matrix In: 

h 2 "I 
1 3 2 

1 4 5 2 

(S)-(ï) + ("ôI)-fe) + ("7 1 ) -
L \w - 2 / + \w - 3 / ' \w - 1/ + \u - 2/ ' \u) + \u - 1/| 

(where zeros have been omitted). Further, 

/-<-»•"C -1)* + 5 ("ir*(" ."-7'V 
Proof. For 0-, r G -M let </>(cr, r) = 1 when c C T or cr D r, and 0(0-, r) = 0 

otherwise. For each a £ M let ô(<r) = n — dim cr, where dim is the usual 
dimension function. With d = n + 1, we claim that (M ~ {0}, 0, 5) is a 
(i-system. Since minjdim cr:(7 G ¥ ^ { 0 } J = 0, Condition (i) is evident. To 
verify Condition (ii) we note that if a G M, then relative to the system 
(M ^ { 0 } , <t>, ô) the characteristic x(°") of a (in the sense of §2) is the alter
nating sum 

5 ((7) 

E (-l)ViOr), 
t-=o 
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where Hi(<r) is the number of simplices r £ M for which a C r and <5(r) = i. 
Since ô(r) = n — dim r, each simplex r Z) <? contributes (—l)w-dim r to the 
formation of x M - The choice r = a- contributes nothing to the formation of 
xL(<r, M), but each r £ M which properly contains a corresponds to a simplex 
of dimension dim r — dim a — 1 whose join with a is equal to r, and thus 
with 5 = dim o- each such simplex r contributes (—l)dlm T - s _ 1 to the formation 
of xL(&, M). Since 

/ i\w—dim r __ / I N ^ — S — ! / j \ d i m T—S—I 

we have 

xW = (-iy-s-i
XL(a, M) + (-iy~s. 

But M is an Eulerian w-manifold, so xL{v, M) = 1 — (— \)n~s and 

xw = (-I)*--i[i - (-ir-s] + (-ir-s = i. 
This establishes Condition (ii). Condition (iii) follows at once from the relevant 
definitions in conjunction with the fact that M is a simplicial complex. Thus 
(My cj), 5) is a ^-system with d = n + 1. It is then a routine matter to derive 
the assertions of 3.2 from 2.1 and 2.4. 

Of course the results 2.2 and 2.3 can also be dualized so as to apply to 
Eulerian manifolds, but this is immediate and will be left to the reader. We 
shall describe explicitly the application to convex polytopes, for this will be 
required in (5). 

An ^-dimensional convex polytope P will be called simplicial provided all 
of its (n — l)-faces are simplices, and it will be called simple provided each 
of its vertices is on exactly n edges (or, equivalently, on exactly n (n — 1)-
faces). From the standard polarity theory (6) it follows that if P is an n-dimen-
sional convex polytope in 3f* and 0 G int P , then P is simplicial if and only 
if the polar body P° is simple, where 

P° = I x Ç 9T: sup„eF 53 xiJi < 1 ( • 

3.3. PROPOSITION. Suppose P is a convex polytope of dimension n + 1 and 
M is the cell-complex consisting of all faces of P which are of dimension <w. 
If P is simple, M is a simple n-manifold and is subject to Z.l. If P is simplicial, 
M is an Eulerian n-manifold and is subject to 3.2. 

Proof. First verify that M is a cell-complex; then clearly M is simplicial if 
and only if P is simplicial. It follows by polarity that M is a simple n-manifold 
when P is simple and then by a second use of polarity that M is actually an 
Eulerian n-manifold when P is simplicial. 

Now let /(En) = {f(M):M G En} C 9?"+1, where 

f(M) = (fo(M),...,fn(M)) CKn+K 
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Theorem 3.2 implies that both when n = 2u — 1 and when n = 2u — 2, the 
set/(Ew) lies in a «-dimensional linear subspace of <Stn+1. Our final result shows 
that, in fact, the linear span of /(Ew) is «-dimensional, even when attention 
is restricted to those Eulerian w-manifolds which arise from (n + ^-dimen
sional convex polytopes. 

3.4. PROPOSITION. For 0 < r < n + 1, let Cn
r denote the Eulerian n-manifold 

which is the join of the boundary Br of an r-simplex and the boundary 5n+i_r of 
an (n + 1 — r) -simplex. 

When n = 2u — 1 the matrix 

L/(oJ 
is of rank u, and when n = 2u — 2 the matrix 

/(Co) ' 
f(C1) 

Lf(C-i). 
is of rank u. 

Proof. Each ^-simplex of Cn
r is the join of a (X — l)-simplex (determined 

by X vertices) of Br and a (/* — 1)-simplex (determined by ^ vertices) of 
5.„+i_n where X G [0, r], /x G [0, w + r — 1], and X + M = s + 1; conversely, 
each such join is an s-face of Cn

r. Hence with fn
rs = fs(C

n
r) we have 

CrX"+r')-Xe[0,r], M«[0,W+1—r], X+/*=s+l 

Considering the expansion of the polynomial (1 + x)H~1(l +x) w + 2 _ r = (1 + x)n+*f 

we see that 

X>0, M>0, X+M=s+1 

It follows that 

y , (r + 1 \ / » + 2 - A = (n + 3\ 
/ \5 + 1/ 

# • » - ( : : ; ) 
whenever min(r, n -\- \ — r) > s (and, in particular, when n + 1 > 2r > 2s), 
while 

* • - ( : : ; ) - ' 

when n -\- \ > 2s. 
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Now suppose that n = 2u — 1 and consider the u X u matrix 

(fn
rs) ( l < f < t t , 0 < 5 < t t - l ) . 

Each element of its 0-column is equal to n + 3; its 1-column starts with 

f ) — 1 and has f 1 thereafter; . . . ; its s-column hasfn
ss = ( 1 

— 1 but ( 1 thereafter. Subtracting the last row from each of the 

others, we obtain a matrix (gn
rs) in which the 0-column ends with n + 3 

but has all its other entries equal to 0, while the matrix 

(g!s) ( K r < u - 1, 1 < s < u - 1) 

is triangular, with all 0's below its main diagonal and all — l's along the main 
diagonal. Hence the determinant of (gn

rs) is equal to n + 3 and we have the 
desired conclusion for the case n = 2u — 1. 

Suppose, finally, that n = 2u — 2 and note that since, for each r, 

t, (-D7S(Q = x(C) = 2, 

the rank of the matrix with which we are concerned is not changed by adding 
a column of l's. The augmented matrix has the u X u submatrix 

1 /So 
1 / Î0 

rn 
J 01 

J11 

L i /(«-Do f(u-Di 

/o(«-2) 
rn 

J KM-2) 

7(w-D(w-2) J 

whose determinant is equal to 1 (as is verified by the method employed above). 
This completes the proof of 3.4. 
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