# On groups with extremal blocks 

## Marcel Herzog

Let $G$ be a finite group. It is shown that $G$ is 2-closed if and only if
(a) every 2-block of $G$ has full defect, and
(b) every Sylow 2-intersection is centralized by a Sylow 2-subgroup of $G$.

As a consequence it is shown that $G$ is a $T I$-group if and only if every 2 -block of $G$ has either full defect or defect zero and (b) holds. This result and a theorem of Kwok yield complete characterizations of finite groups with certain relations being satisfied by every nonprincipal irreducible character.

## 1. Introduction

Let $G$ be a finite group. It is well known that if $G$ is 2-closed (has a normal Sylow 2-subgroup), then every 2-block of $G$ has full defect. It is also well known [9] that if $G$ is a TI-group (the intersection of distinct Sylow 2-subgroups of $G$ is the identity), then every 2-block of $G$ has either full defect or defect zero. Since the Mathieu groups $M_{22}$ and $M_{24}$ have only one 2-block, the converses of the above statements are false.

In Section 2, 2-closure and the TI-property are characterized by means of the defects of $2-b l o c k s$ and the following property:

CI: every 2-Sylow intersection in $G$ is centralized by a Sylow 2-subgroup of $G$.

[^0]A 2-Sylow intersection is an intersection of two distinct Sylow
2-subgroups of $G$. Theorem 1 generalizes a theorem by Harada [6] concerning the 2 -closure property of groups with abelian Sylow 2-subgroups.

In Section 3, the results of Section 2 are applied to the following problem: suppose that $g \in G^{\#}, k$ is a complex number and the following property holds:

$$
\begin{array}{ll}
\text { CD: } & X(1)-X(g)=k \text { for all nonprincipal irreducible characters } \\
X \text { of } G .
\end{array}
$$

It was shown by Kwok [7] that groups with the CD-property have elementary abelian Sylow 2-subgroups. In Theorem 3, groups with the CD-property are completely characterized.

## 2. On 2-closed groups and $T I$-groups

The main result of this section is the following:
THEOREM 1. Let $G$ be a finite group. Then $G$ is 2-closed if and only if the following conditions are satisfied:
(a) every 2-block of $G$ has full defect; and
(b) $G$ has the CI-property.

Proof. If $G$ is 2-closed, then ( $a$ ) follows and ( $b$ ) is void.
So suppose that $G$ is of minimal order among those groups which satisfy ( $a$ ) and ( $b$ ), but are not 2 -closed.

Case 1. $G$ is a $T I$-group with a cyclic or generalized quaternion Sylow 2-subgroup. By [8], Theorem 3, $G$ contains a normal subgroup $N$ of odd order such that $G / N$ is 2-closed and contains a single involution. Let $x$ be an involution in $G$ and let $H=\langle x\rangle N$. Then $H$ is normal in $G$ and contains all involutions of $G$. Suppose that the inertia group $T_{H}(\theta)$ of every irreducible character $\theta$ of $N$ in $H$ is $H$. Then, by [2], (9.10) and (9.12), if $X$ is an irreducible character of $H$, then $X_{N}$ is an irreducible character of $N$. Thus, by [4], Lemma (3D), $H=\langle x\rangle \times N$, a contradiction, since $G$ is a $T I$-group, but not a 2-closed one. Thus let $\theta$ be an irreducible character of $N$ satisfying
$T_{H}(\theta)=N$. Let $X$ be an irreducible constituent of $\theta^{G}$; then, by [2], (9.11), $X$ belongs to a block of defect zero, a contradiction.

Case 2. $G$ is a $T I$-group not covered by Case 1. Again by [8], Theorem 2, $G$ has a single chief factor of even order which is isomorphic to a simple group with an irreducible character of order $|G|_{2}$. Thus, by Clifford's Theorem, $G$ has an irreducible character divisible by $|G|_{2}$, in contradiction to (a).

Case 3. $G$ is not a $T I$-group. Let $x$ be an involution belonging to distinct Sylow 2-subgroups of $G . B y(b)$ and by [5], Lemmas 3.1 and 3.3, $H=C_{G}(x)$ is not 2-closed and satisfies (b). Thus either $G=H$ or $H$ does not satisfy (a).

If $G=H$, consider $N=G /\langle x\rangle$. By [5], Lemma 3.3, $N$ satisfies (b) and by [3], Chapter V, (4.5), $N$ satisfies (a). Thus, by induction, $N$ is 2-closed and hence so is $G$, a contradiction.

So suppose, finally, that $H$ does not satisfy (a). Let $D$ be a defect group of a 2-block in $H$ satisfying $2^{d}=|D|<|G|_{2}$. Then, by [9], $D$ is a Sylow 2-intersection, which implies, in view of ( $b$ ), that $C_{H}(D) \cdot D=C_{H}(D)=C_{G}(D)$. Hence, by [1], (5A), $C_{G}(D)$ has a block of defect $d$, and again by [1], (5C), it follows in view of (b) that $G$ has a block of defect $d$, a final contradiction.

Theorem 1 yields rather easily the following:
THEOREM 2. Let $G$ be a finite group. Then $G$ is a TI-group if and only if the following conditions are satisfied:
(a) every 2-block of $G$ has either full defect or defect zero; and
(b) $G$ has the CI-property.

Proof. If $G$ is a $T I$-group, then ( $b$ ) is trivial and ( $a$ ) holds by [9].

