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In this study, we perform boundary-integral simulations to investigate the role of interfacial
viscosity in the deformation and breakup of a single droplet suspended in an axisymmetric
extensional flow under the Stokes flow regime. We model the insoluble surfactant
monolayer using the Boussinesq—Scriven constitutive relationship for a Newtonian
interface. We compare the deformation and breakup results from our boundary-element
simulations with results from small deformation perturbation theories. We observe that the
surface shear/dilational viscosity increases/decreases the critical capillary number beyond
which the droplet becomes unstable and breaks apart by reducing/increasing the droplet
deformation at a given capillary number compared with a clean droplet. We present the
relative importance of surface shear and dilational viscosity on droplet stability based
on their measured values reported in experimental studies on surfactants, lipid bilayers
and proteins. In the second half of the paper, we incorporate the effect of surfactant
transport by solving the time-dependent convection—diffusion equation and consider a
nonlinear equation of state (Langmuir adsorption isotherm) to correlate the interfacial
tension with the changes in surfactant concentration. We explore the coupled influence of
pressure-dependent surface viscosity and Marangoni stresses on droplet deformation and
breakup. In the case of a droplet with pressure-dependent surface shear viscosity, we find
that a droplet with pressure-thinning/thickening surfactant is less/more deformed than a
droplet with pressure-independent surfactant. We conclude by discussing the combined
impact of surface viscosity and surfactant transport on the relaxation of an initially
extended droplet in a quiescent external fluid.
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1. Introduction

Understanding the deformation and breakup of a droplet in a viscous flow plays an
essential role in designing stable emulsions and foams for diverse industrial applications
(Langevin 2000; Dan et al. 2013; van Kempen et al. 2013; Lam, Velikov & Velev 2014;
Hamed, Schenck & Fiegel 2020). Droplet breakup analysis can guide the generation
of dispersed-phase droplets with a size distribution aptly tuned for chemical reactors,
droplet microencapsulation, inkjet printing and spraying systems (Frankel & Acrivos 1970;
Kennedy, Pozrikidis & Skalak 1994; Belyaeva et al. 2004; Lemenand et al. 2013; Daly
et al. 2015; Narsimhan, Wang & Xiang 2019; He et al. 2017). There is extensive research
on the deformation and breakup of a clean droplet under different domains of external
flow types. Barthes-Biesel & Acrivos (1973) first developed perturbation theories for
examining the critical conditions for the breakup of a droplet under a general linear flow
field in the limit of small droplet deformations. Some theoretical studies have examined
the deformation and breakup of long slender droplets in shear and extensional flows where
the internal fluid has a very low viscosity compared with the suspending fluid (Acrivos
& Lo 1978; Hinch & Acrivos 1979, 1980). Some studies have experimentally investigated
the transient effects in the deformation and burst of viscous droplets (Bentley & Leal
1986; Stone, Bentley & Leal 1986). Rallison & Acrivos (1978) and Rallison (1981) have
numerically explored the deformation and breakup of a viscous droplet in extensional and
shear flows.

The role of simple surfactants in the deformation and breakup of droplets has also been
widely investigated. Here, the role of surfactants is to change the surface tension of the
interface as well as introduce Marangoni flows (Stone & Leal 1990; Milliken, Stone &
Leal 1993; Pawar & Stebe 1996; Li & Pozrikidis 1997; Vlahovska, Blawzdziewicz &
Loewenberg 2009; Kamat ez al. 2018). Some studies have also focused on the deformation
and burst of elastic capsules in extensional and simple shear flows using theories and
experiments (Li, Barthes-Biesel & Helmy 1988; Chang & Olbricht 1993). The mechanical
behaviour of artificial capsules and vesicles and their different modelling strategies are
reviewed in Bartheés-Biesel (2009).

Suspensions of droplets and bubbles laden with lipid bilayers, polymers, proteins
and solid particles exhibit complex interfacial rheology. The interplay among surface
viscoelastic effects, Marangoni stresses, surface pressure changes, surfactant solubility
and diffusivity governs the mechanics of these complex interfaces (Jaensson, Anderson &
Vermant 2021; Pourali et al. 2021). The role of interfacial rheology in droplet mechanics
remains underexplored. Droplet interfaces embedded with certain low-molecular-weight
surfactants (eicosanol, hexadecanol) and proteins (f-casein) form highly viscous
membranes (Brooks et al. 1999; Fuller & Vermant 2012; Gunning et al. 2013; Verwijlen,
Moldenaers & Vermant 2013). In such systems, the in-plane friction that arises when the
molecules/particles within the interface slide past each other results in viscous dissipation,
i.e. interfacial viscosities. The surface rheology of viscous interfaces can be modelled
using the Boussinesq—Scriven law that provides an expression for the interfacial traction
that arises from the surface shear and dilational viscosities (Boussinesq 1913; Scriven
1960). Erni (2011) reviews the influence of interfacial viscosity in the shear and dilational
modes of deformation in systems with complex interfaces. Several experimental studies
have also explored the different techniques to measure the interfacial shear and dilational
rheological properties of complex fluid interfaces (Miller et al. 2010; Choi et al. 2011;
Fuller & Vermant 2012; Balemans, Hulsen & Anderson 2016; Jaensson et al. 2021).

In recent years there have been advances in understanding the effect of surface
rheology on droplet deformation and breakup using theories and numerical simulations.
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Flumerfelt (1980) first examined the impact of surface viscosities on droplet deformation
in shear and extensional flows by extending the first-order perturbation analysis developed
in Cox (1969) for a clean droplet. Narsimhan (2019) developed second-order perturbation
theories to describe the shape and rheology of a droplet with interfacial shear and
dilational viscosity. The condition for the breakup of a droplet with surface viscosity
in a linear flow field is presented in Singh & Narsimhan (2020) in the limit of small
droplet deformation. The deformation and breakup of a droplet in shear flow using
boundary-element simulations have been explored in Gounley et al. (2016) and Luo, Shang
& Bai (2019). Herrada et al. (2022) also examined the steady-state solutions and stability
of a gaseous droplet with interfacial viscosity using linear stability analysis and numerical
computations in extensional flow. These previous studies have shown that the surface shear
viscosity reduces the droplet deformation and increases the critical capillary number for
droplet breakup compared with a clean droplet at the same viscosity ratio. In contrast,
surface dilational viscosity enhances the droplet deformation and reduces the critical
capillary number for droplet breakup compared with a clean droplet at the same viscosity
ratio. In this work, we perform boundary-element simulations to investigate the role of
surface viscosity in droplet deformation and breakup under axisymmetric extensional flow
for a wide range of viscosity ratio values, interfacial viscosity and surfactant parameters.
We present the mechanism behind the effect of surface shear and dilational viscosity on
droplet deformation using traction arguments from interfacial viscosities. We also explore
the combined impact of surface viscosity and surfactant transport on droplet relaxation
in a quiescent fluid for different viscosity contrasts between the inner and outer fluid and
surfactant transport parameters. We compare the results from our numerical simulations
with those of second-order analytical theories in the limit of small capillary number
(Narsimhan 2019; Singh & Narsimhan 2020). Numerical investigation of this problem
allows us to examine stronger deformations, the effects of Marangoni stresses and the
effects of pressure-thickening/thinning surface viscosities, the latter of which have not
been addressed in previous studies.

