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Unravelling the existence of asymmetric bubbles
in viscoelastic fluids
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We study the motion and deformation of a single bubble rising inside a cylindrical
container filled with a viscoelastic material. We solve numerically the mass and
momentum balances along with the constitutive equation for the viscoelastic stresses,
without assuming axial symmetry to allow the growth of three-dimensional disturbances.
Hence, we may predict the emergence of the notorious knife-edge shape of the bubble,
which is a result of a purely elastic instability triggered in the locality of the trailing
edge. Our results compare well with existing experiments. We visualize, for the first time
to the best of our knowledge, the flow kinematics and dynamics that arise downstream
of the bubble. We propose two quantities, one kinematical and one geometrical, for the
determination of the onset of the instability. We demonstrate that extension-rate thinning in
the constitutive law is necessary for the emergence of the instability. Moreover, our results
indicate that increasing (a) the deformability of the bubble and (b) the initial extension
rate hardening of the viscoelastic material, prior to thinning, triggers the instability earlier.
These novel findings help us formulate and propose a mechanism that controls the onset
of the instability and explain why the knife-edge shape is not encountered as frequently.
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1. Introduction

If we shake a bottle of water violently, the entrapped air forms bubbles of different
sizes, which rise vertically due to buoyancy and burst when they reach the upper
water–air interface. The in-depth understanding of bubble dynamics, not only in
Newtonian (Tsamopoulos et al. 2008) but also in complex fluids (Dimakopoulos,
Pavlidis & Tsamopoulos 2013; Fraggedakis et al. 2016; Moschopoulos et al. 2021), is
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required by their presence in numerous industrial processes and daily applications. For
example, the effective control of bubbles in foods improves their texture (Campbell
1999). How bubbles grow, deform and form fibrils constitutes an important feature
of the debonding process of self-adhesives or pressure-sensitive adhesives (PSAs)
(Varchanis et al. 2021a) and controls their tackiness. Bubbles are desirable in some
applications, like chemical or biochemical reactors, because they facilitate mass transfer.
Furthermore, the mechanical properties of construction concrete may degrade significantly
by their presence, necessitating their almost complete removal. These cases demonstrate
the importance of accurately understanding bubble dynamics, especially in complex
materials.

The motion of bubbles in viscoelastic materials has been a subject of intense research for
over six decades. The coupled effects of elasticity and deformation of the bubble interface
generate an abundance of astonishing phenomena. Throughout the years, three intriguing
observations emerge that do not have any correspondence in the translation of bubbles in
Newtonian fluids: (a) the velocity jump discontinuity; (b) the negative wake behind the
bubble and (c) the knife-edge shape of a bubble.

In their pioneering work, Astarita & Apuzzo (1965) were the first to report an abrupt,
almost ten-fold increase in the speed of a bubble once its volume surpassed a critical value.
This increase was so intense that the term ‘jump’ was used to characterize it because two
separate and distinct curves of stationary solutions were obtained. Subsequent experiments
verified these observations and established that the velocity jump was approximately
6–10 times for shear-thinning viscoelastic solutions. Still, it was much less in Boger
fluids, namely constant viscosity viscoelastic solutions. Leal, Skoog & Acrivos (1971)
conducted an early numerical work and they solved the creeping flow of an inelastic,
shear-thinning material around a spherical bubble. They concluded that the shear thinning
viscosity contributed to the increase of the rising velocity but was not the key factor that
could lead to the velocity jump. A coherent physical mechanism for the velocity jump
discontinuity was proposed by Fraggedakis et al. (2016). They performed steady-state
simulations with arclength continuation techniques, and captured the two distinct solution
branches and a hysteresis loop connecting them. Their numerical results showed that
when the critical bubble volume was surpassed, significant hoop stresses intensified the
developed shear layer at the trailing pole of the bubble, which thrusted it vertically.
Also, the shear-thinning nature of the material decreased the flow resistance in the
front of the bubble, which allowed it to rise faster. These findings were confirmed by
Niethammer et al. (2019).

In his study, Hassager (1979) revealed an uncommon flow structure behind the rising
bubble: only a small portion of the fluid just behind the trailing pole of the bubble followed
it, a stagnation point appeared further down, and most of the fluid below the stagnation
point and around the axis of symmetry moved downwards. So, most of the material under
the bubble flowed in the opposite direction of the motion of the bubble, a phenomenon that
was contrary to what was observed for objects translating in Newtonian fluids. He termed
it ‘negative’ wake. Ensuing works demonstrated the universality of the negative wake
structure (Bisgaard & Hassager 1982), which was observed in flows of bubbles and around
spheres or cylinders. The flow around a sphere or a cylinder was much easier to study, both
experimentally and numerically. Hence, the negative wake was investigated intensively in
these flows. However, the ensuing studies were contradictory because the negative wake
occurred in some polymeric fluids, whereas it was absent from others. The negative wake
appeared only in flows of shear-thinning, viscoelastic materials (Maalouf & Sigli 1984;
Arigo et al. 1998) but not in Boger fluids (Arigo et al. 1995). Contradictory conclusions
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(b)(a)

Figure 1. Schematic of the lower part of the knife-edge shape. Two mutual orthogonal views are shown:
(a) the cusp-like tip and (b) the knife edge.

were also drawn from simulations regarding the nature of the negative wake (Chilcott
& Rallison 1988; Satrape & Crochet 1994). Finally, Harlen (2002) concluded that the
negative wake was governed by a delicate balance of two competing viscoelastic forces: the
extensional forces in the birefringent strand downstream lengthened the decay of the fluid
velocity and an extended wake arose. Simultaneously, shear forces in a region surrounding
the strand induced an elastic recoil, pulled the material away from the sphere and produced
a negative wake.

Inevitably, the surface of bubbles deformed when they translated through a fluid,
either Newtonian or non-Newtonian. Since the work of Astarita & Apuzzo (1965), it
was established that the shape of the bubbles transitioned from a convex to an inverted
tear drop shape when their volume increased. This transition occurred approximately at
the critical volume for the onset of the velocity jump discontinuity. Chilcott & Rallison
(1988) simulated a ‘cylindrical’ bubble using the FENE-CR model and suggested that
the strong viscoelastic, normal stresses developed in the trailing pole were responsible
for the teardrop bubble observed in experiments. However, they did not allow for any
surface deformation and they did not capture numerically the experimentally observed
shape. Later, Noh, Kang & Leal (1993) performed detailed simulations accounting for
the deformation of the bubble surface using a boundary-fitted coordinate system. They
captured the inverted teardrop shape and deduced that the strong uniaxial elongational flow
behind the bubble created it. Eventually, many numerical works that dealt with the bubble
rise in a viscoelastic solution presented the inverted teardrop shape, either employing the
finite-elements method (Fraggedakis et al. 2016; Varchanis & Tsamopoulos 2022) or the
finite-volume method (Niethammer et al. 2019; Yuan et al. 2020, 2021).

The last chapter of unravelling the bubble rise problem concerns the astonishing
knife-edge bubble shape, as shown in figure 1, and was reported initially by Hassager
(1979). This unique asymmetric shape emerges in situations that one would normally
expect an axisymmetric one. Instead, a sharp, two-dimensional, cusp-like tail forms in
one view (figure 1a), but it turns into a broad knife or a spade in the orthogonal view
(figure 1b). From this point forward, we shall refer to it with the term ‘two-dimensional
cusp’ as an effective cusp that has a very small, but finite size and rounded tip. Liu, Liao
& Joseph (1995) (referred to hereafter as LLJ) investigated thoroughly the emergence of
the knife edge for different viscoelastic materials. They reported that all bubbles attain
the knife-edge shape irrespective of the material or the experimental set-up. The type of
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cross-section of the column, either square or cylindrical, affects the orientation of the
cusp edge. They identified a preference of the direction of the cusp edge in rectangular
containers depending on whether the bubble volume is below or above a specific threshold.
Sometimes, the shape of the knife edge alters from a spade to an axe depending on the
bubble volume, the material and the size of the container. Even arrow or guillotine shapes
were reported by LLJ (see their figure 1). Also, these configurations are observed to be
steady. The interface did not oscillate and the bubble translated with a constant speed.
To the authors’ knowledge, this unusual shape has not been reported in any subsequent
experimental work, owing probably to the very specific range of parameters that enables
its appearance. Even though some numerical studies (Yuan et al. 2020, 2021) tackled
the problem of a rising bubble in a three-dimensional setting, they did not report any
asymmetric shapes. In this brief review of the relevant literature, we do not include studies
of bubbles rising in surfactant or associative polymer solutions, or studies in which the
density and viscosity ratios between the liquid and its inclusion excluded the presence of
a gas in it. The work of Fraggedakis et al. (2016) assumed axial symmetry; so, it excluded
any azimuthal variations. Following a different approach, You, Borhan & Haj-Hariri
(2009) simulated the axisymmetric case using the FENE-CR model and then performed
a linear stability analysis on the base state they obtained. They concluded that the only
unstable eigenmode has a zero imaginary part and an azimuthal wavenumber equal to 2,
which could lead to the formation of the steady knife edge, when nonlinearities prevail.
However, a three-dimensional simulation that captures the knife edge is missing from the
literature.

