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ATTRACTING INVARIANT CURVES IN PLANAR
DISCRETE DYNAMICAL SYSTSMS

FRANCISCO ESQUEMBRE

We study the properties of an invariant attracting curve passing through an at-
tracting fixed point of a planar discrete dynamical system. We compare these
properties to the corresponding properties of the invariant repelling curve studied
in [3] in order to determine the dynamic behaviour of the system near the fixed
point.

1. INTRODUCTION

We continue in this paper the study started in [3] of invariant curves passing
through fixed or periodic attracting points of a two dimensional map such that the
eigenvalues o and 6 of the differential of the map at the fixed point are both real
and their absolute values are different and smaller than one. Aronson, Chory, Hall and
McGehee showed in [1] the role played by these curves in the changes in smoothness and
even in the total break up of invariant circles born in a Hopf bifurcation. They showed
the importance of determining the precise behaviour of orbits near the attracting fixed
point and, in particular, made a conjecture about the relationship between condition
\a\ < |6| and the smoothness of the invariant circle. Although they considered this
conjecture, the question of the relative behaviour of invariant curves still retains its
interest.

In this paper we give some results parallel to those in [3]. Here we prove the
existence and then study the properties of an invariant curve tangent to the principal
direction associated to the eigenvalue with largest absolute value. This curve, h,, will
be attracting in a sense that will be made more precise later.

The existence and regularity of this curve have already been considered in the
literature, see for instance [4]. We provide simplified (and better suited to the context)
proofs for these facts in the general case \a\ < 1, \a\ < \b\, study the dependence of
this curve with respect to the map generating the dynamics and, in the last section, use
these results together with the results of [3] to describe the precise attracting behaviour
of this curve near the fixed point. We consider then the suitation proposed by Aronson
et al, \a\ < \b\k < 1 .
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274 F. Esquembre [2]

2. EXISTENCE AND PROPERTIES OF h,

PROPOSITION 1 . Let T: R2 ->R2, T{x, y) = (ax + f(x, y), by + g(x, y)), be

a continuous map satisfying

(1.1)

and let 6 > 0 and e > 0 be such that

(1.2) f{x, y) = g(x, y) = 0, for every y <£ [-S, 6],

(1.3) !/(*!, y2) - / ( * ! , t/01 < e||(x2,2/2) - (*i, 2/i)||,
l$0"ij V2) - g(xi, yi)\ ^ e||(*2, 2/2) - (<ci, yi)||, for every asi, a2 e [-*, 6]
and every y\, y2 £ IK,

(1.4) e ^ (|6| - |o|)/2 or, equivalently, M = (|o|+e)/(|6| - e) ^ 1,
(1.5) * = (|o|+ e)(|&|-0/(1*1-2e)<l-

Under these conditions, there exists a unique continuous map h,: R —+ R sucn that

(l.a) fcB(0) = 0,
(l.b) \h,(y)\ ^S, tor every y£R,
(l.c) |A.(i/2) - h,(yi)\ < M |a/2 -2/11 (X is Lipschitz),
(l.d) tie curve x = h,(y) is invariant and locally attracting under T. More

precisely, for every (xn, yn) = Tn(x0, t/o) with \xo\ ^6, \xn - h,(yn)\ ^
kn \xo — h,(yo)\ holds for every n ^ 0.

REMARK. Notice that (1.4) implies \a\ < \b\ and (1.5) implies \a\ < 1.

This proof that follows and the proof of Theorem 3 are simplified versions of the
proof of the centre manifold theorem as stated in [4].

PROOF: Consider, for fixed 6 > 0 and M ^ 1, the set of continuous maps from R

into itself satisfying,

(H.I)

(H.2)

(H.3) | % 2 ) - M2/i)l <M\y2-yi\ for every yu y2 € R,

and denote it by C° M . This is a closed (and therefore complete) subset of the class
of all bounded continuous maps from R into itself, C(,(R), in the topology induced by
the distance d^h.!, h2) - sup^h^y) - h2(y)\ /y £ K}.

For every h € C^M, the map Gh:R -> R defined by the formula Gh(y) =
by + g(h(y), y) is clearly continuous. We shall see that it is also invertible and that
G^ is Lipschitz continuous with constant 1/(|6| — e) > 0.