2. Problem set-up and methodology
2.1. Problem overview

We numerically investigate how interfacial rheology alters the dynamics of a droplet
suspended in an unbounded immiscible fluid and subject to an external flow. Figure 1
shows a schematic of the problem. We consider an initially spherical droplet of radius
R’ placed in a uniaxial extensional flow symmetric about the 7' axis. We model the
problem in polar-cylindrical coordinates with origin at the centre of the droplet. The
internal fluid viscosity is An’, and the external fluid viscosity is n’. The interface of the
droplet has an insoluble monolayer of a surface-active agent. We assume that the surfactant
monolayer is primarily viscous. In this work, we neglect surface elasticity effects and
employ the Boussinesq—Scriven constitutive relationship to describe the rheology of the
viscous Newtonian interface (Boussinesq 1913; Scriven 1960). The surfactant interface has
a surface shear viscosity n;u a surface dilational viscosity 7, and a surface tension o’. As
the droplet deforms under external flow, the flow around the droplet can affect the local
surface tension o, surfactant concentration I"" and surface viscosity (1, and 7,,) on the
interface. We discuss the formulations of variable surface tension and surface viscosity in
the next subsection.

The steady-state deformation of the droplet under flow is characterized by the Taylor
deformation parameter Dzy0r = (L' — B') /(L' + B'), where L’ and B’ are the lengths of
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Figure 1. Problem overview.

the major and minor axes, respectively, as shown in figure 1. The undisturbed far-field
velocity vector u in dimensional form is expressed as

-1 0 0
Wo=G-|0 -1 0|-x. @2.1)
0 0 2

In the above equation, G’ represents the external strain rate and x” represents the position
vector. Throughout the paper, primed variables are in dimensional form while unprimed
variables are in dimensionless form.

2.2. Governing equations

We non-dimensionalize all lengths by radius R of the initial spherical droplet, viscosities

by the outer fluid viscosity 7/, times by the inverse strain rate G’ ', velocities by G'R’, bulk
stresses by n’ G’ and surface stresses by R'n’G’. The interfacial surfactant concentration and
surface tension are normalized by their initial equilibrium values I',, and o, at time = 0.

The fluid flow inside and outside of the droplet is described by the Stokes and continuity
equations. The dimensionless forms of these equations are

AVt = vp", VvV .u" =0, (2.2a)
V2o = Vpo V. % = 0. (2.2b)
The boundary conditions at the interface are as follows.
(1) Continuity of velocity:
U =y = uj, (2.3)
where u represents the velocity of the interface.
(i1) Force balance:

. 1
(r‘”—r‘"”)-n=fu—|—f,(+a(Vsa—o*nV-n). (2.4)

In (2.4), T — 7% is the traction jump across the interface, Ca = G'n'R’ /0., Tepresents

the capillary number, o is the dimensionless surface tension and » is the outward-pointing
normal. The expressions for the interfacial shear traction f', and the interfacial dilational
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traction f, in (2.4) are given by the Boussinesq—Scriven constitutive relationship
(Boussinesq 1913; Scriven 1960):

S = Vs [BqP(Vs - us)], (2.5)
Su=—Vs:[BguP(Vs-ug) — P (Vus+ V') - P. (2.6)

In the above expressions, P = | — nn is the projection operator on the surface, Vg =
P -V is the surface gradient, Bq,, = 1, /R'n’ is the Boussinesq number for the surface
shear viscosity and Bg, = 1, /Ry’ is the Boussinesq number for the surface dilational
viscosity.

As an alternative way of quantifying the surface viscous effects, we introduce additional
dimensionless parameters Bq = Bq,, + Bq, and interfacial viscosity ratio Aqs = 1./ n;.
The former represents the ratio of combined interfacial forces to the bulk viscous forces,
while the latter represents the relative ratio of surface dilational to shear viscosity.

The changes in surfactant concentration I" along the droplet’s surface are taken into
account using the time-dependent convection—diffusion equation (Stone 1990; Wong,
Rumschitzki & Maldarelli 1996):

ar 1
— + Vg (Tu) + I'(Vy-n)(ug-n) = —V2T, (2.7)
ot Peg

where Pey = CaR',,/Dgn’ is the surface Péclet number, u, is the tangential component

of the interfacial velocity ug and D) is the surface diffusivity of the surfactant molecules.
The surface Péclet number is the ratio of surface convection rate to the surface diffusion
rate of the surfactant. In (2.7), the interpretation of the time derivative is such that the
surface coordinates are fixed. In our numerical code, we displace the grid points in the
direction normal to the interface. Therefore, the term —x - VI” (that arises because of the
displacement of the grid points along the surface as the droplet deforms) is zero in the
evolution equation given by Wong et al. (1996).

We consider the Langmuir equation of state to relate the surface tension to the surfactant
concentration at the interface:

o) r

g eq 00
In the above equation, o is the surface tension of a clean interface without surfactant.
The dimensionless parameter E = R;T'I;, /0, is the surface elasticity number, where R;;
is the ideal gas constant, 7" is the absolute temperature and I, is the maximum packing
density for a given surfactant system.
At initial time ¢t = 0, we assume a homogeneous distribution of surfactant over the
interface of the droplet (I" = 1) and (2.8) can be rewritten as

I'oo—T
c=1+En (—) 2.9)

In the case of non-homogeneous distribution of surfactant over the droplet’s surface,
the surface viscosities can vary strongly with surface pressure /T’ = o/ — o”, as has been
explored in several experimental studies (Kurtz, Lange & Fuller 2006; Kim et al. 2011;
Fuller & Vermant 2012; Kim et al. 2013; Samaniuk & Vermant 2014). The dependence of
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surface viscosity on surface tension is taken into account using the following expressions
(Manikantan & Squires 2017):

' — I
+
M = .eg €XP (ﬂ:—n, eq), (2.10)
C
-1
+
0, = 1),.0q €XP (iT“I) , (2.11)
(&

where + and — signs represent a pressure-thickening and pressure-thinning surfactant,
respectively; ’7;4, eq and M. ¢q denote the equilibrium shear and dilational surface viscosity
at the initial value of surface pressure Héq; and Hé is the pressure scale over which
significant surface viscosity changes occur (Manikantan & Squires 2017).