In this work, we revisit the dynamics of a bubble rising though a viscoelastic material.
The novel aspect of this study is that we do not assume axial symmetry but solve
numerically the complete, three-dimensional form of the governing equations. We use
the recently developed finite-element framework for free surface flows of non-Newtonian
fluids by Varchanis et al. (2019, 2020c). We compare the computed bubble shape with
the experimental ones from the work of Liu et al. (1995). In most cases, we achieve
quantitative agreement with the experiments and predict the experimentally observed
knife-edge shape. Furthermore, we address some important questions regarding the
knife-edge shape. How are the kinematics of the flow altered to enable such an asymmetric
shape? Does the bubble deformability facilitate the creation of the knife edge? What is the
extensional character of the fluid that allows the emergence of this shape? Even more
generally, which rheological properties, shear or extensional, steady or transient, lead to
the knife-edge shape? Does the appearance of this shape lead to a change in the speed
of the bubble or even a velocity jump? Finally, is the knife-edge shape a purely elastic
instability and how is it affected by the blockage ratio, defined as the bubble to cylinder
radius ratio? Along with the answers to the posed questions, we offer insights into the
mechanism that governs the transition from an axisymmetric solution to an asymmetric
one.

Our study is divided as follows. In § 2, we formulate the physical problem and introduce
the governing equations, followed by their corresponding boundary conditions. In § 3,
we outline briefly the employed numerical method. In § 4, we determine the rheological
properties of the materials used in the experiments of LLJ. In § 5, we report the comparison
of our novel numerical results with the experimental ones. Furthermore, we conduct a
parametric study and present our proposed mechanism that leads to the knife-edge shape.
Finally, we draw conclusions in § 6.
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So
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Z̃
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R̃b

Figure 2. Schematic of the rising bubble though a viscoelastic material under gravity. Here, SX and SY denote
the symmetry plane at x̃ = 0 and ỹ = 0, respectively; Sf , ST , So and SC denote the fluid/gas interface, the top
boundary, the bottom boundary and the cylindrical wall boundary, respectively. The origin of the coordinate
system is in the centre-of-volume of the bubble and translates with it.

2. Problem formulation

We investigate the buoyancy-driven rise of a bubble of volume Ṽb that translates steadily
upwards with speed Ũb along the axis of a cylindrical container with a radius R̃C, filled
initially with a viscoelastic material (shown schematically in figure 2). The viscoelastic
material is incompressible with constant density ρ̃, zero-shear rate viscosity, η̃0, and
relaxation time, λ̃. A tilde (̃ ) denotes a dimensional variable or parameter, whereas the
absence of one denotes its dimensionless counterpart. We assume that the density and the
viscosity of the bubble are negligible compared with the respective ones of the surrounding
material. The surface tension, σ̃ , of the liquid–gas interface is spatially uniform and
constant. We adopt a cartesian coordinate system, {x̃, ỹ, z̃}, where the z̃ direction is aligned
along the gravity vector, g̃, which points to the negative direction, namely g̃ = −g̃ez.
Instead of using the above-described inertial frame, we simulate the flow in a reference
frame moving with the bubble. Hence, we position the centre of the coordinate system
at the centre of volume of the bubble, so it moves upwards with the bubble in the
inertial frame. This selection renders the bubble stationary, and the surrounding fluid and
container translate downwards with speed (i.e. velocity magnitude), Ũf , which is equal to
the actual bubble speed, Ũb.

Note that we do not assume axial symmetry and we solve the full, three-dimensional
problem. To reduce the high computational cost to solve this problem, we assume two
planes of symmetry, one at x̃ = 0(SX) and a second one at ỹ = 0(SY), and compute the
flow in one-fourth of the domain. Our choice not only reduces the computational cost but
is also based on the experimental observations of LLJ, where similar planar symmetry
arises. Another desired outcome of having two symmetry planes is that we restrain the
bubble from shifting in the x̃ and ỹ directions, focusing on its vertical motion only. There is
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no experimental indication that the appearance of the knife-edge shape is a result of such
motion.

We adopt the non-dimensionalization proposed in the works of Fraggedakis et al.
(2016) and Tsamopoulos et al. (2008). We scale lengths with the equivalent bubble
radius, R̃b = (3Ṽb/4π)1/3, and velocities by balancing viscous forces to buoyancy, i.e.
Ũvg = ρ̃g̃R̃2

b/η̃0. We choose this velocity scaling for two reasons, as explained previously
(Tsamopoulos et al. 2008; Fraggedakis et al. 2016). First, it allows following closely the
experimental protocols, where the bubble volume is varied, and the terminal velocity is
measured subsequently. Second, it permits determining the velocity of the bubble as part
of the solution for a set of material properties and bubble volume, and not imposing it
beforehand. It follows naturally that pressure and stresses are scaled with ρ̃g̃R̃b. Based
on the above considerations, three dimensionless numbers and a geometric ratio arise:
Ar, Bo, Eg, BR, given by

Ar = ρ̃2g̃R̃3
b

η̃0
, Bo = ρ̃g̃R̃2

b
σ̃

, Eg = λ̃ρ̃g̃R̃b

η̃0

(
≡ λ̃

t̃vg
= λ̃Ũvg

R̃b

)
, BR = R̃b

R̃c
.

(2.1a–d)
The first one is the Archimedes number, which is the ratio of inertial forces to gravity. It
can be interpreted as a modified Reynolds number where the velocity scale is given by Ũvg.
The second is the Bond number, which measures the importance of gravity to capillarity.
The third one is the elastogravity number, which appears due to the elastic properties of the
material. It is the ratio of the relaxation time of the fluid to the characteristic residence time
in the flow, t̃vg = R̃b/Ũvg (the viscous-gravity time scale) and quantifies the importance
of elastic effects. The last one is the ratio of the bubble radius to the cylinder radius, the
so-called blockage ratio.

Using the previous arguments, the dimensionless governing equations for the
momentum and mass conservation take the following form:

Aru · ∇u − ∇ · T + eZ = 0, (2.2)

∇ · u = 0, (2.3)

where ∇ denotes the usual gradient operator, u is the velocity vector, and T is the Cauchy
stress tensor, which is split into the pressure and the extra stress tensor as T = −PI + τ .
The last term on the left-hand side of (2.2) represents the dimensionless gravity force. The
extra stress tensor follows the exponential Phan-Thien–Tanner (e-PTT) model (Phan-Thien
& Tanner 1977; Phan-Thien 1978), which can be expressed in dimensionless form as

Eg
∇
τ + Y(tr(τ ))τ = γ̇ , (2.4)

where ‘tr(τ )’ denotes the trace of the tensor τ , and the rate-of-strain tensor γ̇ is defined
as γ̇ = ∇u + (∇u)T . The function Y(tr(τ )) of the e-PTT model reads as

Y(tr(τ )) = exp(εPTTEgtr(τ )), (2.5)

where εPTT controls the strain-rate thinning of the material. When εPTT → 0, the model
reduces to the Oldroyd-B model. We also study other rheological models and give their
expressions in Appendix A. More information regarding the rheological characterization
of the materials is given in the following section and in Appendix A. Also, we disregard
the viscous effects of the solvent because they are negligible for the material investigated
by LLJ.
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The upper convected derivative is defined as

∇
τ = u · ∇τ − (∇u)T · τ − τ · ∇u. (2.6)

Note that in both (2.6) and (2.2), we exclude the time derivative of the stresses and
velocities, respectively, because we directly simulate the steady state of the system of
partial differential equations (PDEs).

The above system of equations can be solved when appropriate boundary conditions
accompany it. Along the bubble surface, Sf , the velocity field satisfies a local force balance
between pressure, viscous and elastic stresses in the liquid, surface tension of the interface,
and the pressure inside the bubble, which reads

n · T = −Pbn + Bo−1(2H)n, on Sf , (2.7)

where n denotes the outward (with respect to the liquid) unit vector normal to the free
surface Sf (t), 2H = −∇s · n is the mean curvature of the free surface, ∇s = (I − nn) · ∇
denotes the surface gradient operator and Pb is the pressure of the bubble. Also, along the
same boundary, we impose the kinematic boundary condition:

n · u = 0, on Sf , (2.8)

which, at steady state, is nothing more than the no-penetration condition.
We solve for the one-fourth of the domain; thus, we impose the plane of symmetry

conditions along SX and SY :

ns · T · ts = 0, on SX and SY , (2.9)

ns · u = 0, on SX and SY , (2.10)

where ns, ts are the unit normal and tangent vectors, respectively, to the SX and SY planes.
The no slip and no penetration boundary conditions are applied along the container walls,
SC:

u = −Uf ez, on SC. (2.11)

Unperturbed material flows into the domain from the top boundary, ST ,

u = −Uf ez, on ST , (2.12)

τ = 0, on ST , (2.13)

while it exits from the bottom boundary, So, where we apply the open boundary condition
(OBC) of Papanastasiou, Malamataris & Ellwood (1992). The total height of the container
is selected to minimize the effects of the location of the top and bottom boundaries.
Moreover, the OBC allows us to place the bottom boundary closer to the bubble
without affecting the numerical approximation of the problem and reducing further the
computational cost of the simulations.