For this purpose, for a fixed j / g R , consider the map F: R —» R given by F(y) —
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[3] Invariant curves 275

y/b - (l/b)g(h(y), y). We have that

< \ IKM2/2), V2) - mm), yi)\\ <
 e- in - yi\.

Thus, if e/6 < 1 then F is a contractive map and has therefore a unique fixed point.
That is, for every j / g l there exists a unique y € R such that y = by + g{h(y), y) or,
equivalently, y = G^'1(y). Moreover,

and hence

I2/2 -3/11 ^ |6 , _ £ |y2 — y 11

We now define the m a p

or, in a shorter form, Fhij}) — ah(y) + f(h(y), y), where y — by + g{h(y), y). T is
well defined since

(H.I) ^ ( 0 ) = 0,
(H.2) \Th{y)\ ̂  \a\ | % ) | + \f(h(y), y)\ < (\a\ + e)6 < 6,
(H.3) TO2)-.FM»i)l < \0\\Ky2) - h{Vl)\ + \f(h(y2),y2)-f(h(yi),yi)\

^ HI2/2-J/1I

< ((H-0/(1*1+
We claim that ^ is a contractive map. First notice that

\Fhiiy) -Thx{y)\

^ \a\ \h2{y2) - fcxfoOl + |/(/i2(y2), yt)

^ M |fca(ift) - ^ ( y i ) | + e \\(h2(y2), y2) - (h1(y1), Vl)\\

^ (\a\ + e)(\h2(y2) - h1(y1)\ + \y2 - y i | ) ,

where y = by! +5(/ii(t/i), t/i) = by2 + g(h2(y2), y2), and

(l.i) \h2(y2) - Mvi)l ^ fafa) - h2(yi)\ + M y i ) - fci(yi)l
^ M \y2 - m\ + \h2{yi) - ^(j/01 \y2 - 3/11 + |fc2(yi) - /n(t/
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-yi\)

(here we use (l.i)), and then, |y2 - Vi | ^ (er/(|6j - e)) |/i2(yi)
we obtain

(W

[4]

(e / \b\) (\h2(Vl)

yi)| • From all this

and hence, ||̂ "A2 - Philip < (1*1 /(|*| - e))(lal + e) P2 - Moo- Therefore, since
1*1 /(l*l - e ) < (1*1 - e)/(l*l - 2e)> hypothesis (1.5) yields that T is contractive.

!F has then a unique fixed point in C\ M that we denote by h,. The curve
x = ha(y) is invariant under T since h,(y) = ah,{y) + f(ha(y), y), with y = G^*(y),
or, equivalent^, h.(by + g{h,(y), y)) = aht(y) + f{h,(y), y).

Finally, let (zo> 2/o) be a point such that ||xo|| ^ S, and set (xi, 3/1) = T(xo, yo)-
Consider y = G^(yt). We have that T(h,(y), y) = (h,(yi), 7/1), where yi = by+
5(^*(y)> V) = byo+9{xo, yo), M y i ) - ah,(y) + f(h.(y), y), and an = axo + f{xo, yo)-
From this,

\(h.(yi), yi)\ ^ \a\ \h,(y) - xo\ + e \\(h,(y), y) - (x0, yo)\\ •

Since |6| \y — yo\ ^ e 11( .̂(17), V) - {xo, 2/o)||, then

and so

On the other hand,

- xo\

m _ £ M

l!7 — yo I + \h,(yo)-xo\

^ ( ) | + I

Hence |A,(17) - * o K ((1*1 - e)/(l*l - 2e)) |^.(yo) - xo | .

From all this, |Ml/ i ) -z i l < (M + e)(\b\-e)/{\b\-2e))\h.{yo)-xo\. Now,
(l.ii) and the fact that |x01 ^6, give (iterating this reasoning) (l.d). u
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[5] Invariant curves 277

3. REGULARITY OF h.

In the case \a\ < |6| , additional hypotheses about the regularity of T give a better

regularity of h,. We shall make use of the following result.

LEMMA 2 . Let a = (aQ, a i , . . . , an) £ R n + 1 and M > 0. Define C£> M to be
the class of Cn maps h:R —> R s u c i t i a t

(HI) h{0) = fc'(0) = . . . = fc(»)(0) = 0,
(H2) \h<-»{y)\ < a,- for every j = 0, 1, . . . , n,
(H3) \hW(y2) - fe(n)(yi)| ^ M \y2 - yi|, for every yi and y2 £ R.