The dimensionless forms of (2.10) and (2.11) are

i 1 — 0
Bg, = Bqi,eqexp | = , (2.12)
11,

i 1 — O
Bqu = Bqu.eqexp | £ I . (2.13)
c

In the above equations, IT. = I1 /ae’q is the dimensionless surface pressure scale.

The dimensionless parameters are summarized in table 1. The ranges of surface
parameters (Bq,,, Bqy, I1., E) explored in this study are based on their experimental values
reported in previous literature (Brooks et al. 1999; Kurtz et al. 2006; Georgieva et al. 2009;
Kim et al. 2011; Fuller & Vermant 2012; Kim ef al. 2013; Verwijlen et al. 2013; Hermans
& Vermant 2014; Samaniuk & Vermant 2014; Zell et al. 2014; Manikantan & Squires
2017; Singh & Narsimhan 2021). The surface Péclet number is based on surface diffusivity
measurements listed in Shmyrov & Mizev (2019) that are collected from various sources.
The surface diffusivity can vary widely depending on the phase behaviour of the adsorbed
surfactant. A rule of thumb is that many macroscopic droplets (millimetre or above) will
have Pe; > 1 while those that are small (e.g. nanoemulsions or microemulsions) will have
Peg ~ O(1) or smaller.

2.3. Numerical implementation and validation

We implement axisymmetric boundary-element simulations to numerically compute the
droplet’s interfacial velocity. The velocity at the interfacial location x¢ can be expressed
as

1 - PV

/CM(x’XO)'[[T'n]]dl(x)jLEi-i-_ﬁ . q(x, xo) - ug(x) di(x).
(2.14)

1

us(xo) = —m

In the above equation, M and q represent the single-layer and the double-layer potentials
(Pozrikidis 1990, 1992), [[7 - n]] is the traction jump across the interface and d/ is the
differential arclength along the droplet contour.

The droplet surface is discretized into N elements connecting N + 1 nodes. The
detailed numerical implementation to solve the boundary-integral equation (2.14) and the
convection—diffusion equation (2.7) can be found in the axisymmetric code developed

946 A24-6


https://doi.org/10.1017/jfm.2022.601

https://doi.org/10.1017/jfm.2022.601 Published online by Cambridge University Press

Role of surface viscosity on droplet breakup and relaxation

Inner fluid viscosity

A Viscosity ratio = 001 <a<10
Y Outer fluid viscosity S
G/ /R/
Ca Capillary number Ca = an’ 0<Ca<02
‘7
. . . n
Bq,, Boussinesq parameter for surface shear viscosity Bq, = R/—’;, 0<Bg, <10
/
Bgq, Boussinesq parameter for surface dilational viscosity Bq, = Rn/—’;, 0 < Bg <10
/ /
. . . Ne +1
Bq Boussinesq parameter for total surface viscosity Bq = KR’n/ 2 0<Bg <10
’
Ads Interfacial viscosity ratio Ags = % 0 < Ags <00
0
g
Il Surface pressure scale 1. = —/‘ I1. = {0.1,0.25}
Je
CaR'c),
Peg Surface Péclet number Pe; = T/eq 0.01 < Peg < 1000
n
5
iy ReT' TS
E Surface elasticity number = E=1{0.2,04,2}
Oeq
/
rg! Initial surfactant coverage r' = Teq r;'=0s

Table 1. Dimensionless parameters.

in Singh & Narsimhan (2021). A typical simulation starts with N = 100 nodes on a
spherical droplet interface. The time step At is set as (2-6) x 107>Ca to update the
droplet shape using the numerical scheme and the re-meshing procedure described in
Singh & Narsimhan (2021). To ensure that the total surfactant is conserved on the
droplet’s surface, we rescale the surfactant concentration at each time step. Therefore, the
surfactant concentration integrated over the interface is constant over time. In the absence
of such rescaling, we find that the error in total surfactant concentration integrated over
the interface is less than 0.6 % for the simulations shown in the paper. The droplet is
considered to have attained a steady-state deformation when the interfacial normal velocity
|uy| < 0.01 at all collocation points. The critical capillary number Cac denotes the largest
value of Ca below which the droplet attains a steady-state deformation under flow.

To validate our code, we compare our results with boundary-element simulations from
Pawar & Stebe (1996). Figure 2 shows the variation of Taylor deformation parameter
D1yyior with capillary number Ca for a clean droplet with viscosity ratio 4 = 1. In the
same plot, we also compare our numerical results with those of second-order perturbation
theories developed in previous studies (Barthes-Biesel & Acrivos 1973; Vlahovska et al.
2009; Narsimhan 2019; Singh & Narsimhan 2020) and the lowest-order perturbation
analysis from Flumerfelt (1980). The lowest-order perturbation theories solve the droplet
shape up to O(Ca) for Ca <« 1, while the second-order theories solve the shape up to
O(Ca?) (Barthes-Biesel & Acrivos 1973; Vlahovska er al. 2009; Narsimhan 2019). At
O(Ca), the analytical expression of the Taylor deformation parameter for a droplet with
surface shear and dilational viscosity under uniaxial extensional flow is given as (Taylor
1934; Flumerfelt 1980)

15 191 + 16 + 24Bg, + 8Bq,
32 51+ 6Bg, +4Bq, +5

DTaylor = (2.15)
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Figure 2. Plot of Dy versus Ca for a clean droplet without surfactant and viscosity ratio 4 = 1.0. The
blue dots represent our numerical results and the red triangles represent boundary-element simulations from
Pawar & Stebe (1996). The dashed blue curve is from second-order perturbation analysis (Barthes-Biesel &
Acrivos 1973; Vlahovska et al. 2009; Singh & Narsimhan 2020), and the black solid curve is the lowest-order
perturbation analysis from Flumerfelt (1980).

Our results compare well with the numerical simulation from Pawar & Stebe (1996)
and the second-order perturbation theories at all Ca values. At Ca > 0.01, we see that
the lowest-order perturbation analysis shows deviations from the data predicted from
simulations and underpredicts the D7y, values.

3. Results: droplet deformation and breakup

In §§3.1-3.3, we explore the effect of surface viscosity and surfactant transport on the
deformation and breakup of a droplet placed in an extensional flow.

3.1. Comparison with small deformation perturbation theories for constant surface
viscosity

In this section, we discuss the effect of constant surface viscosity on the steady-state
deformation and the critical capillary number Cac for droplet breakup. This analysis
assumes that surface tension is constant and that surfactant is homogeneously distributed
on the interface. Surfactant transport effects are neglected to analyse the isolated impact
of interfacial viscosity on droplet dynamics. Sections 3.2 and 3.3 examine the coupling
between interfacial viscosity, Marangoni stresses and surface dilution.