In the present formulation, we do not solve for the flow inside the bubble. Thus, we
calculate the pressure of the air inside the bubble, constraining its volume to be constant
and equal to 4π/3. In the experiments of LLJ, the bubble travels a small distance and the
assumption that the bubble pressure remains constant is quite accurate. The bubble volume
can be evaluated efficiently using the following expression:

V = −1
3

∫
n · rf dSf , (2.14)

where rf is the position vector of the free surface.
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Finally, we determine Uf from the requirement that the centre of the volume of the
bubble, zcv , remains at the origin of the cartesian coordinate system:

zcv ≡ 3
4

∫
z(n · rf ) dSf∫

n · rf dSf
= 0. (2.15)

Note that the divergence theorem has been used to transform the volume integrals in (2.14)
and (2.15) into surface integrals that can be evaluated on Sf .

3. Numerical implementation

3.1. Finite-element formulation
We adopt a new finite-element formulation to numerically solve the preceding system
of equations. The method was developed by Varchanis et al. (2019, 2020c) for confined
and free surface flow problems. Its crucial advantage is that equal order interpolants
are admissible for all variables by generalizing the PSPG formulation (Hughes, Franca
& Balestra 1986) to viscoelastic materials, leading to a considerable reduction of
the numerical cost, enhanced numerical stability compared with the standard mixed
finite-element formulation and simpler code development. Moreover, it uses the DEVSS
numerical scheme (Guénette & Fortin 1995) to preserve the elliptic nature of the
momentum equation even in the absence of a Newtonian solvent. It incorporates also
the SUPG formulation (Brooks & Hughes 1982) to handle the hyperbolic character of
the constitutive model equation. The weak form of the momentum and mass balance
equations and the constitutive model along with the implementation of the free surface
boundary conditions can be found in Varchanis et al. (2020c). The method has been
already successfully implemented for the solution of several benchmark problems, and for
other critical flows of viscoelastic (Varchanis et al. 2021b) and elastoviscoplastic materials
(Varchanis et al. 2020a; Kordalis et al. 2021; Moschopoulos et al. 2021, 2023). Although
the aforementioned problems deal with two-dimensional geometries, the generalization to
three dimensions is straightforward.

We approximate all variables with linear, four-node Lagrangian basis functions. We
use an interface tracking technique to resolve the dynamics of the free surface. Thus,
our implementation falls under the category of the arbitrary Lagrangian–Eulerian (ALE)
methods and we choose the elliptic grid generation scheme proposed by Dimakopoulos &
Tsamopoulos (2003) to control the motion of the internal nodes. As computational domain,
we choose the volume that the liquid would occupy if the bubble remained spherical.
Hence, the physical and computational mesh nodes have identical coordinates in the first
step of the continuation procedure. A system of quasi-elliptic, nonlinear equations maps
the deformed physical domain (x, y, z) to the simpler, undeformed and time-independent
computational (ξ, η, ζ ) one. For more details regarding the implementation of the grid
generation scheme, the interested reader may refer to the works of Chatzidai et al. (2009)
and Dimakopoulos & Tsamopoulos (2003).

3.2. Solution procedure
We discretize the domain using tetrahedral elements. Initially, we create a structured
mesh of hexahedral elements that are subsequently split into five tetrahedrons each. We
prefer tetrahedral elements over hexahedral ones because they conform better to severe
deformations. After the creation of the mesh, we perform a systematic mesh convergence
study to determine the optimal mesh discretization. To do so, we perform the same
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Figure 3. Representation of a cross-section of the mesh zoomed in on the trailing edge. The trailing pole of
the bubble is located at z = −1, when we create the mesh.

simulation with three different meshes, where we develop the two finer meshes by
sequentially increasing the elements of the previous mesh in all directions by a factor
of 1.5. In two-dimensional simulations, the computational burden permits us to double the
mesh in both directions sequentially, but this increase would cause the computational cost
to soar in three-dimensional simulations.

The largest discretization that we can use is of the order of 280 K nodes, and we achieve
mesh-independent results when we reach 200 K nodes, which produce 4.4M unknowns.
A thorough mesh convergence study is shown in Appendix B. In figure 3, we visualize a
cross-section of the mesh of 200 K nodes at the trailing edge and at x = 0 to conceive how
fine the discretization should be to capture the knife edge. The minimum length size of the
elements near the z-axis is 0.005 and increases gradually as we move away from it. Unless
otherwise stated, all the simulation results correspond to the 280 K node discretization.

We employ the Newton–Rapson method for the nonlinear system of PDEs, and we
approximate numerically the entries of the Jacobian matrix using finite differences. The
iterations of Newton’s method terminate when the norm of the residual vector falls below
10−8. Note that we solve monolithically the discretized linear system of equations using
a direct solver. It is common practice to use either preconditioned iterative solvers, like
GMRES, or split the large system into subproblems and solve them sequentially in a
decoupled sense when we deal with large, three-dimensional problems. However, our
attempts to implement either one of the two procedures were unsuccessful. The elimination
of the time derivatives prohibits the use of a decoupled scheme. At the same time,
the presence of global constraints (pressure and velocity of the bubble) coupled with
the kinematic boundary condition increases considerably the condition number of the
resulting Jacobian matrix and hinders the use of iterative solvers. Moreover, the use of
viscoelastic models, and specifically the term of the upper convected derivative, creates a
strong coupling between velocities and stresses which increases the already high condition
number of the Jacobian matrix. Also, the mesh movement negatively affects the condition
number of the Jacobian matrix, albeit to a smaller extent.

To follow as closely as possible the experiments, we select the bubble volume as
the independent variable and from it the dimensionless numbers, without imposing
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Figure 4. (a) Steady-state flow curve for the 1.5 % polyox solution of Liu et al. (1995). The symbols represent
the experimental data and the continuous line represents the e-PTT model predictions. (b) Prediction of the
steady shear response for various viscoelastic models. The black, continuous line corresponds to the e-PTT
model; the blue, dashed-dotted line corresponds to the l-PTT model; and the red, dashed line corresponds to
the FEG model.

them a priori. Only in our parametric study do we impose specific values on the
dimensionless numbers. Based on the work of Fraggedakis et al. (2016), we adopt
the arclength parametrization of the solution curve, ensuring convergence even when
turning points are encountered while searching for stationary solutions. To track the
bifurcated branch, we perturb carefully the solution in the azimuthal direction and allow
the Newton method to converge to the asymmetric solution. Regarding its implementation,
the interested reader is referred to the works of Fraggedakis et al. (2016) and Varchanis
et al. (2020b). Note that the maximum, numerically attained value of the Bond number
is 4.5, which is smaller than the experimental one, which is 5.14. As we explain in the
following sections, increasing the Bond number allows the bubble to deform more and
particularly near the cusp, which requires much finer meshes that we cannot afford to use.
Nonetheless, the underlying mechanism that leads to the knife-edge shape does not change
above the selected maximum value of Bond. It is not worthwhile to continue its increase
given the severely increasing computational cost.

4. Results

4.1. Rheology of the material
As a base material, we chose the 1.5 % polyox solution used in LLJ, which was
characterized sufficiently in the work of Joseph et al. (1994) . The zero-shear rate viscosity,
η̃0, is equal to the viscosity of the material in the plateau shown for small shear rates. We
determine the relaxation time, λ̃, from the intersection of the storage modulus, G′, and
loss modulus, G′′, in the frequency sweep experiments. Finally, we find the εPTT value
following a nonlinear regression on the flow curve.

We cannot estimate simultaneously the values of λ̃ and εPTT from the flow curve
alone because it is their product that appears in the constitutive equation, prohibiting
their independent calculation only from one type of experiment. Data from extensional
experiments are not reported, which limits determining fully the extensional behaviour of
the rheological models. Also, we note that to achieve a perfect fit of the model, we should
use a εPTT value larger than 1, which is very uncommon. Hence, we select eventually a
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η̃0 λ̃ εPTT σ̃

17.3 Pa s 0.4 s 0.4 0.063 N m−1

Table 1. Rheological parameters of the e-PTT model found via a nonlinear regression for 1.5 % polyox
solution.

smaller one equal to 0.4. We will ascertain the effect of the value of εPTT in our problem
in the following sections. In figure 4(a), we plot the predictions of the model superimposed
on the experimental values and we summarize the parameter values in table 1. The value
of the interfacial tension, σ̃ , of LLJ and in our study is equal to 0.063 N m−1.

It is known that the extensional rheology of the material plays a crucial role in
bubble dynamics, especially downstream. Even though we choose the e-PTT model based
on its previously successful numerical implementations, we consider it appropriate to
examine its rheological behaviour under uniaxial extension and compare it with two
other constitutive models that present a different behaviour. We select the linear PTT
model, l-PTT, because it is another popular viscoelastic model, and the finite-extensibility
Giesekus (FEG) model (Beris & Edwards 1994), because it presents a steady state
extensional behaviour like the e-PTT but a different transient one. We fit their parameters
matching the simple shear behaviour of e-PTT. The constitutive equations along with
the values of the parameters are given in Appendix A. Although all three models
show the same shear behaviour (figure 4b), their extensional one differs. We are
interested not only in their steady-state response but also in their transient one because
Varchanis et al. (2021b) concluded that the transient response of the material is responsible
for the appearance of the sharkskin instability in the extrusion process. The flow of
polymers around the bubble is always transient in a Lagrangian sense due to the upper
convective derivative, even if the flow field is steady in a Eulerian setting. So, the transient
behaviour of the used models is relevant even in our case, where we solve the steady-state
equations. In figure 5(a), we plot the steady-state uniaxial extensional viscosity and in
figure 5(b), we plot the startup extensional viscosity for the three models. The I-PTT
predicts extension rate hardening and the extensional viscosity reaches a plateau. Instead,
the e-PTT and the FEG initially present extension rate hardening, followed by strong
extension rate thinning. Regarding the transient response of these models, l-PTT and FEG
predict a monotonic increase in the extensional viscosity until it reaches a steady-state
value. In contrast, the e-PTT predicts an overshoot in the startup extensional viscosity prior
to steady state. These observations will help elucidate the emergence of the knife-edge
shape.