Then, C™ M is a closed subset of C^0)M with tie topology induced by the distance
dco(hlt hi) = suP{\h2(y) - hM / y £ R } .

PROOF: We shall proceed by induction on n. For n = 1 and a — (ao, a i ) , we
only need to show that if (Ajb)j. converges to h in the distance doo and hk £ C^ M/,
for all fc, then

(2.i) h has derivative at every point,

(2.iv) |A'(y2) - h\yi)\ ^ M |y2 - l/i|, for every j/i and y2 £ R.

Consider (h'k)k C (Cai,Af(K)> d ~ ) and, for fixed o G R and e > 0, h'k =

kjb/[a-«,a+e]- (/**) is, by (H3), an equicontinuous set and, by (H2), it is bounded

at every point. Thus, by Ascoli's theorem, lhk) is a relatively compact set. There-

fore, there exist f fc^. J C (hk) and g £ C ° l M ( R ) such that (hk. J converges uniformly

to ^. Taking limits in the expression

hk(x) — hk(a) —,

where |̂ ;- — a\ < \x — a\ ^ e (and possibly taking a subsequence such that £, —>
( £ [a - e, a + e]), we obtain (h(x) - h(a))/(x - a) - g(a) = g(£) — g(a). Since g is
continuous, there exists h'(a) = g(a) — Mmhk.(a) = ]imh'k.(a). This proves (2.i).

Now, A'(0) = lim^.fO) = 0 and \h'{y)\ = |Iim&'4i(y)| < alt lead to (2.ii) and

(2.iii). (2.iv) is obtained by taking limits from the inequality h'k.(y2) — h'k.(yi)\ ^

M \y2 -yi\.

Now, assume that the reuslt holds for every n ^ p and every /? £ RP+1 and
N > 0. We shall show that it also holds for n = p + 1. If we have {hk)k C
such that (hk)k converges to h in the distance d^, then, in particular, (hjt)t C
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278 F. Esquembre [6]

with /3 = (a0, a i ) ; this, because of \h'k(y2) - h'^yx)] ^ A#
4'(£) \y2 - yi\ ^ a2 \y2 - yi\,

hk(0) = 0 and |fefc(i/)| ^ ao • The case n = 1 gives, as before, that h has derivative at

every point and that there exists \hkA C (A*) such that h'k. converges uniformly to

h'. Thus, since (h'k. J C C* M, for 7 = (c*i, a2, ..., a p + i ) , by applying the induction

hypothesis to [h'k. J , we obtain that h' G C^ M . And this, together with the continuity

of h, h(Q) = 0 and \h(x)\ ^ a0, implies h £ C £ ^ . D

PROPOSITION 3 . Let T: R2 —> R2, T(x, y) = (ax + f(x, y), by +g{x, y)),

be a C 1 map suci that there exist 1 ^ S > 0 and e > 0 for which

(3.1) /(0, 0) - 5(0, 0) = 0, 2?/(0, 0) = Dg(0, 0) = 0,
(3.2) f{x, y) = g(x, y) = 0, for every y <£ [S, 6},

(3.3) \\Df(x, y)\\ ^ e, \\Dg(x, y)\\ < e, for every (x, y) G R2,
(3.4) \\Df(x2, y2) - Df(xu Vl)\\ < e \\(x2, y2) - (xu yi)\\

\\Dg{x2, 1/2) - Dg(xi, i/i)|| ^ e \\(x2, y2) - (xi, yi)||
{or every xx, x2 G [-6, S] and every y\,y2 E R,

(3.5) e ^ (\b\ - |a|)/2 or, equivalent^, M = (|a| + e)/(|6| - e) < 1,
(3.6) * = (|a|+

(3.7) | o | + * +

Under these conditions, there exists a unique C1 map h,: R —> R sucA that

(3.a) h.(0) = 0,

(3.b) |fc.(y)| 6, \h'{y)\ < 6, that is, for every y g R ,

(3.c) \h',(y2) - h'.im)K M \y2 - Vl \ (h1 is Lipschitz),

(3.d) tie curve x = h,(y) is invariant and locally attracting under T, that

is, for every (xn,yn) = Tn(x0,yQ) with \xo\ ^ 6, \xn-h,(yn)\ <
fcn |x0 — h,(yo)\ holds for every n ^ 0.