Figure 3 shows the variation of Dryyy With Bg = Bq, + Bq, for a droplet with
interfacial viscosity ratio Ags = Bg,/Bq, = 1. We observe that at a given capillary
number, the steady-state deformation Dy, Of the droplet decreases upon increasing
Bg. Our numerical results compare well with those of the small deformation perturbation
theories at O(Ca?) (Narsimhan 2019; Singh & Narsimhan 2020). Again, we see that the
lowest-order perturbation analysis using (2.15) underpredicts the Dzy,, values, and this
effect is more significant at Ca = 0.05 than at Ca = 0.01.

Figure 4 shows the variation of Dygy,, With interfacial viscosity ratio A4 for a droplet
with viscosity ratio A = 1, Ca = 0.05 at Bq values of 2, 5 and 10. Ratio 44, = O represents
a droplet with pure surface shear viscosity, and A, = oo represents a droplet with pure
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*  Numerical simulations
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Teeale . —— Flumerfelt (1980)
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e Numerical simulations
----- Perturbation theory
—— Flumerfelt (1980)
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I T SR N D N S N
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Figure 3. Plots of Dryyor versus Bg for a droplet with interfacial viscosity ratio dgs =1 at capillary
number values 0.01 and 0.05. The dots represent our numerical results, dashed curves are from second-order
perturbation theories (Narsimhan 2019; Singh & Narsimhan 2020) and bold curves are from using first-order
perturbation theory (2.15).

Ag=2
035 - 0.35
E 1 Bg=2.0
0.30 = 4030 = Bg=50
t P s m—— = + « Bq=10.0
025 = &7 <025
§ [ 2 D =0.225
020 Taylor — = - 0.20
= x|
S 0.15 f - 0.15
0.10 = = 0.10
0.05 b b 1. T P )’JO.OS
0 10 20 30 40 S

Figure 4. Plots of Dgyjor versus Agg for a droplet with viscosity ratio 4 = 1, Ca = 0.05 and Bq values of 2, 5
and 10. Here D7y, for a clean droplet without surfactant at Ca = 0.05 and A = 1 is shown using a horizontal
black dashed line.

surface dilational viscosity. The horizontal dashed line shows Dy, for a clean droplet
without surfactant at Ca = 0.05 and A = 1. We observe that at Az, ~ 2.0, Drgyor 0f a
droplet with surface viscosity is the same as that of a clean droplet for different Bg
values. Droplets with Ags below this critical value exhibit smaller deformations than
a clean droplet, and the deformation decreases as the interfacial effects (Bg) increase.
Droplets with 44, above the critical value demonstrate the opposite effect —i.e. they exhibit
larger deformations than clean droplets, and the deformation increases as the interfacial
effects (Bg) increase. We observe qualitatively similar behaviour if we examine droplets
at different viscosity ratios A. The critical Az where the droplet deformation is the same
as that for a clean droplet shifts to A4, = 0.9 for a droplet with viscosity ratio 4 = 0.1
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Figure 5. Plots of Dyyyior versus Agg for a droplet with viscosity ratio 4 = 0.1, Ca = 0.05 and at Bq values
of 2, 5 and 10. Here D7y, for a clean droplet without surfactant at Ca = 0.05 and A = 0.1 is shown using a
horizontal black dashed line.

/ld,v.:40
035 - L5035
[ - i ] Bg=2.0
- D, . =02
0.30 Frossretmld S0 L + 4030 — Bg=50
£ ;-{l’ T : 1 +— Bq=10.0
0.25 , <4025
5 { : ]
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& f : 1
S ois E : 2015
0.10 & L2000
005 bl bl ) k1005
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Figure 6. Plots of Druyor versus Ags for a droplet with viscosity ratio 4 = 10, Ca = 0.05 and at Bg values
of 2, 5 and 10. Here D7yyj,, for a clean droplet without surfactant at Ca = 0.05 and A = 10 is shown using a
horizontal black dashed line.

(see figure 5), while the critical value shifts to A4, = 40 for a droplet with viscosity ratio
A =10 (see figure 6).

The experimentally reported values of surface dilational viscosity are found to
be much larger than surface shear viscosity as Ags > O(1) for most interfacial
monolayers. For instance, the interfacial viscosity ratio estimates of lipid monolayer
dipalmitoylphosphatidylcholine and dimyristoylphosphatidylethanolamine are reported to
be Ags ~ O(10%) (Krégel et al. 1996; Kim et al. 2011). Surface rheological studies of
various interfacial monolayers have shown Ag; ~ O(10%) for poly(z-butyl methacrylate)
system (Krigel et al. 1996; Samaniuk & Vermant 2014), Ay ~ 0(10%) for hexadecanol
interface (Verwijlen et al. 2013; Samaniuk & Vermant 2014), A4 ~ O(1) for protein
B-casein monolayer (Freer ef al. 2004; Erni, Windhab & Fischer 2011) and A5 ~ 0(10%
for viscoelastic globular protein ovalbumin interface (Erni et al. 2003; Xiong et al. 2018).
The results shown in figures 4, 5 and 6 suggest that the combined influence of surface
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Figure 7. Critical capillary number Cac versus viscosity ratio A for a clean droplet and a droplet with surface
viscosity. The solid lines correspond to boundary-element simulations, while the dashed lines correspond to
second-order perturbation theories (Narsimhan 2019; Singh & Narsimhan 2020). (a) Effect of surface dilational
viscosity. (b) Effect of surface shear viscosity. (¢) Effect of equal surface shear and dilational viscosity.

shear and dilational viscosity will increase the droplet deformation compared with a clean
droplet at the same capillary number for most surfactant systems.

The next part of this section examines how interfacial viscosity alters the critical
capillary number Cac for drop breakup. The critical capillary number Cac is defined
as the largest value of Ca below which the droplet will attain a steady-state deformation
under flow (Ju,| < 0.01 at all collocation points). Above this capillary number, the droplet
will keep deforming and become unstable. Figure 7 compares the variation of Cac with
viscosity ratio A from the small deformation theories (represented by dashed lines) and
numerical simulations (represented by bold lines). From figure 7(a), we can see that the
surface dilational viscosity reduces Cac of the droplet compared with a clean droplet at
the same viscosity ratio 4. When 4 > 4, we observe that Cac of a droplet with dilational
viscosity is nearly the same as Cac of a clean droplet from both theory and simulations. In
contrast, we observe that the surface shear viscosity increases Cac compared with a clean
droplet at the same A (figure 7b). From figure 7(c), we can see the effect of equal surface
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Figure 8. Steady-state droplet shapes at Ca = 0.04 for four different cases: (@) Bg,, =2,Bg, =0 and 1 =
0.1; (b) Bg, =0,Bg, =2 and 1 =0.1; (¢) Bq, = 2,Bq =0 and A = 10; (d) Bq, =0,Bg. =2 and A =
10. Shapes drawn using red dots are from second-order perturbation theories (Narsimhan 2019) and shapes
drawn with dashed lines are from boundary-element simulations. The vectors shown in the droplet’s upper half
represent the computed traction from interfacial viscosity (2.5) and (2.6). For a clean droplet, Dzayor = 0.137
at A = 0.1 and Drayjor = 0.187 at 4 = 10.

shear and dilational viscosities on Cac. In this case, the Cac values are lower than that of
the clean droplet for viscosity ratio 4 < 0.4 and are higher than that of the clean droplet for
viscosity ratio 4 > 0.4. The numerical results from boundary-element simulations are in
good qualitative agreement with the small deformation theories for the three cases shown
in figure 7. Previous studies examining clean droplets under extensional flow have also
reported the Cac values from analytical theories to be within 15 % agreement with the
numerical results (Rallison & Acrivos 1978), which is what we observe here.