4.2. Comparison with bubble shapes reported by Liu et al.
In what follows, the blockage ratio, BR, is 10, which is a representative value based on the
experiments of LLJ. Only in § 4.7.3, the size of the cylindrical container is varied to show
that it affects only the onset of the asymmetric solution, not the flow field. We commence
the presentation of our results with a bubble of volume Ṽb = 0.1 cm3 or R̃b = 2.9 mm in
a 1.5 % polyox solution. The corresponding dimensionless numbers are given in table 2,
as case 1.

Here, Ar is nearly zero, which hints at the minimal inertial effects. Also, Bo, which
quantifies surface tension effects, is approximately one, and we expect the deformation
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Figure 5. (a) Predictions of the steady-state uniaxial elongational viscosity, η̃e, versus the extension rate.
(b) Time evolution of the normalized startup extensional viscosity at ˜̇ε = 10 s−1. The black, continuous line
corresponds to the e-PTT model; the blue, dashed-dotted line corresponds to the l-PTT model; and the red,
dashed line corresponds to the FEG model.

Case R̃b(mm) Ar Eg Bo Bubble shape

1 2.9 7.8 × 10−4 0.685 1.28 Axisymmetric
2 5.7 6.2 × 10−3 1.37 5.14 Knife edge
3 4.9 3.8 × 10−3 1.17 3.72 Knife edge
4 3.54 1.4 × 10−3 0.84 1.93 Axisymmetric
5 3.57 1.5 × 10−3 0.85 1.97 Knife edge

Table 2. Bubble radius examined and corresponding dimensionless numbers.

of the bubble not to be significant. In the bubble problem, the elastically induced
deformations are hindered due to surface tension, which tends to preserve the spherical
shape of the bubble. Figure 6 shows the experimental shape and on top of it, with a red line,
our predicted shape, matching each other nicely. A slight difference is observed regarding
the shape of the trailing edge, which is sharper and more pointed in the experiment, while
simulations underestimate slightly the elastic response of the material. We attribute this
deviation to the lack of rheological data in elongational flow, and the model parameters
(table 1) underestimate slightly the elastic response of the material. We use figure 8 of LLJ
and the effective radius of the bubble to determine the bubble dimensions. Only one side
of the bubble is presented because the shape is axisymmetric. The bubble attains a prolate
shape, which is a consequence of the material elasticity. The normal stresses developed
at the trailing edge pull the interface downstream. For slightly larger Eg, it becomes an
inverted teardrop. Note that the value of Eg is smaller than unity but still high enough
for elastic effects to manifest themselves. The prolate and the inverted teardrop shapes are
reported in numerous experimental and numerical works dealing not only with viscoelastic
fluids but also with elastoviscoplastic ones (Moschopoulos et al. 2021).

The most striking observation in the work of LLJ and Hassager (1979) is the appearance
of the knife-edge bubble shape. For a bubble with a volume Ṽb = 0.8 cm3 or R̃b = 5.7 mm
in the 1.5 % polyox solution, the values of the dimensionless numbers corresponding
to this experiment are given in table 2, case 2. Note that in our simulations, we use a
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Figure 6. For a bubble of R̃b = 2.7 mm in the 1.5 % polyox solution, comparison between the steady-state
experimental shape by LLJ with our prediction indicated by the continuous red line.

value of 4.5 for the Bond number for the reasons stated in § 3.2. Inertial effects are still
unimportant (Ar � 1). Also, one can argue that even the Eg number is not particularly
large. For example, Eg was as high as 3 for the onset of the velocity jump discontinuity
in the work of Fraggedakis et al. (2016). Figure 7(a) depicts the predicted shapes with
red lines superimposed on the experimental photo at the plane x = 0. From this side, the
bubble exhibits an inverted teardrop shape with a tip, like those found in earlier works
(Astarita & Apuzzo 1965; Pilz & Brenn 2007; Fraggedakis et al. 2016). However, when
we turn our attention to the perpendicular side, namely at the plane y = 0 (figure 6b),
the shape changes and exhibits the peculiar knife edge. Simulations and experiments
match each other very well. Based on the terminology of LLJ, the predicted asymmetric
shape resembles an axe. To our knowledge, the present simulations are the first ones
to predict the breakup of axial symmetry in the rising bubble problem in viscoelastic
materials and capture the knife-edge shape accurately. At a first glance, it might seem
that we use smaller bubble volumes in simulations than experiments, but this is not true.
The bubble shape is not axisymmetric anymore. We compare the numerical prediction
against experiments in two perpendicular planes. We have no information of how the shape
varies when we move from one to the other, where we expect that the simulation attains a
bulkier shape than experiments. Still, the matching between simulations and experiments
in the two perpendicular planes is satisfactory. The bottom of the shape presents only a
very slight deviation from the horizontal direction. Experiments show a small change of
curvature as we approach the knife edge (indicated with black arrows in figure 7b), which
is captured by simulation to a smaller extent. The larger value of the experimental Bond
number than that used in simulations permits significantly larger deformations of the free
surface that are not achievable without increasing prohibitively the computational cost.
Nevertheless, our choice of the maximum value of the Bond number does not affect our
results so much. Let us comment also on the tip of the trailing edge. Even though it has
a cusp-like appearance, as shown in figure 7(a), it is not a true cusp. When we zoom
into it (figure 7c), we observe that it is rounded with a very small radius. Our numerical
observations agree qualitatively with the theoretical analysis of Jeong & Moffatt (1992)
for cusping-free surfaces. They demonstrate that the radius of the tip becomes extremely
small when the importance of surface tension fades away. In our simulations, the radius of

985 A30-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.316


P. Moschopoulos and others

–0.03 –0.02

–1.78

–1.77

–1.76

–1.75

–1.74

–0.01 0 0.01
y

z

0.02 0.03

(b)(a)

(c)

Figure 7. For a bubble of R̃b = 5.7 mm in the 1.5 % polyox solution, comparison between the steady-state
experimental shape by LLJ with our prediction indicated by the continuous red line. (a) Cusp-like tip plane at
x = 0. (b) Knife-edge plane at the plane y = 0. The black arrows indicate the location where the curvature of
the bubble interface changes and the bubble becomes concave. (c) Closeup near the cusp-like tip, we identify
the viscoelastic fluid with grey and the red line is the interface.

the tip is approximately 5 × 10−3. Their conclusions illustrate the very small length scales
we must capture accurately when the Bond number increases, leading to a tremendous
computational cost. We investigate the effect of surface deformation on the knife-edge
dynamics in a subsequent section.

4.3. Flow kinematics
We investigate the spatial variation of all three velocity components, one at a time. Note
that we transform the components of the velocity vector from cartesian coordinates to
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cylindrical ones in what follows. We select a bubble with R̃b = 4.9 mm, which corresponds
to the dimensionless numbers given in table 3, as case 3. Figure 8(a) shows the bubble in
an oblique view and the blue circle indicates the region on which we focus. We plot the
contours of the radial velocity component, ur, at the plane y = 0 (figure 8b). As we move
from the equator of the bubble towards the knife edge, the radial velocity is negative, which
means that material flows towards the z-axis. As we approach the point that differentiates
between the flat edge and the rest of the bubble, at z ≈ −1.7, the magnitude of the radial
component decreases, remaining negative. However, this observation only holds for a small
area near the bubble interface where the material slips along the bubble interface. When
we reach the vicinity of the flat edge, the flow kinematics changes rather dramatically. In
the region just below the knife edge, the radial velocity becomes positive. A positive radial
velocity denotes that material flows away from the z-axis, a striking difference from the
flow of the material above the trailing edge. Also, the magnitude of the radial velocity
which points away from the z-axis is much larger than the one that the material attains
before it reaches the knife edge. The maximum positive radial velocity is located below
the knife edge and slightly further to the right and left of it. We turn our attention to the
uZ velocity component, shown in figure 8(c). Note that we changed the reference frame to
the laboratory one. We visualize the velocity field in this reference frame, which means
that the bubble moves upwards and the fluid is stationary far from it. The axial velocity
is positive near the bubble surface, meaning that the material moves upwards. Along the
flat part of the bubble interface, the axial velocity component is equal to the bubble rising
velocity. As we move downstream, the axial velocity changes sign and becomes negative.
The direction of the flow changes and the material moves away from the bubble. This
strange flow configuration has been termed negative wake by Hassager (1979). Harlen
(2002) determined that the negative wake results from the competition between shear
and extensional stresses. To visualize better the spatial variation of uz inside the negative
wake structure, we zoom in around the trailing edge and near the z-axis (figure 8d). As
explained before, the axial velocity is positive on the bubble interface. Moving downwards,
it decreases, becomes zero at the stagnation point of the negative wake structure and then
attains a negative sign which identifies the negative wake. It is much more extended in the
x-direction compared with the findings of axisymmetric solutions (Fraggedakis et al 2016;
Niethammer et al. 2019), in which the negative wake is confined around the z-axis. Also,
the maximum of the magnitude of the axial velocity does not lie on the z-axis, but is found
marginally further to the right and left from it. We do not plot the azimuthal velocity, uθ ,
because it is zero on the y = 0 plane, by virtue of the symmetry condition.