REMARK. Notice that our hypotheses imply \a\ < 1, |o| < \b\ and Df(x,y) —
Dg(x, y) — 0, for every \y\ > 6.

PROOF: The proof is similar to the proof of Proposition 1. Thanks to the previous

lemma, we know that the function space C£ M, defined as above for a — (6, S), is a

complete metric space with the distance doo • For any fixed h £ C^ M, the mapping

Gh:R —> R, Gh(y) = by + g{h(y), y) is a C1 map. We claim that it is also a

C1-diffeomorphism.

Given any y G R, we construct the map F: R —> R, F(y) - y/b-(l/b)g(h(y), y).
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[7] Invariant curves 279

F is continuous and satisfies, for every j/i and 2/2 G R,

jfi IKM3/2), 1/2) -

(here we use £ < 1 ) . Since e / |6| < 1, JF is contractive. Thus , for every j / g l ,

there exists a unique y = G^1 ( y ) . This proves Gh. is invertible. Since Gh is C 1 and

(Gn)'(y) = b + Dg(h(y), y)(h'(y), 1), we have that \{Gh)\y)\ ^ \b\ - e > 0, which
implies {GK)~ is also C1, and

where y = by + g(h(y), y). Also,

, » ) - i?s(%i), yOll ll(fc'(»), 1)11
(1*1-0

e(l + M) e(l + M)

^ (1*1 - 0 2 ^ (1*1-03 ~y

Let us now define, denoting y = G^1(y), the map

?• Ca,M * Ca,M

hi—> Th: R—>K

y 1—» ^fe(y) = o/i(y) + /(y(y), y).

We see that T is well defined, ^ / i is C1 with
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and satisfies

(HI) ^fc(O) - (^fc)'(O) = 0,

(H2) \FE(y)\ < \a\ \h(y)\ + \f(h(y), y)\ e)6 ^ S,

(H3) ). 1)1

| M

, 1)1]

M ) e ] |j/2 _

M)e/M

- Vl I(|fc|_e)» " • "» »"-*"

(this because of (3.5)).
The rest of the proof is identical to that of Proposition 1, and is therefore omit-

ted. D

4. DEPENDENCE WITH RESPECT TO T

P R O P O S I T I O N 4 . LetTi.R2—>R2, Ti{x, y) = (ax + U{x, y), by + gi{x, y)),
i = 1, 2, be two continuous maps satisfying (1.1) to (1.5) for common values of 6 > 0
and e > 0. Let hi — hX{: R —> R, i = 1, 2, be tie maps wiose existence and
properties are guaranteed by Proposition 1. If, additionally, 6 < 1 and M |6| < 1 (M
as in (1.4)), then we obtain

H/̂  _ M ^ 1 + M

with a/ and ag two non negative numbers such that

a, < sup{|/2(x, y) - h{x, y)\ / |z| ^ 6, y £ R} < +oo,

ag ^ sup{|52(a:, y) - 9i{x, y)| / \x\ ^ 6, y 6 R} < +oo,

PROOF: Using the notation of Proposition 1, hi(y) = Fihi(y) = ahi(yi) +
fi(hi(yi), yi), where y = feyi + 5i(fei(yi), yi) = by2 + g2(h2{y2), V2)- From this,

1̂1 \V2 — yi| = \g2(h2(y2), y2) — gi{hi(yi), yi)|

^ e 11(̂ 2(3/2), y2) - (M2/O1 yOll + Qs.
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where ag = sup{|S2(/n(y), y) - gi^h^y), y)\ /y G R } . Since

Mm) - hi(m)\ < |M») - Mw)l + Mm) - M»i)l

and 6 < 1 , IKMlfe), Jfc) - ( M » i ) , Wi)|| < l ^ ( y i ) - ^ i ( y i ) | + life ~Vi\- Using this,

we obtain |&] |s/2 — 3/11 ^ e [\h2(yi) - hi[yi)\ + \y2 - yi\] + ag , and then \y2 - yi\ ^
- 0) Mw) - Mvi)l + 9lW ~ e) • Now,

- f2(hi(m), Vi)\

(H + 0 (IMife) - fei(2/0l + \m - yill + «/

with a / = sup{|/2(/ii(y), y) - /i(/ii(y), i/)|/y £ R}, which implies \h2(y) —
M \b\ || h.2 — hi || ̂  + M ag + ay , for every y £ l . Taking supremes from here, we obtain

the desired result. D

REMARK. It is possible to state a more general result applicable to the case Ti(x, y) =
(OJZ + fi{x, y), by + gi(x, y)), o-i ̂ 0-2- However, if what is desired is a result appli-
cable to the case in which the eigenvalues are all different, it is necessary to add the
additional hypotheses bi > 1. This result can be found in [2].