Figure 8 shows steady-state droplet shapes at Ca = 0.04 for a droplet with pure surface
shear viscosity Bq, = 2, Bq, = 0 (figure 8a,c) and a droplet with pure surface dilational
viscosity (figure 8b,d) at viscosity ratio values 4 = 0.1 and A = 10. The vectors shown in
the droplet’s upper half represent the computed traction from interfacial viscosity (2.5) and
(2.6). As can be seen from figure 8, the droplet shapes from boundary-element simulations
(drawn using dashed lines) match well with the droplet shapes from second-order
perturbation theories (drawn using red dots). For a clean droplet, Dy = 0.137 at
A= 0.1 and D7yyjor = 0.187 at A = 10. In the case of a droplet with pure surface shear
viscosity (figure 8a,c), the shear traction opposes the surface velocity gradients and
reduces the droplet deformation compared with the clean droplet. For a droplet with pure
dilational viscosity, the expression of dilational traction (2.5) mimics the formulation of
variable surface tension. The influence of surface dilational viscosity can be seen as an
‘effective’ surface tension (Singh & Narsimhan 2021):

O_eﬁ’ective =0 + Bq (Vs - uy). 3.1

The negative divergence of velocity in the droplet’s pole reduces the effective surface
tension in the pole region, and we observe that the droplet with surface dilational viscosity
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Figure 9. Variation of Cac with Ay for a droplet with Bg = 2 at Pe; values 0.01, 1, 10 and 1000. The dashed
horizontal lines denote Cac of the droplet in the absence of surface viscosity, i.e. Bg = 0. The dimensionless

parameters are: A = 1, E = 0.2 and Fogl =0.5.

is more deformed than a clean droplet at the same Ca (figure 8b,d). The effect of
surface dilational viscosity appears similar to the influence of surfactant convection.
When a droplet is placed under extensional flow, the surfactant gets swept towards the
droplet’s pole. The higher surfactant concentration in the pole region reduces the effective
surface tension and increases the droplet deformation (Pawar & Stebe 1996; Feigl et al.
2007).

From figure 8, we can see that the interfacial traction acting on the droplet’s surface
is more significant at 4 = 0.1 than at 4 = 10 for both surface shear and dilational
viscosity (see scale for heat map). As a result, the surface viscosity influences the droplet
deformation and Cac more strongly at lower values of viscosity ratio than higher values,
as can be seen from figure 7.

3.2. Combined influence of constant surface viscosity and surfactant transport

As the droplet deforms under extensional flow, the surfactant can get swept from the
droplet’s equator towards the droplet’s poles leading to non-homogeneous surfactant
distribution. In this section, we include the effect of Marangoni stresses on droplet
deformation and breakup, assuming the surface viscosity remains constant on the
interface.

Figure 9 shows the variation of Cac with Ay, for a droplet with Bg = 2 at surface Péclet
number values 0.01, 1, 10 and 1000. The values of dimensionless parameters are: 4 = 1,
E =0.2and Fogl = 0.5. The dashed horizontal lines in the figure denote Cac of a droplet
without surface viscosity, i.e. Bg = 0. We observe that the critical capillary number Cac
decreases upon increasing A5 and approaches Cac of a droplet with pure surface dilational
viscosity at Ag; = 0o. The surface viscosity does not significantly impact droplet breakup
at higher values of surface Péclet number (Pe; = 10 and Pey; = 1000). We find the Cac
values for a droplet with interfacial viscosity to be the same as that without interfacial
viscosity at Pe; = 1000.

Figure 10(a) shows the droplet shapes at Pe; = 0.01 and Pey; = 1000 for a droplet
with interfacial viscosity Bg = 2 and Ag; = 1. The values of dimensionless parameters
are: Ca=0.05,1=1, E=0.4 and Fogl = 0.5. The droplet at surface Péclet number
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Figure 10. (a) Steady-state droplet shapes at Pe; = 0.01 and Pey; = 1000 for a droplet with B¢ =2 and A4; = 1.
(b) Variation of tangential component of interfacial traction (shown by bold curves) and Marangoni traction
(shown by dashed curves) with normalized arclength s for the droplet shapes shown in (a). The values of

dimensionless parameters are: Ca = 0.050, A = 1, E = 0.4 and Fogl =0.5.

Pe = 0.01 appears less deformed than the droplet at Pe = 1000. Figure 10(b) shows the
variation of tangential interfacial traction and Marangoni forces acting along the droplet’s
surface with normalized arclength s for the shapes shown in figure 10(a). At Pe = 0.01,
we observe that the Marangoni effects are negligible compared with the surface viscosity
effects. In contrast, at Pe = 1000, the traction contribution from interfacial viscosity is
much smaller than the Marangoni forces. As a result, the interfacial viscosity has a
negligible impact on droplet deformation and breakup at large Pey, and the Cac values
approach the results for a droplet with only surfactant transport (as was observed in
figure 9).

Figure 11 shows the variation of Cac with Bg for a droplet with equal surface shear and
dilational viscosity A4 = 1. The values of dimensionless parameters are: A = 1, £ = 0.2
and Fogl = 0.5. Similar to the case of constant surface viscosity (figure 7¢), for a droplet
with surfactant transport, we observe that the droplet with equal interfacial viscosities has
a higher Cac than that of a droplet without interfacial viscosity. We observe that increasing
the interfacial viscosity has a higher impact on Cac at Pe; = 0.01 than at Pe; = 10. The
interfacial viscosity has a negligible impact on Cac at Pe; = 1000.

3.3. Influence of pressure-dependent surface viscosity

Previous literature has shown that the surface viscosity can change sharply with surface
pressure (Kurtz et al. 2006; Kim et al. 2011; Fuller & Vermant 2012; Kim et al. 2013;
Samaniuk & Vermant 2014). Here we discuss how the pressure-dependent surface shear
and dilational viscosity enhance/reduce the droplet deformation and critical capillary
number compared with the case of I7-independent surface viscosity. We include the effect
of surfactant transport as in § 3.2, but now also let the surface viscosity vary with surfactant
concentration.