Now, we turn our viewpoint to the perpendicular plane, namely x = 0. In figure 9(a),
we present an oblique view of the bubble just like in figure 8(a), but now the location of
the blue circle changes, and we investigate the kinematics around the cusp-like tip. We
plot the radial component of the velocity, ur, in figure 9(b). Here, we recover a flow field
that resembles that found in axisymmetric solutions. The material flows toward the z-axis
(ur is negative), and its maximum value is located at the bubble interface, right before
the tip. Note that small positive radial velocities are encountered in a tightly confined
area below the trailing edge at the locality of the negative wake. Also, the variation of
the axial velocity, uz, around the tip in the x = 0 plane (figure 9c) resembles that found
in axisymmetric simulations. Based on these observations, we conclude that the flow
kinematics resembles the already known one of axisymmetric simulations when viewed
from the tip side.

How are the different flow kinematics possible in the two perpendicular planes? The
missing part of the puzzle is uncovered when we explore the azimuthal component
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Figure 8. (a) Oblique view of the bubble. The blue circle denotes the area of the knife-edge shape. (b) Contours
of ur on the plane y = 0. (c) Contours of uz on the plane y = 0. (d) Contours of uz on the plane y = 0 and
zoomed in on the trailing edge and around the z-axis.

of the velocity. In figure 10(a), we plot the trailing section of the bubble with a
semi-transparent, opaque pink colour and an isosurface of the magnitude of uθ (|uθ | =
0.43) on top of it, in blue. Four lobes of finite uθ are found, signalling that the material
rotates below the bubble, breaking the axial symmetry. Note that the transparency of the
bubble shape allows us to discern the created lobes behind the bubble and present the
three-dimensional (3-D) perspective of the flow field. To investigate further the rotational
character of the flow, we plot the contours of the azimuthal velocity (figure 10b) in the
plane with y = 0.02. The radial and the axial velocity components (not shown here) follow
the same pattern found in figure 7. Note that the right-hand side of the figure depicts the
simulation results and the left-hand side shows the mirrored ones. Of course, when we
mirror our results, we interchange the sign of ux which leads to a change of sign of uθ .
The large magnitude of uθ , which is comparable with the magnitude of the other velocity
components, does not surprise us. The material rotates near the knife edge and between
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Figure 9. (a) Oblique view of the bubble. The blue, dotted outline denotes the area of the cusp-like tip.
(b) Contours of ur on the plane x = 0. (c) Contours of uz on the plane x = 0.

the two perpendicular planes, namely x = 0 and y = 0, and the observed change of the
flow kinematics becomes possible.

The rotational motion of the fluid is even better visualized if we plot uθ at the plane
z = −1.69 (figure 10c), located right above the trailing edge. We mention that we visualize
the yx plane from above and the azimuthal coordinate is positive in the counterclockwise
direction. The superimposed black arrows to the contours of uθ indicate the direction of
the flow. We conclude from figures 10(a) and 10(b) that uθ is extremely localized near
the knife edge. The material approaches the interface of the bubble perpendicularly to
the long (knife) side and is deflected by it. This initiates rotation of the liquid, which
now moves parallel to the knife side in opposite directions stretching the interface. This
rotational motion resembles that found in the four-mill arrangement (Feng & Leal 1997).
In another study, Joseph et al. (1991) investigated experimentally the cusping of a free
surface by two counter-rotating cylinders half-immersed in the liquid. The cylinders drag
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Figure 10. (a) Oblique view of the trailing edge of the bubble, shown in opaque pink, and isosurface of the
magnitude of uθ shown in blue. The isosurface corresponds to |uθ | = 0.43. (b) Contours of uθ at the plane
y = 0.02. (c) Contours of uθ at the plane z = −1.57. Black arrows indicate the direction of the flow.

material from the reservoir at their exterior sides and then plunge it in the area between
them. For viscoelastic materials and a critical threshold of the rotational velocity of the
two cylinders, they reported that the rounded interface, formed at the location where
the material re-enters the reservoir, transitions to a cusped one. The created flow field
approximates nicely that found in the bubble rise problem, concurring with our argument
that this rotational fluid motion generates the knife edge.

Having investigated the different velocity components, we can summarize our findings
regarding flow kinematics. In figure 11(a), we present schematically the flow encountered
in smaller bubbles translating through viscoelastic materials and just below the trailing
edge. The fluid converges towards the z-axis from both the x and y directions (blue vectors
in figure 11a), squeezing the bubble interface in both directions, and a stagnation point lies
at the z-axis. At the same time, fluid flows away from the stagnation point in the z direction
(yellow arrows in figure 11a). The fluid is compressed in the first and second directions (x
and y, respectively) and is elongated in the third one (z direction). So, the flow establishes
a uniaxial elongation stretching.

In figure 11(b), we present schematically the flow field obtained from our novel
numerical results for larger bubbles and in the case of asymmetric solutions. The material
flows towards the stagnation point along the y direction, but it flows away from it in the
perpendicular one, namely the x direction. This major flow field alteration differentiates
the asymmetric from the axisymmetric cases. It is accompanied by the emergence of a
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Figure 11. (a) Schematic of the flow field behind the trailing edge corresponding in axisymmetric solution for
a smaller bubble. (b) Schematic of the flow field behind the trailing edge corresponding in asymmetric solution
for a larger bubble.

non-zero azimuthal velocity component, which is depicted with the rotating, green and
brown arrows. Unquestionably, an elastic instability takes place and induces this transition
of the flow field. Regarding the flow in the z direction, fluid moves away from the
stagnation point, similar to the axisymmetric configuration.

Consequently, the fluid is compressed in one direction ( y), while it is elongated in the
remaining two (x and z). The flow becomes asymmetric and transitions from uniaxial to
biaxial stretching after a critical Eg. The material continues to squeeze the bubble interface
from one side, but it diverts and drags simultaneously the interface in the perpendicular
direction. As a result, the bubble forms a tip at one side, which points in the direction
of the positive radial velocity component, and the knife-edge shape develops on the
perpendicular side, where the radial velocity component is negative. Note that the direction
of the tip side is not unique but depends on the type and size of the cross-section of the
container, as analysed by LLJ, but this is out of the scope of the present study.

4.4. Flow dynamics
It is imperative to investigate the flow dynamics, specifically how the spatial variations
of the stresses evolve at the trailing edge when the bifurcating solution is just formed,
which will help us construct the mechanism for the onset of the instability. In figure 12,
we plot the contours of the stress components, namely τzz, τrz, τθθ and τrr on the plane
y = 0 for two slightly different bubble radii. The left-hand side of all panels concerns a
bubble with R̃b = 3.54 mm, with dimensionless numbers given in table 2 as case 4. The
right-hand side concerns a bubble with R̃b = 3.57 mm with dimensionless numbers given
in table 2 as case 5, just after the onset of the instability. The former bubble size induces an
axisymmetric flow field whereas the latter results in an asymmetric one. Between the two,
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Figure 12. Contours of stress components: (a) τzz; (b) τrz; (c) τθθ ; (d) τrr. In all panels, the left-hand side
shows stresses for R̃b = 3.54 mm, case 4 in table 2, and the right-hand side shows stresses for R̃b = 3.57 mm,
case 5 in table 2.

the latter bubble elongates slightly more, and the extent of its asymmetric deformation
is too small to measure. As shown in figure 12(a), the maximum value of τzz increases
from 6 to 9 approximately, which constitutes a 50 % increase. However, it is not localized
along the z-axis but extends along the x-axis also. At the same time, the shear stress, τrz,
increases significantly (figure 12b) when Eg is increased due to the deformation of the
bubble interface. Its absolute value steps up from 0.6 to 2, a 233 % increase.

They both relax further downstream. In both bubbles, the negative wake structure
emerges which is a result of the competition between τzz and τrz. Still, the most crucial
difference between the axisymmetric and the asymmetric cases is found in the hoop
stresses, τθθ , in figure 12(c) downstream. Positive values of τθθ denote that the fluid resists
its extension in the azimuthal direction and negative ones that it opposes its compression,
just like positive values of τzz indicates extension of the polymeric chains in the axial
direction. Here, ∇uθθ = (1/r)(∂uθ /∂θ) + ur/r is responsible for the development of
azimuthal stresses. In axisymmetric solution, the first term is almost zero, but hoop stresses
are generated due to the radial term. To understand the creation of hoop stresses due to the
radial motion, we can image a ribbon consisting of small fluid parcels that form a circle
due to axial symmetry. For example, when two parcels have a positive radial velocity, the
angle that is formed between them does not change, but their distance with respect to the
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axis of symmetry increases. As a result, the arclength that connects them, or alternatively
their azimuthal distance, increases. So, the material is stretched in the azimuthal direction
and positive hoop stresses develop. In contrast, when ur < 0, their distance with respect to
the axis of symmetry decreases and so does their azimuthal distance; thus, the material is
compressed.