5. APPLICATION TO THE GENERAL CASE

We now modify the results to the general case of a mapping satisfying conditions
(1.2) and (1.3) only locally. Theorem 6 is one of the main results of this paper and it
is interesting to compare it to Theorem 5 of [3].

LEMMA 5 . Let T: U C K2 —» R2, T(x, y) = (ax + f(x, y), by +g{x,y)), be a
C2 map defined on an open neighbourhood of the origin. If the following conditions
hold,

(5.1) /(0, 0) = fl(0, 0) = 0 and Df(0, 0) = Dg{0, 0) = 0,
(5.2) {a,6}n{0, 1} = 0,
(5.3) a^b2,a?^b,

then, there exists a iocai C°°-diffeomorphism such that, in a certain neighbourhood of

the origin, the map can be written as T(x, y) = (ox + f(x, y), bx + fl(x, y)) , where

Jandg satisfy /(0, 0) = g(0, 0) = 0, D/(0, 0) = Dg{0, 0) = 0, and D2J(0, 0) =
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D2g~(0, 0) = 0. This change of variables depends continuously on a and b and on the
coefficients of the quadratic form associated to D2T.

PROOF: Thanks to (5.1), / and g can be written locally as

/ (* , V) = f2ox2 + fnxy + fay2 + o(||(x, i/)||2),

9(x, y) = 920X2 + guxy + g02y
2 + o(||(x, y)fj .

where o(an) denotes a map such that o(an)/an goes to zero as a goes to zero.
Consider a change of variables of the form (x, y) — C(x, y) — (x, y) + H(x, y),

where each component of H is an homogeneous polynomial of degree 2 in x and y,
H(x, y) — (C2QX2 + cnxy + cO22/2, d2ax2 + d^xy + d02y

2) • Since DC(0, 0) = Id, the
Inverse Function Theorem guarantees that C is a local C^-diffeomorphism. Now,
(x, y) = (x, y) - H(x, y) = (x, y) - H{C~\x, y)) = (x, y) - H(x, y) + o(\\(x, y)2||) .
Hence T(x, y) - T(C(x, y)) = C(T(x, y)) = T(x, y) + H(T(x, y)) = T(x, y) -
(o, b) H[x, y) + H(ax, by) + o(\\(x, y)2\\J . Equating terms, we obtain f^ = fy -
acij + a%Vcij , and gti = gtj - bdi, + cfVdij.

We can obtain fij = gij = 0, for every i+j = 2, if o—axV ^ 0 and b—alV ^ 0 hold
for every i + j = 2, but this is precisely (5.2) and (5.3). The continuity and the depen-
dence follow from the equalities Cij = {fij)/{a — o'fr') and dij — (gij)/(b — a'fr7) . U

THEOREM 6 . Let T: U C R2 —> U be a C1 map with a fixed point p £ Int (U).
Let a and b be the eigenvalues, both real, of DT(p), and let them satisfy \a\ < |6| and
\a\ < 1.

EXISTENCE: The map T has a locally invariant continuous curve passing through
the point p that can be described as the graph x = h,(y) of a Lipschitz function with
constant smaller than or equal to one, using an affine change of coordinates, «T(X, y).
This curve is locally attracting in the sense of (l.d).