We first discuss the impact of pressure-dependent surface shear viscosity on droplet
deformation and breakup. Figure 12 shows the evolution of droplet shapes with
time for a pressure-thinning surfactant with /7, = 0.25 (shown in figure 12a4) and a
pressure-thickening surfactant with 77, = 0.25 (shown in figure 12b) at capillary number
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Figure 11. Variation of Cac with Bq = Bq, + Bg, for a droplet with interfacial viscosity ratio A4, =1 at
surface Péclet number values Pe; = 0.01, 1, 10 and 1000. The values of dimensionless parameters are: 1 = 1,
E=02and 'y, = 2.
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Figure 12. Time evolution of a droplet with pressure-dependent interfacial shear viscosity Bg,, .4 = 2.0: (@)
I1. = 0.25, pressure-thinning; (b) I1. = 0.25, pressure-thickening. The values of dimensionless parameters
are: =1, E =04, 5 =2, Ca=0.08 and Pe; = 0.01.

Ca = 0.08. The values of dimensionless parameters are: 4 =1, Peg = 0.01, E = 0.4,
I'so =2, Bqy,eq = 2 and Bgy.q = 0. The droplet with IT-thinning surfactant eventually
attains a stable shape under flow at time # = 5.4. In contrast, at the same capillary number,
the droplet with I7-thickening surfactant deforms continuously with time and becomes
unstable. In figure 13, we plot the variation of Bg,, and surfactant concentration I" with
normalized arclength s (s = 0 and s = 1 at the droplet’s two poles) for the droplet shapes
shown in figures 12(a) and 12(b) at t = 5.4. At Pe = 0.01, the diffusion of the surfactant
along the droplet’s interface dominates over the surfactant convection. As a result, we
observe a homogeneous distribution of surfactant on the droplet’s surface and I" < 1
over the entire droplet interface for /7-thickening and I7-thinning surfactant. The lowered
surfactant concentration over the droplet’s surface also lowers the droplet’s Bg,, for a
IT-thickening surfactant and increases the droplet’s Bg,, for a I1-thinning surfactant. As a
result, the droplet with I7-thinning surfactant breaks at a higher Ca than the droplet with
IT-thickening surfactant. Tables 2 and 3 compare Cac of a droplet with a I7-thickening,
IT-thinning and [7-independent surfactant at surface elasticity numbers E = 0.4 and
E = 2, respectively.
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Figure 13. Variation of Bg, and surface concentration I" with the normalized arclength s corresponding to
the droplet shapes shown in figure 12 at time ¢ = 5.4.

Pressure- Pressure- Pressure- Pressure-

thinning thinning Pressure- thickening thickening

(I1. =0.1) (I1, = 0.25) independent (I1, = 0.25) 1, =0.1)
Ags =0 0.085 0.080 0.078 0.076 0.074
Ags = 00 0.057 0.058 0.058 0.059 0.059

Table 2. Values of Cac of a droplet with Bgey =2,1=1.0, E = 0.4, [',c = 2 and Pe; = 0.01.

Pressure-thinning Pressure-thickening
(1. = 0.5) Pressure-independent (r1. = 0.5)
Ags =0 0.098 0.089 0.083
Ags = 00 0.068 0.069 0.069

Table 3. Values of Cac of a droplet with Bgey =2,1= 1.0, E =2, ', =2 and Pe; = 0.01.
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Figure 14. Time evolution of a droplet with pressure-dependent interfacial shear viscosity Bg,, ., = 2.0: (a)
11, = 0.25, pressure-thinning; (b) 1. = 0.25, pressure-thickening. The values of dimensionless parameters
are: A=1,E =04, I'nc =2, Ca = 0.056 and Pe; = 10.0.
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Figure 15. Variation of Bg,, and surface concentration I" with the normalized arclength s corresponding to
the droplet shapes shown in figure 14 at time ¢ = 8.4.

Figure 14 shows the evolution of droplet shapes with time for a pressure-thinning
surfactant with I7. = 0.25 (shown in figure 14a) and a pressure-thickening surfactant
with T, = 0.25 (shown in figure 14b) at Ca = 0.056, but now the Péclet number is large
(Pey = 10). Here also we observe that the droplet with [7-thinning surfactant attains a
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Figure 16. Time evolution of a droplet with pressure-dependent interfacial dilational viscosity Bg, ¢y = 2.0:
(a) I, = 0.25, pressure-thinning; (b) I1. = 0.25, pressure-thickening. The values of dimensionless parameters
are: A =1,E =04, I'xc =2, Ca =0.059 and Pe; = 0.01.

stable shape under flow while the droplet with I7-thickening surfactant becomes unstable.
Figure 15 shows the variation of Bg, and surfactant concentration I" with normalized
arclength s for the droplet shapes shown in figures 14(a) and 14(b) at t = 8.4. At Pe; = 10,
we observe that the surfactant gets convected towards the droplet’s pole leading to I" > 1
in the pole region and I < 1 in the equator region. The lowered surfactant concentration
in the equator region for a droplet with I7-thinning surfactant increases the droplet’s
Bg,, and surface shear traction acting on the droplet’s equator. For a droplet with only
surface shear viscosity, what matters is traction near the droplet’s equator and not traction
near the droplet’s poles, as was discussed for figure 8. As a result, the droplet with
pressure-thinning surfactant breaks at a larger Ca than the droplet with pressure-thickening
surfactant (Cac of a droplet with pressure-thinning surfactant is 0.056, while Cac of a
droplet with pressure-thickening surfactant is 0.054). We observe similar behaviour of
pressure-dependent surface viscosity at a higher value of surface elasticity number. At
E =2, Cac of a droplet with pressure-thinning surfactant is 0.067, while Cac of a droplet
with pressure-thickening surfactant is 0.064.

Next we discuss the impact of a I7-thickening and I7-thinning surfactant on a droplet
with only surface dilational viscosity. Figure 16 shows the droplet shape evolution for a
pressure-thinning and pressure-thickening surfactant (figure 16a,b). Unlike surface shear
viscosity, here we see that the droplet with I7-thickening surfactant attains a stable shape
and the droplet with I7-thinning surfactant becomes unstable. Here, for a droplet with
IT-thickening surfactant, the lowered surfactant concentration due to strong diffusive
effects lowers the droplet’s Bg, and increases Cac compared with a I7-thinning surfactant.
Table 2 compares Cac of a droplet with a I7-thickening, IT-thinning and I7-independent
surfactant at Pe; = 0.01. From table 2 we can see that the effects of I7-thickening and
I1-thinning surfactant are not very pronounced for a droplet with only dilational viscosity
compared to a droplet with only surface shear viscosity.