Note that a small expansion of the material also develops for the axisymmetric case
right after the negative wake, but the positive values of τθθ are very small and confined
near the axis of symmetry (left-hand side in figure 12c), whereas they increase three-fold
in the asymmetric case (right-hand side). When the solution becomes asymmetric, we
have (a) an azimuthal velocity component, so ∂uθ /∂θ is finite and not zero; and (b) ur/r is
larger compared with the axisymmetric case. Both lead to larger ∇uθθ and consequently to
larger hoop stresses. Moreover, the maximum τθθ does not lie along the z-axis but arises
away from it. Finally, radial, normal stresses, τrr, increase and become as shown in the
right-hand side of figure 12(d), indicating a radial expansion.

Next, we examine the stress distribution downstream of the semi-transparent bubble
when the knife edge is readily visible for R̃b = 5.7 mm, case 2 in table 2. We plot the
isosurfaces of τzz (figures 13a and 13b), τrr (figure 13c) and τθθ (figure 13d) on top of
the bubble shape. Notice the striking asymmetric stress distribution. In figure 13(a), the
isosurface of τzz (with value τzz = 2.2) attains a butterfly-like shape. Along the z-axis, a
birefringent stand is formed, albeit very small, due to the strain-rate thinning nature of
the material. Two wings appear, confined along the x-axis and parallel to the knife side.
These stresses pull the interface downwards, flattening the lower part of the broad side of
the knife edge. Here, τzz is better visualized if we plot its isosurface from an angle that
shows the bottom part of the bubble, as shown in figure 13(b), where the nearly planar
shape of the stress isosurface is readily viewed. Note that the flow direction points into
the plot. Regarding τrr (figure 13c), we plot an isosurface for τrr(= 0.12), and we find
two larger lobes attached to the bubble surface, at the tip side, and two smaller islands
below the bubble. The two small islands correspond to the expansion of the material at
the negative wake, which is also observed in the axisymmetric solution (figure 12d). The
two larger lobes touching the bubble interface are formed due to radial expansion of the
material after its rotation downstream, which extends the bubble along the x-axis. Finally,
an isosurface of positive hoop stresses (τθθ = 0.18) is plotted in figure 13(d) where four
lobes are created. The off-axis hoop stresses shown in figure 12(d) expand even more,
strengthen and move further away from the z-axis. Their shape demonstrates that the
material expands asymmetrically along the azimuthal direction.

4.5. Determination of the onset and the magnitude of the bifurcating solution
Clearly, the instability that causes the flow to transition from axisymmetric to asymmetric
is controlled by elastic effects, characterized by the value of Eg. We propose two different
quantities to indicate whether the instability is triggered or not. The first one is the average
of the absolute value of the azimuthal velocity, which we call the azimuthal parameter, Ap,
defined as

Ap =
∫

Vflow

|uθ | dV, (4.1)

where the integral is calculated in the whole flow domain, Vflow. Here, uθ is non-zero only
just below the trailing edge and it is zero elsewhere.

The second is the absolute value of the difference between the arclength of the entire
bubble interface measured at x = 0 with the arclength measured at y = 0, denoted as AL,
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Figure 13. 3-D view of the trailing edge of the bubble, shown in opaque pink and isosurfaces of stress
components in blue and from different views: (a) oblique view of τzz (value 2.2); (b) bottom view of τzz
(value 2.2); (c) oblique view of τrr (value 0.78) and (d) oblique view of τθθ (value 0.41). Case 2 in table 2 with
Ar = 6.2 × 10−3, Eg = 1.37, Bo = 5.14.

and called arclength parameter, which reads as

AL =
∣∣∣∣∣
∫

dl|x=0

dl −
∫

dl|y=0

dl

∣∣∣∣∣ . (4.2)

In figure 14, we plot Ap and AL as functions of Eg. When the flow is axisymmetric,
both quantities are zero. When the elastic instability is triggered, or equivalently at
Eg = Egcr, they start increasing and a supercritical pitchfork bifurcation is encountered.
We encounter a pitchfork bifurcation because a stable solution, namely the axisymmetric
solution for Eg < Egcrit, forks into two stable ones, i.e. the asymmetric solutions, and the
axisymmetric one becomes unstable. Note that we calculate the azimuthal parameter using
the absolute value of the azimuthal velocity so only one bifurcated branch is depicted in
figure 14 and the similar ones that follow. The second branch is the mirror image of the first
one, i.e. Ap < 0. In one branch, the knife edge is in the x-axis and in the other, it is in the
y-axis, which is the only difference between the two branches. Following the experiments
of LLJ, we categorize the asymmetric solution as the stable one for Eg > Egcrit. Also, we
categorize the pitchfork bifurcation as supercritical because the bifurcated solution evolves
towards larger values of Eg and the asymmetric solutions are stable. Still, a formal stability
analysis is needed which is beyond the scope of the present study.

Let us comment further on the transition from the axisymmetric to the asymmetric
solution. If we zoom in the bifurcation point, we notice that the intersection of the upper
branch is not perpendicular to the x-axis. This observation is not obvious in figure 14,
but becomes evident in the following ones (e.g. figure 20b). This slight deviation in the
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Figure 14. Azimuthal parameter, Ap, as a function of Eg to be read on the left vertical axis as the black arrow
indicates and the arclength parameter, AL, to be read on the right vertical axis as the blue arrow indicates.

slope is attributed to the numerical error that the solution method introduces inevitably.
Such observation is also reported in the work of Poole, Alves & Oliveira (2007) (see
their figure 3a, for example), who examine the pitchfork bifurcation encountered in the
viscoelastic flows through the cross-slot geometry. Furthermore, one should consider that
the moving boundary nature of our problem leads to azimuthal disturbances which grow
gradually after some value of Eg which is a numerical artifact. This behaviour decreases
as we refine the mesh. Regarding the base case, namely the axisymmetric solution, we
capture it even for Eg > Egcrit, but not much larger. To allow the iterations to converge to
the base solution, we do not perturb it and we do not use arc-length continuation. However,
the mesh deformation introduces, in effect, the needed perturbation in the third direction
and forces the Newton method to converge to the asymmetric solution. Nevertheless, the
axisymmetric solution for Eg > Egcrit can be obtained enforcing axial symmetry.

The rate of increase of the two parameters determining the magnitude of the asymmetry
is different. The flow field becomes asymmetric, but the rotational motion is not strong
enough to deform greatly the bubble interface asymmetrically. When the azimuthal
velocity increases due to larger Eg, the parameter that measures the asymmetric
deformation of the bubble interface grows and the knife-edge shape is formed. The
asymmetry of the flow field is detected more easily when Eg is slightly larger than Egcr.
However, the use of the arclength parameter is not always practical or even possible in
experiments. For instance, the bubble deformation might be too weakly asymmetric to
make the required optical measurements. The difference between the two arc lengths
should become large enough to identify the asymmetric deformation which occurs in
Eg > Egcr. Based on these arguments, if we try to calculate experimentally the value
of Egcr for the onset of the instability using only the difference in the two arc lengths or
possibly some other geometrical criterion, we may overestimate its value.

4.6. Dependence of the bubble rise velocity on its effective radius
Before we move on to a parametric study, we deem it worthwhile to examine the
dependence of the speed of the bubble on its volume. Following the work of LLJ, we
define the capillary number, which depends on the velocity of the bubble, and it reads as

Ca = Bo ∗ Ub. (4.3)
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Figure 15. (a) Capillary number as a function of the bubble volume and (b) drag coefficient as a function of the
bubble volume. Comparison between our theoretical results, denoted by the line, and the experimental results,
denoted by the square symbols, for the 1.5 % polyox solution of LLJ. Critical volumes for the occurrence of the
knife edge in experiments and simulations are indicated by the star symbol (experiments) and by the triangular
symbol (simulations).

We visualize its dependence on the volume of the bubble in figure 15(a). The experimental
data denoted with symbols show a clear jump for a volume 0.1 cm3 accompanied by
the appearance of the knife-edge shape. However, the simulations do not capture it. The
velocity predicted from simulations lies between the upper and the lower branches of the
experimental results. Still, the difference between the two is not that large and simulations
follow experiments, excluding the presence of the jump discontinuity. After a volume of
0.4 cm3, the slope of the predicted velocity increases faster and starts to catch up with
the values of the experiments. Around the volume 0.9 cm3, a turning point is approached,
but our simulations cannot continue further due to convergence issues. We assume that
this turning point is the beginning of the hysteresis loop that precedes the velocity
jump discontinuity as identified by Fraggedakis et al. (2016). Moreover, experiments
determine that the knife edge arises approximately for a volume 0.1 cm3 or R̃b = 0.29 cm
(star symbol in figure 15a), whereas simulations indicate a critical volume of 0.18 cm3

or R̃b = 0.35 cm (triangular symbol in figure 15a). We attribute this deviation to two
reasons: first, the extensional nature of the material is not correctly characterized because
extensional, rheological experiments were not performed. Thus, we may underestimate its
elastic response as we argue in relation to figure 6(b). Second, the distance between the
bubble and the sidewall of the container becomes smaller when the volume of the bubble
increases in experiments, whereas we keep it constant in simulations. As we explain in
§ 5.7.3, the proximity of the container to the bubble affects only the onset of the instability.