DEPENDENCE WITH RESPECT TO T: The curve depends continuously on p
and DT in the following terms: the affine change of variable «T(X, y) — LT((X, y) — p),
where LT is a linear map depending continuously on DT(p). Given any other C1 map,
S: U C R2 —> U, with a fixed point p' 6 Int(U) satisfying the existence conditions,
after the corresponding changes of variables, a ? and as, have been applied, there
exist two Lipschitz, locally invariant and locally attracting curves, x = h,T(y) and
x = h,s(y), in the region ||(x, y)\\ < 5, for some 8 > 0, such that

\\h'T ~ ^'slloo ^ Kl l°2 ~ Qll + K* I6* - M
with Ki, i — 1,2, two non negative constants and af and ag such that lim max{a/, a s}

p—»o
= 0, where f3 is the maximum of the quantities \\p — p'\\ and \\DT(x, y) — DS(x, y)\\,
for every (x, y) such that \\ar(x, y)\\ < S and \\as(x, y)\\ ^ 6.
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DIFFERENTIABILITY: If, additionally, T is a C2 map and \a\ < \b\2, a f 0
and 6 ^ 1 , then there exists a curve as described that is differentiable and tangent at
p to tie principal direction associated to b, though an additional change of variables
PT that, in general, is not linear is required.

REMARK. Notice that the change of variables aj> used here is the same as we used in
Theorem 6 of [3].

PROOF: EXISTENCE AND DIFFERENTIABILITY: The proof of these two
statements is similar to the proof of Theorem 6 of [3]. We just need to find 6 > 0
and e > 0, small enough numbers, and a new map T which coincides locally with T
and that satisfies conditions (1.1) to (1.5) for the existence and, after applying Lemma
5, (3.1) to (3.7) for the differentiability. We omit this part of the proof because a similar
procedure is carried out in the proof of the dependence with respect to T that we give
below.

DEPENDENCE WITH RESPECT TO T: The continuous dependence with re-
spect to p and DT(p) of the changes of coordinates involved has been already justified.
If we denote T\ = T and T2 = S, these mapping can be written as

Ti(x, y) = (alX + fi{x, y), blV + gi(x, y)),

T2(x, y) = {a2x + f2(x, y), b2y + g2(x, y))

(o2 - a i ) x + /2(a:, y), hy + (h -h)y + g2(x, y))

J2{x, y), blV + g2(x, y)

where aj = a, b^ = b, a2 = a', b2 = b', and /i(0, 0) = #(0, 0) = 0, A7(0, 0) =
Dig(0, 0) = 0, for i = 1, 2. Notice that f2(0, 0) = g2{0, 0) = 0 and that (identifying
linear maps with their associated matrices) Df2(x, y) = (a2 — oi, 0) + Df2(x, y) and
Dg2[x, y) = (0, b2-b1) + Dg2(x, y).

Given any e > 0 satisfying (1.4), (1.5) and (4.2) and given r:R —> [0, 1] a C°°

map satisfying r(x) = 0 for every \x\ ^ 1 and r(x) = 1 for every \x\ ^ 1/2, call Jfc =
sup{|r'(s:)| /x G K} < +oo, and choose e' > 0 such that max{|a2 — a j | , \b2 — b\\} +

e' ^ e/(l + 2k), (this is possible only if |o2 — oi | and |62 — &i| are sufficiently
small) and 0 < 6{e') < 1 such that, by continuity of Dif and Dig at the ori-
gin, | |D/ i(«,y) | | < e^_and \\Dgi(x,y)\\ ^ e', for every ||(z, y)|| ^ 5_ and i =

1,2. Consider now T^x, y) = (aix + fx{x, y), bxy - ( -^(z , y)) and T2(x, y) =

+ J2(x, y), hy + g2{x, y)) , where

i(z, y) = T(X
 g2

V )fi(x, y), g^x, y) =T(* ^ jgi(x, y),

*2
V )f2(x, y), g2(x, y) =r(X ^ \g2{x, y).
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T\ and T2 coincide locally with Ti and T2, respectively, and satisfy properties (1.1)
to (1.5). For instance,

| M * . v)
e'(l + 2k) ^ e,

y)\ = l ^ V)

^ y)

X, y)

and similarly for the rest, gives (1.3). We can now apply Proposition 4. Using the same
notation we used there, we have that

af ^ sup{|72(z, y) - J^

^ sup{\J2(x, y) - l^

^ sup{|/2(x, y) - h(

, y)\ / \x\ ^ S, y G R }

, y)\ / ||(x, y)|| < 6}

, y)\ / ||(x, y)\\ < 6}

6}

a n d ag ^ |&2 — &i | &\ag • Thus , we have

l - M I M
S

+
M

o2 — ai +
MSMS ., , . 1

1-M\bi\ 1 - M | 6 i | '