In the case of a droplet with only surface dilational viscosity at Pe; = 10, we do not
observe a difference in Cac for I1-thickening and I7-thinning surfactant. The convection
of surfactant towards the droplet’s pole at Pey; = 10 increases/decreases the droplet’s
Bg, in the pole region for IT-thickening/thinning surfactant, and we observe the droplet
with [7-thickening surfactant is slightly more deformed compared with the droplet with
IT-thinning surfactant. Because we do not observe a significant difference in deformation
at large Peg for a droplet with only surface dilational viscosity, the results for the
IT-thickening and I7-thinning surfactant for this case are omitted in the paper.
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Figure 17. Variation of Bg, and surface concentration I” with the normalized arclength s corresponding to
the droplet shapes shown in figure 16 at time ¢ = 6.7.

4. Results: droplet relaxation in quiescent fluid

In this section, we discuss the combined influence of surface viscosity and surfactant
transport on the relaxation of an initially extended droplet in a quiescent flow. For
the results presented in this section, a spherical droplet of radius R’ at a given set of
non-dimensional parameters is first stretched under extensional flow to a specified initial
non-dimensional length L = L'/R’, where L' is the length of the droplet’s major axis. The
flow is then stopped to examine the relaxation of the extended droplet in the now quiescent
external fluid.

In the absence of external flow, we non-dimensionalize all lengths by R’, viscosities by
the outer fluid viscosity n’, velocities by o,, /7', time by R'n’/o,,, bulk stresses by o, /R’
and surface stresses by o,,. The interfacial surfactant concentration and surface tension
are normalized by their equilibrium values I, and o, on a spherical droplet of radius R’
placed under no external flow.

The non-dimensionalized time-dependent convection—diffusion equation in the absence

of flow can be written as

E—I—Vs-(Fu,)—I—F(Vs-n)(us-n)= ;VSF. 4.1
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Figure 18. Relaxation of an initially extended droplet in a stagnant fluid for three cases having the same
initial shape (L = 16.0) over time: (a) droplet with surface shear viscosity (Bg, = 1, Bg, = 0), (b) clean
droplet (Bg,, = 0, Bg, = 0) and (c) droplet with surface dilational viscosity (Bg,, = 0, Bg, = 1). The values
of dimensionless parameters are: A = 1, E = 0.2, [ oo =2 and y = 1.0.
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Figure 19. Relaxation of an initially extended droplet in a stagnant fluid for three cases having the same
initial shape (L = 16.0) over time: (a) droplet with surface shear viscosity (Bg, = 1, Bg, = 0), (b) clean
droplet (Bg,, = 0, Bg, = 0) and (c) droplet with surface dilational viscosity (Bg,, = 0, Bg, = 1). The values
of dimensionless parameters are: A = 1, E =2, [, =2and y = 1.

The non-dimensional parameter y = R'o,,/Din’ in the above equation denotes the ratio

of diffusive time scale R’ /Dy to capillary time scale R'n’ /o,

Figure 18 shows the droplet relaxation of an initially extended droplet with initial length
L = 16 for three cases: droplet with only surface shear viscosity (Bg,, = 1, Bg, = 0), clean
droplet (Bg,, = 0, Bq, = 0) and droplet with only surface dilational viscosity (Bg, = 0,
Bg, = 1). The values of dimensionless parameters are: A =1, E=0.2, I, =2 and
y = 1.0. As we can see, both clean droplet and droplet with surface dilational viscosity
eventually break up by an end-pinching mechanism. In the case of the droplet with surface
shear viscosity, the droplet becomes stable and eventually returns to a spherical shape.

In the next example shown in figure 19, we keep all the parameters the same as in
figure 18 but increase the E from 0.2 to 2. At E = 2, the higher sensitivity of surface
tension to surfactant concentration enhances the Marangoni stresses and reduces the
effective surface tension. As a result of these two effects, the initial shapes at £ = 2 have
less pronounced bulging ends than the initial droplet shapes shown at E = 0.2 in figure 18.
Here also, we observe that the droplet with surface shear viscosity eventually returns to
a spherical shape. In the case of clean droplet and droplet with only surface dilational
viscosity, the droplet breaks into two smaller droplets.

In figure 20, we examine the relaxation of a droplet with very low viscosity ratio
A= 0.01 and initial extension L = 10 for three cases: a clean droplet (Bg, =0, Bg, =
0), a droplet with equal surface viscosity (Bg = 0.4, A4s = 1) and a droplet with only
surface shear viscosity (Bg = 0.4, 15, = 0). The values of dimensionless parameters are:
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Figure 20. Relaxation of an initially extended droplet in a stagnant fluid for three cases having the same initial
shape (L = 10.0) over time: (a) clean droplet (Bg, = 0, Bg, = 0), (b) droplet with equal surface viscosity
(Bg,, = 0.2, Bq,, = 0.2) and (c) droplet with only surface shear viscosity (Bg,, = 0.4, Bq, = 0.0). The values
of dimensionless parameters are: 4 = 0.0, E =2, [, =2and y = 1.

A=19

Figure 21. Droplet shapes at different values of A4, having the same axial extension L = 10. The values of
dimensionless parameters are: A = 0.01,Bq =04, E =2,y =2andy = 1.

E =2,y =2and y = 1.0. We observe that the clean droplet becomes unstable with the
eventual breaking of the thin filaments from the droplet’s poles. In the case of a droplet
with surface viscosity (figure 20b,¢), the middle portion of the droplet gradually reduces
to an almost spherical shape. The droplet’s poles form very small droplets that appear to
pinch off from the parent droplet at times = 3.9 and ¢ = 6.2, respectively. We observe
that the droplet with surface viscosity has a higher breakup time than the clean droplet.
Figure 21 shows droplet shapes at different values of 145 having the same axial extension
L = 10. The values of dimensionless parameters are: A = 0.01,Bq =04, E =2, =2
and y = 1. We see that droplets with a higher value of interfacial viscosity ratio A4, have
more pronounced pointed ends than droplets with a lower value of Ay4;. At higher values
of interfacial viscosity ratio A4 > 7, the droplet breakup under relaxation will be similar
to that of a clean droplet.

In figure 22, we examine the relaxation of a droplet with viscosity ratio 4 = 0.05 and
initial extension L = 10 for four cases: droplet with surface shear viscosity (14 = 0) and
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Figure 22. Relaxation of an initially extended droplet in a stagnant fluid for four cases having the same initial
shape (L = 10.0) over time: (a) droplet with surface shear viscosity (4g; = 0) and E = 0.4, (b) droplet with
equal surface viscosity (145 = 1) and E = 0.4, (c) droplet with surface shear viscosity (14s = 0) and E = 2.0
and (d) droplet with equal surface viscosity (44 = 1) and E = 2.0. The values of dimensionless parameters
are: 1 = 0.05, Bg = 0.4, ['xc =2 and y = 100.
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Figure 23. Droplet shapes at different combinations of A4 and y with the same axial extension L = 10. The
values of dimensionless parameters are: 4 = 10, Bg = 0.4, E = 0.4 and I, = 2.