So suppose that $G$ satisfies $(a)$ and $(b)$, but it is not a $T I$-group.

Let $u$ be an involution belonging to distinct sylow 2-subgroups of $G$. Denote $C_{G}(u)$ by $H$; then (b) implies $|H|_{2}=|G|_{2}$ and by [5], Lemma 3.1, $H$ is not 2-closed. Suppose that $D$ is a defect group of a 2-block of $H$ satisfying $|D|=2^{d}<|G|_{2}$. Then, as in the final argument of the proof of Theorem l, $G$ has a 2-block of defect $d$. By (a), $d=0$, in contradiction to the fact that $u \in D$. Therefore $H$ has blocks of full defect only, and by Theorem $1, H$ is 2-closed, a final contradiction.

## 3. Characterization of CD-groups

Theorem 2 and [7] yield the following:
THEOREM 3. Suppose that $g$ is a nonidentity element of a finite group $G$, and let $k$ be a complex number. Then the equality

$$
\begin{equation*}
X(1)-X(g)=k \tag{1}
\end{equation*}
$$

holds for all nonprincipal irreducible characters $X$ of $G$ over the complex field if and only if $g$ is an involution, $k=|G|_{2}=2^{n}$, and either
(i) $G=(g) N$, with $N$ an abelian normal subgroup of $G$ of odd order and $(g)=C_{G}(g)$, or
(ii) $G \cong \operatorname{PSL}\left(2,2^{n}\right), \quad n \geq 2$.

Proof. If $g$ is an involution and either $(i)$ or ( $i i$ ) holds, then it is easy to check that (1) is satisfied with $k=|G|_{2}$.

So suppose that (1) is satisfied. Then by [7], $g$ is an involution, a Sylow 2-subgroup $S$ of $G$ is elementary abelian, $k=|S|=2^{n}$ and $G$ has one conjugacy class of involutions. In addition, if $G$ is simple, then by [7] either $|G|=2$ or $G \cong \operatorname{PSL}\left(2,2^{n}\right)$.

Since $g$ is an involution and $G$ possesses only one conjugacy class of those, it follows by (1) and the fact that $k=|G|_{2}$ that $G$ has no proper normal subgroups of even order. Thus $G / O(G)$ is a simple group satisfying (l) with respect to $g O(G)$. Consequently, either $|G / O(G)|=2$
or $G / O(G) \cong \operatorname{PSL}\left(2,2^{n}\right)$.
In the former case $k=2$ and by (1), $G^{\prime}=O(G)$. It follows also by (1) that if $X(1)>1$, then $X(g) \geq 0$. Thus the nonprincipal linear character is the only one which takes a negative value -1 on $g$. The orthogonality relations hence imply that $X(g)=0$ for every nonlinear character $X$ of $G$. Thus $C_{G}(g)=2$ and $G$ is of type ( $i$ ).

It remains to deal with the case $G / O(G) \cong \operatorname{PSL}\left(2,2^{n}\right)$. Suppose that $G$ has a 2-block $B$ of defect $a, 0<a<n$. Then by [3], Chapter IV, (3.14),

$$
\sum X(1) X(g)=0,
$$

where the summation ranges over all $X \in B$. Since $0<a$, it follows by (1) that $X(g) \neq 0$ for every $X \in B$. Thus there exists $Y \in B$ such that $I^{\prime}(g)<0$. However, since $G$ has elementary abelian Sylow 2-subgroups and one conjugacy class of involutions, it follows that

$$
Y(1)+(k-1) Y(g) \geq 0
$$

This inequality, together with (1), yields

$$
k+k Y(g) \geq 0
$$

hence $Y(g)=-1$ and $Y(1)=k-1$. This is a contradiction since $Y(1)$ is odd and $a<n$. Thus $G$ satisfies conditions ( $a$ ) and ( $b$ ) of Theorem 2 and consequently $G$ is a $T I$-group. It follows by [8], Theorem 6 and remarks, in view of the fact that $G$ has no proper normal subgroup of even order, that $G \cong \operatorname{PSL}\left(2,2^{n}\right)$, as required.

## References

[1] Richard Brauer, "On blocks and sections in finite groups. I", Amer. J. Math. 89 (1967), 1115-1136.
[2] Walter Feit, Characters of finite groups (Benjamin, New York, Amsterdam, 1967).
[3] Walter Feit, Representation of finite groups (Department of Mathematics, Yale University, New Haven, Connecticut, 1969).
[4] P. Fong, "On the characters of p-solvable groups", Trans. Amer. Math. Soc. 98 (1961), 263-284.
[5] Kensaku Gomi, "Finite groups with central Sylow 2-intersections", J. Math. Soc. Japan 25 (1973), 342-355.
[6] Koichiro Harada, "On groups all of whose 2-blocks have the highest defects", Nagoya Math. J. 32 (1968), 283-286.
[7] Chung-Mo Kwok, "A characterization of PSL (2, $2^{m}$ )", J. AZgebra 34 (1975), 288-291.
[8] Michio Suzuki, "Finite groups of even order in which Sylow 2-groups are independent", Ann. of Math. (2) 80 (1964), 58-77.
[9] John G. Thompson, "Defect groups are Sylow intersections", Math. Z. 100 (1967), 146.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.


[^0]:    Received 21 January 1976. The author is grateful to Professor Tom Berger for his constructive suggestions.