The drag coefficient, Cd, for a steadily rising bubble is given by

Cd = F̃d(
η̃0Ũb

R̃b

)
(πR̃2

b)

= 4
3Ub

, (4.4)

where F̃d is the drag force on the bubble, which is balanced by buoyancy in equilibrium. In
figure 15(b), we compare the calculated Cd against the experimental one as a function of
the bubble volume. The same mismatch found in figure 15(a) is observed also in the case of
Cd. Experiments predict that the bubble obtains the knife-edge shape and simultaneously
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its velocity jumps one order of magnitude, which translates in the sudden decrease of Cd.
We predict a milder decrease of Cd until the volume 0.9 cm3, where an abrupt decrease
is indicated by simulations. Thus, the rapid decrease of Cd happens after the onset of the
instability, a result which holds throughout our analysis.

4.7. Parametric analysis
Up to this point, we examined different bubble radii, compared our novel numerical
results with the experiments of LLJ, and analysed the flow kinematics and dynamics
captured by numerical simulations. These cases resulted in axisymmetric and asymmetric
bubble shapes, where the teardrop bubble shape arose in smaller bubbles, but the peculiar
knife-edge bubble shape was obtained in larger bubbles.

Still, some of the questions posed in the introduction remain unanswered. The following
parametric study assists in elucidating them, after which we will propose a physical
mechanism for the observed instability, which leads to the knife-edge bubble shape.
Also, we modify the solution procedure. We do not vary Rb anymore because it affects
all dimensionless numbers and does not allow us to isolate the effect of the different
parameters on the flow. Instead, we fix the values of Ar and Bo, and perform an arclength
continuation on the Eg number. In all forthcoming cases, the inertial effects are minimal,
because Ar is smaller than 10−3. Thus, we set Ar equal to zero for all, unless we state
otherwise. Also, BR = 10 for the majority of the following results, except for § 4.7.3, where
we investigate the effect of the confinement.

4.7.1. Effect of the Bond number, formation of a bubble with cross-edge instead of a knife
edge

We investigate the effect of surface tension by varying the Bond number. In figure 16(a),
we plot the azimuthal parameter versus Eg for five different Bond values. The azimuthal
parameter starts from 0, indicative of an axisymmetric flow field, and it increases suddenly
at the onset of the flow instability, which occurs at a critical Eg value. Larger Eg is
needed to trigger the instability when Bo is smaller, because surface tension opposes the
flow-induced deformation. When Eg increases, the stresses exerted on the trailing edge
perturb the spherical shape. The bubble obtains an inverted teardrop shape and finally
the flow field becomes asymmetric. It seems that only after the inverted teardrop shape is
formed does the instability emerge. We summarize the critical Eg values for the onset of
the instability in table 3.

In figure 16(b), we plot the arc length difference defined in (4.2) for different Bond
numbers. As stated, the arclength parameter increases less and attains smaller values than
the azimuthal parameter. When Bo < 1.5, AL attains very small values even when Eg >

1.3. Experiments do not easily capture these small values because the determination of the
bubble interface is prone to image processing errors. For Bo ≥ 2, the arclength parameter
increases and should be measurable experimentally. However, it shows a different
dependence on Eg for Bo = 1.5. It increases slightly (not observable in figure 16(b) due
to the ordinate scale) and remains almost constant for the range of Eg we investigated. To
elucidate this behaviour, we examine the flow kinematics.

In figure 17(a), we plot the contours of the radial velocity where the left-hand side
corresponds to a slice at x = 0 and the right-hand side corresponds to a slice at y = 0.
Positive radial velocities are found in both slices, and the material stretches the interface
along both the x and y planes simultaneously, which indicates a change of the flow field
compared with the case shown in figures 8 and 9. There we found that the material pulled
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Figure 16. (a) Azimuthal parameter, Ap as a function of Eg for different Bond values, (b) the arclength
parameter, AL, for different Bond values.

Bo 0.1 1 1.5 2 3

Egcrit 1.82 1.33 1.07 0.78 0.59

Table 3. Critical Eg based on Ap for the onset of the instability for εPTT = 0.4 and Ar = 0.

the interface only along only one plane (x or y) when the bubble attains the knife-edge
shape. In figure 17(b), we plot side by side the plane at y = 0(right-hand side) and a slice
that corresponds to an angle θ = 45◦ (left-hand side); positive radial velocities are found
in the former, but negative in the latter. So, the dihedral angle between the two planes in
which the flow kinematics changes is 45◦, corresponding to a reduction of the angle by
45° compared with that previously shown in figure 9. To illustrate this change better, we
also plot the azimuthal velocity, uθ , at a plane z =−1.428, shown in figure 17(c). Here,
the plane of θ = 45◦ serves as an internal plane of symmetry and the fluid converges
towards the bubble surface with zero azimuthal velocity. Hence, the material rotates
simultaneously in the x and y directions, which results in minimal differences in the
two-interface arc-lengths calculated at the planes with x = 0 and y = 0. The odd stretching
of the bubble interface prevents the easy distinction of the asymmetric shape. Still, small
differences arise if we compare the arc-length of the bubble interface at plane x = 0 and
the plane that corresponds to θ = 45◦. However, the asymmetric shape is better discerned
when we view it from a z plane, like in figure 17(c). As a result, the knife edge is not formed
and the shape resembles a deformed cross. Still, the deformation is not as pronounced
as in the other cases and the asymmetry in the bubble shape might be overlooked in
experiments, as opposed to the flow around a sphere in a similar fluid (Varchanis, Haward
& Shen 2023).

Following these observations, we illustrate τzz and τθθ using isosurfaces on top of the
bubble shape in figure 18. The spatial variation of stresses is different compared with that
in figure 13. The τzz transitions from a butterfly-like to a cross-like configuration, stretching
the interface downwards along two perpendicular planes. These planes form an angle of
45° with the x- and y-axis and their common contact point lies along the z-axis. Also, a
very small birefringent strand exists and extends along the z-axis (figure 18a). Regarding
τθθ , four more lobes are created perpendicular to the already existing ones (figure 13c).
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Figure 17. (a) Contours of the radial velocity, ur. The right-hand side of the panel corresponds to the plane
y = 0 and the left-hand side corresponds to the plane x = 0. (b) Contours of the radial velocity, ur. The
right-hand side corresponds to the plane y = 0 and the left-hand side corresponds to the plane θ = 45◦ or x = y.
(c) Contours of the azimuthal velocity, uθ , at the plane z = −1.428. Black dotted arrows indicate the direction
of the flow and the dotted lines denote the two planes in which the fluid moves towards the z-axis with zero
azimuthal velocity. Bo = 1.5, Eg = 1.3.

4.7.2. Effect of extensional viscosity
As discussed previously, when the knife-edge shape is formed, the flow type changes
from uniaxial elongational to biaxial stretching behind the trailing edge. Even though
the onset of the elastic instability renders the flow field three-dimensional, the flow
character remains predominantly extensional. Also, the experiments of LLJ demonstrate
that bubbles obtain the knife-edge shape not only in shear-thinning materials, like polyox,
but also in Boger-type fluids, which present a constant shear viscosity. So, shear thinning
does not affect the creation of the knife edge and we focus safely on the extensional
viscosity. To examine the effect of the extensional viscosity on the dynamics, we use the
different viscoelastic models mentioned in § 4.1 and in more detail in Appendix A.

For all the investigated cases in this section, we use Bo = 2. In figure 19(a), we plot
the azimuthal parameter as a function of Eg. We observe that the cases of e-PTT and
FEG demonstrate the same behaviour qualitatively, albeit the difference in the values
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Figure 18. 3-D view of the trailing edge of the bubble, shown in opaque red, and isosurfaces of stress
components in blue and from different views: (a) oblique view of τzz (value 0.52); (b) bottom view of τzz
(value 0.52); (c) oblique view of τθθ (value 0.18). Bo = 1.5, Eg = 1.3.

of the critical Eg for the onset of the instability. The e-PTT predicts Egcrit = 0.78,
whereas FEG predicts Egcrit = 1.11. Their steady-state, extensional viscosity shows
similar dependence on the extension rate, but the strain-rate thinning response of FEG
arises for a larger extension rate. Furthermore, their transient extensional viscosity presents
different behaviour. The e-PTT model predicts an overshoot in the startup extensional
viscosity before a steady-state is attained, in contrast to the FEG model, which predicts a
monotonic increase of the startup extensional viscosity. As seen in the work of Varchanis
et al. (2021), this overshoot serves as a destabilizing agent. In our case, this overshoot,
coupled with the earlier strain-rate thinning response of the e-PTT material, seems to
promote the instability to occur at smaller Eg values. To our surprise, the l-PTT fluid does
not introduce any three-dimensional character to the flow field; the asymmetry parameter
remains equal to zero for the whole range of the investigated Eg numbers and the solution is
axisymmetric. All models predict slight strain-hardening effects from ˜̇ε = 10−2 to 1 s−1,
but only the l-PTT predicts the extensional viscosity to be constant and independent of
the extension rate for larger values (̃ε̇ ≥ 10 s−1), see figure 5. Furthermore, we perform
simulations using two more models: (a) the FENE-CR model, which exhibits constant
shear viscosity, extension-rate hardening and bounded extensional viscosity; and (b) the
Oldroyd-B model, which predicts an infinite increase of the extensional viscosity when
the strain rate becomes large enough. The FENE-CR model is presented in Appendix A.
Nonetheless, axisymmetric solutions (not shown here) are obtained with both models.
Thus, extension-rate thinning is necessary for the onset of the instability.