E = 0.4, droplet with equal surface viscosity (145 = 1) and E = 0.4, droplet with surface
shear viscosity (dgs = 0) and E = 2.0 and droplet with equal surface viscosity (dgs = 1)
and E = 2.0. The values of dimensionless parameters are: 4 = 0.05, Bq = 0.4, ['(c =2
and y = 100. At E = 0.4, the droplet with only surface shear viscosity (143 = 0) and the
droplet with equal viscosity (dg4s = 1) form very small droplets at the poles that appear to
pinch off from the parent droplet at times t = 14 and ¢ = 11.2, respectively. At E = 2, the
droplet with only surface shear viscosity gradually relaxes into a spherical shape while the
droplet with equal surface viscosity breaks and forms daughter droplets at the poles.

Figure 23 shows droplet shapes at different combinations of A4, and y with the same
axial extension L = 10. The values of dimensionless parameters are: A = 10, Bg = 0.4,
E =0.4 and Iy, = 2. At a higher value of viscosity ratio 4 = 10, the droplet shapes at
different values of A are similar for the same initial axial extension and y value. Droplet
shapes at y = 100 form pointed ends due to stronger convection of surfactant towards
the droplet’s ends. We see that irrespective of the interfacial viscosity ratio A4 and y
values, the droplet eventually returns to a spherical shape. The relaxation of a droplet with
Ags = oo and y = 100 is shown in figure 24.
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Ay, =00, =100

t=558

Figure 24. Relaxation of an initially extended droplet with surface dilational viscosity (145 = oo, Bg = 0.4)
and viscosity ratio A = 10 in a stagnant fluid with initial shape L = 10.0 over time. The values of dimensionless
parameters are: E = 0.4, 5o =2 and y = 100.

5. Conclusion

In this paper, we numerically investigated the effect of surface shear and dilational
viscosity on single-droplet dynamics in an axisymmetric domain under the Stokes flow
regime. We modelled the droplet rheology using the Boussinesq—Scriven constitutive
relationship. We examined how the interfacial viscosity alters the steady-state deformation
and the critical capillary number for droplet breakup under uniaxial extensional flow at
different values of the droplet’s viscosity ratio and surfactant transport parameters. We
also discussed the impact of surface viscosity on the relaxation dynamics of an initially
extended droplet in a stagnant external fluid.

In the case of a droplet with constant surface viscosity, we found that our numerical
results for the Taylor deformation parameter are in good quantitative agreement with

second-order perturbation theories up to O(Ca?). The critical capillary numbers from
our boundary-element analysis are found to be within 15 % of the theoretical results.
Similar correlations have been reported in previous literature examining clean droplet
deformation and breakup under extensional flow (Rallison & Acrivos 1978). We observed
that the surface shear/dilational viscosity increases/decreases the critical capillary number
for droplet breakup by reducing/increasing the droplet deformation at a given capillary
number and viscosity ratio compared with a clean droplet. We found that the isolated
effect of surface viscosity increases the steady-state droplet deformation compared with
a clean droplet for droplets with Ags > O(1). This will be the case for the majority of
surfactant systems as the experimentally reported values of surface dilational viscosity are
reported to be several orders of magnitude higher than the surface shear viscosity (Krigel
et al. 1996; Erni et al. 2003; Freer et al. 2004; Erni et al. 2011; Kim et al. 2011; Verwijlen
et al. 2013; Samaniuk & Vermant 2014; Xiong et al. 2018).

We also discussed the combined influence of surface viscosity and surfactant transport
on droplet deformation and breakup. We incorporated the effect of surfactant transport by
assuming the Langmuir equation of state to correlate interfacial tension with surfactant
concentration changes. We observed that the critical capillary number decreases upon
increasing the interfacial viscosity ratio A4 at different values of surface Péclet number.
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Pressure-thinning Pressure-thickening
Pe; = 0.01 Lower Higher
Pe; = 10 Lower Higher

Table 4. Changes in Taylor deformation parameter D7y, of a droplet with pressure-dependent surface shear
viscosity relative to the pressure-independent case.

Pressure-thinning Pressure-thickening
Pe; = 0.01 Higher Lower
Pe; = 10 Lower Higher

Table 5. Changes in Taylor deformation parameter Dyyyo, of a droplet with pressure-dependent surface
dilational viscosity relative to the pressure-independent case.

At high values of surface Péclet number, the Marangoni effects dominate over the effect
of interfacial viscosities and Cac of a droplet with surface viscosity is found to be
the same as that of a clean droplet. We investigated the effect of I7-thickening and
IT-thinning surfactants on droplet deformation and breakup by assuming an exponential
dependence of surface viscosity on surface pressure. For a droplet with surface shear
viscosity, at both low and high values of surface Péclet number, we observed that droplets
with pressure-thinning/thickening surfactant have higher/lower Cac than droplets with
pressure-independent surfactant. However, the effect of surface viscosity on Cac is not
very pronounced at Pe; = 10. In contrast, for a droplet with surface dilational viscosity, at
a low value of Peg, a droplet with pressure-thinning/thickening surfactant has lower/higher
Cac compared with a droplet with pressure-independent surfactant. For a droplet with
surface dilational viscosity, at a high value of Pey, a droplet with I7-thickening surfactant
is observed to be only slightly more deformed than a droplet with I7-thinning surfactant,
and we do not observe a significant difference in Cac. Tables 4 and 5 summarize how the
Taylor deformation parameter results for a droplet with pressure-dependent surface shear
and dilational viscosity differ from those for the pressure-independent case, respectively.

We also discussed the influence of interfacial viscosity on the relaxation of an initially
extended droplet in a quiescent fluid at different values of droplet viscosity ratio 4 (0.01,
0.05, 1 and 10), elasticity number E (0.2, 0.4 and 2) and surfactant parameter y (1 and
100) that denotes the ratio of diffusive time scale to capillary time scale. At a low value of
A = 0.01, a droplet with surface viscosity eventually breaks and forms daughter droplets
irrespective of the interfacial viscosity ratio. In contrast, at a high value of A, a droplet
with surface viscosity relaxes into a stable spherical shape irrespective of the interfacial
viscosity ratio. At a moderate value of A = 1, we observe that surface dilational viscosity
aids in end pinching while surface shear viscosity suppresses the effect, and the droplet
relaxes into a stable spherical shape. In cases where a droplet with surface viscosity
breaks under relaxation, we observe that the droplet takes a longer time to pinch off
compared with a clean droplet. We observe that a high value of elasticity number E = 2
suppresses/delays the pinch-off compared to low values of elasticity number (£ = 0.2 and
E =0.4).
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