*
M

1 — Af |6i | 9

and, from here, we obtain the desired result. D

6. DYNAMICS NEAR AN ATTRACTING FIXED POINT

In this section, T: U C.R2 —> U will be an (at least) C1 map with a fixed point
p € Int (U), a and b the eigenvalues, both real, of DT(p). As in Theorems 6 of [3] and
6, we apply an affine change of coordinates ax depending continuously on p and DT(p)
such that the fixed point corresponds to the origin and the principal directions associated
to a and b correspond to the OX and OY axis, respectively. That is, the map can
be written as T(x, y) = (ax + /(x, y), by + g{x, y)), where /(0, 0) = s(0, 0) = 0 and

), 0) = 0.
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THEOREM 7 . Let T:U CWL2 —> U be a C 1 m a p as above and let a and 6

satisfy \a\ < \b\k < 1 for some positive integer k. There exists a neighourhood V of
the fixed point p such that the map has two invariant curves passing through p, that
can be written as t ie graphs of two functions, y = hu(x) and x = h,(y), that depend
continuously on p and DT(p) and that are Lipschitz continuous with constant smaller
than or equal to one, hu is C1 and fe'(O) = 0. Tie only common point of these curves
in V is the fixed point.

p attracts every ordit intersecting V, that is, for every point (xo,2/o) £ V,
if we denote (xn, yn) = Tn(xo,yo), then \\(xn, yn)\\ ^ Mn \\(x0, yo)\\, for some
\b\ ^ M < 1. Also, every orbit in V not contained in the curve y — hu(x) satis-
fies (\xn - h,(yn)\)/(\yn - hu(xn)\

h} ^cNn, for some constant c and 0 < N < 1.

From this, we see that for every orbit starting near p, either it is contained in the
curve y = hu(x), or it separates from the curve and approaches the curve x — h,(y).
We describe this phenomenon by saying that the curve given by hu is unstable (or
repelling) and the curve given by h, is stable (or attracting). We also say that any
orbit not contained in the unstable curve has a contact of order k with the stable curve.

PROOF: By proceeding as in the proofs of the cited theorems, we can find a map
T(x, y) — (ax + f(x, y), by + g(x, y)) which coincides with T in a neighbourhood V =
B((0, 0), 6), and that satisfies the existence conditions of both curves. In particular,
||Z?7(*i y)|| ^ e and \\Dg(x, y)\\ < e, for every (a;, y) 6 R2 and this, for some e > 0
such that ((\a\ +e)/(|6| - 2e)*V(|6| -e) /( |6 | - 2e)) < 1 and |6|+e < 1. The existence
of the functions hu and h, is then guaranteed by Theorems 6 of [3] and 6.

Since the graph of hu is confined in the region \y\ ^ |x| and the graph of h, in the
region \y\ > \x\ (this, since h, is Lipschitz continuous with constant (|o| + e)/(|6| — e) <
((M + e)/(l&l - 2e)*)((|6| - e)/{\b\ - 2e)) < 1), these curves only intersect at (0, 0).

Now, if (zo, yo) € V, then ||(aj0, Vo)\\ < 6 and

= \axo+7{xo,yo)\ ^ \a\ |xo| +

, yo)\ < H |yo| + \Dg{U, U)\ ll(*o, yo)\\

<(\b\+e)\\(xo,yo)\\,

for some | | (6, 6)11 < llfao, yo)\\ and | |(6, 6)11 ^ ||(*o, J/o)|| • From both inequal-
ities, ||(zi,2/i)|| ^ (|6| -t- e) |](SBO, Sfo)H < *• Iterating this, we obtain ||(a;n, yn)\\ ^
(W + eriKzo.Jfo)!!; thus, we can take M = |6 |+e.

Finally, using (3.b) of [3] and (l.d), we obtain

\xn - h.(yn)\ ^ [(|a| + £)(|6| - £)/(|b| - 2e)]n \x0 - h.(yo)\

\yn - hu(xn)\
k " (\b\-2e)nk \yo-hu(xo)\

k
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for all j/o ^ hu(xo), that is, for all (XQ, J/O) Qot on the unstable curve. Taking

\XQ - h.(yo)\ \a\ + e \b\-e
c = 7- and JV = 7-TT-.—— < 1,

|M)|* (|6| — 2e)* 1*1 — 2e

we obtain the desired result. D
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