We vary the εPTT parameter to assess the effect of the strain-hardening and we find
that the critical Eg number depends strongly on it (figure 19b). As we decrease εPTT ,
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Figure 19. (a) Dependence of the azimuthal parameter, Ap, on Eg for different constitutive models.
(b) Dependence of the azimuthal parameter, Ap, on Eg for different values of εPTT . Bo = 2.

εPTT 0.1 0.2 0.4 0.6 0.7

Egcrit 0.7 0.73 0.78 0.80 0.96

Table 4. Critical Eg based on Ap for the onset of the instability for Bo = 2 and Ar = 0.

the rate-of-strain thinning starts at larger extension rates. So, the elastic stresses (or
equivalently, the extensional viscosity) become greater and deform the bubble interface
more. This increased deformation triggers the instability sooner, just like in the case of
larger Bo (figure 16a). Also, εPTT affects the growth of the instability. For large values, the
slope of Ap is steeper and rises almost vertically, which demonstrate that extension-rate
thinning amplifies the asymmetry of the flow. The changes that εPTT induces in the values
of Egcrit are summarized in table 4.

We note that You et al. (2009) investigated the bubble rise in a viscoelastic material by
performing a stability analysis of axisymmetric simulations. They determined that the flow
becomes unstable and a three-dimensional configuration is stable when they increased Eg
(termed Wi in their paper). Still, they use a FENE-CR material, which contradicts our
observations. However, we believe this is not a true outcome of the governing equations,
but results from the deterioration of the accuracy of their simulations. The extreme mesh
deformation at the trailing pole of the bubble necessitates a very fine discretization at the
bubble tip, like that shown in figure 3. If the mesh is not adequate, then the side of the last
element on the bubble interface is not perpendicular to the axis of symmetry but forms a
small angle. Thus, the assumption of axial symmetry is not imposed accurately and wrong
results may be obtained.

4.7.3. Effect of confinement
Studies of viscoelastic flows demonstrate that the behaviour of the flow dynamics is
sensitive to relevant dimensionless geometric parameters (Varchanis et al. 2020b). In
our case, the relevant scaling measure is the bubble-cylinder ratio or the blockage ratio,
BR, defined in (2.1). To investigate the scaling of the critical Eg number with the flow
geometry, we perform additional simulations with a series of containers of smaller
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Figure 20. (a) Azimuthal parameter, Ap, as a function of Eg for different blockage ratios. (b) Azimuthal
parameter, Ap, as a function of Wi for different blockage ratios. Bo = 2.5.

radii. Following the previous observations, we set Bo = 2.5 to promote the onset of
the instability. The azimuthal parameter demonstrates a non-intuitive dependence on Eg.
Previous works report that the increase of the blockage ratio promotes the destabilization
of the flow and instabilities should occur at smaller Eg numbers, which is opposite to
what we observe in figure 20(a). We note that the confinement changes only the onset
of the instability and the flow field remains qualitatively the same. This stems from the
circular cross-section of the container. As LLJ state, if the cross-section of the container
is rectangular then the orientation of the knife-edge shape depends on the proximity of
the bubble to the walls. Nonetheless, we do not pursue further the flow alteration that a
rectangular container might induce.

We realize that the bubble velocity or alternatively the upstream velocity of the fluid
depends on the blockage ratio in our simulations because we do not impose a prescribed
value a priori, but we determine the bubble speed along with the solution of the problem.
End-wall effects affect the motion of bubbles and spheres (Sigli & Coutanceau 1977).
As the boundaries are placed closer to the bubble, its velocity decreases. So, Eg is not
an appropriate measure of elasticity in the present situation because it does not account
for the flow intensity. To this end, we define the Weissenberg, Wi, which depends on the
bubble velocity and relates to Eg as

Wi = Eg ∗ UB ≡ λ̃ Ũb

R̃
. (4.5)

When we examine the dependence of the azimuthal parameter on Wi (figure 20b),
our results concur with those made in earlier investigations of flows exhibiting elastic
instabilities (Varchanis et al. 2020b). For larger blockage ratios, the onset of the elastic
instability occurs at smaller Wi. Nonetheless, the blockage ratio does not induce significant
differences in the critical value of Wi. This result is also supported by LLJ, who show that
the velocity and the cusp-like shape of the bubble do not depend much on the size of the
container. Indeed, the container shape and size affect primarily the orientation of the knife
edge, as observed experimentally, but we will not investigate this in the present study.

The results presented here correspond to Ar = 0 (creeping flow). Hence, the instability
we investigate is categorized as purely elastic. In their pioneering works, McKinley, Pakdel
& Öztekin (1996) and Pakdel & McKinley (1996) show that both the geometric (i.e.
blockage ratio) and rheological (i.e. Wi) scaling can be unified into a single criterion to
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Figure 21. Inverse of the critical Wi for the onset of the instability as a function of the blockage ratio.

determine the onset of purely elastic instabilities. The proposed scaling incorporates the
non-zero tensile stresses and the magnitude of the streamline curvature in the flow, and
can be expressed as [

λ̃Ũb

R̃

τ̃ ss

η̃0
˙̃γ

]
≥ M2

crit, (4.6)

where τ̃ss is the tensile stress along a streamline and R̃ is the characteristic radius of
curvature of the streamline. If the left-hand side of (4.6) exceeds the M2

crit at some area
of the flow field, the flow is prone to an instability that originates from that area.

In figure 21, we plot the inverse of the critical Wi versus the blockage ratio, which shows
clearly the linear dependence of 1/Wicr on BR, as argued by McKinley et al. (1996) and
Pakdel & McKinley (1996). Thus, any initial perturbation in the flow field behind the
trailing edge of the bubble is amplified by the presence of strong elastic normal stresses
along curved streamlines in the vicinity.

Following the earlier works, we relate the radius of curvature through a reciprocal linear
combination of the radius of the bubble, R̃b, and the radius of the cylindrical container, R̃c,
which reads as follows:

1

R̃
= α

R̃b
+ β

R̃c
. (4.7)

As argued by McKinley et al. (1996), the radius of curvature of the streamline is a more
appropriate length scale of the flow field, rather than the radius of the bubble or of the
cylindrical container. However, streamline curvature should scale with a combination of
the two, and the simplest relationship is that employed in (4.7). Suppose now that in
the vicinity of the trailing edge, ˙̃γ can be approximated as ˙̃γ ≈ Ũb/R̃ and that τ̃ss =
2λ̃η̃0 ˙̃γ 2, which is the normal stress for an Olroyd-B fluid in shear flow. We combine (4.7)
and the former arguments in the dimensionless instability criterion (4.6). After certain
rearrangements, the following expression is obtained:

1
Wicr

=
√

2α

Mcrit
+ 2BR

β

Mcrit
≡ ᾱ

Mcrit
+ BR

β̄

Mcrit
. (4.8)
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ᾱ β̄ Mcrit

1.43 1 0.3437

Table 5. Fitted values of the parameters in (4.8)

Elasticity prevails over

surface tension

Tensile-shear stress balance

Inverted teardrop shape
Axisymmetric

shape

Axisymmetric

shape

Axisymmetric simulations boundary

Curved streamlines

at the trailing edge

Strain-rate thinning

Destabilizing effect of shear

Asymmetric

shape
Growth of

azimuthal disturbances

Negative wake

A small, positive radial thrust

Eg grows

Eg grows

further

Eg > Egcrit

Figure 22. Schematic representation of the sequence of events that lead to the creation of the knife-edge shape.
The first two stages are relevant also in axisymmetric shapes while the third stage corresponds to fully 3-D
simulations.

We wish to determine the value of Mcrit along with the numerical factors ᾱ and β̄. To do so,
we use a linear polynomial to fit the simulation data depicted in figure 20. Note that we can
obtain only two constants from the regression procedure for the slope and the intercept.
Without loss of generality, we set β̄ = 1 and in the limit of BR → 0, the characteristic
radius of curvature reduces to R̃ = R̃c and the shear flow reads as ˙̃γ ≈ Ub/R̃c. The fitted
values of Mcrit, ᾱ and β̄ are summarized in table 5.

4.8. Physical mechanism leading to the asymmetric shapes
In figure 22, we give a visual representation of the physical mechanism that leads to
asymmetric flow fields downstream of the bubble and the appearance of the knife-edge
shape. We choose to split it into three consecutive stages. During stage one, the increase
of the bubble volume induces a stronger elastic response of the fluid due to larger induced
velocities and strains, resulting in stronger extensional forces in the trailing edge of the
bubble. The elastic stresses pull downwards the rear pole deforming the bubble, and the
inverted teardrop shape is formed.

In the second stage, the inverted teardrop shape permits the development of large shear
stresses close to the bubble interface, even though the shear-free condition is applied along
it. A delicate balance between the tensile and shear viscoelastic stresses may develop in the
region right after the bubble, which gives rise to the negative wake structure. Harlen (2002)
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argues that the tensile stresses should not be much larger than the shear ones. Otherwise,
their balance is not established and the negative wake does not appear. As a consequence
of the emergence of the negative wake, small and positive radial velocity arises, which is
confined in the region of the negative wake (figure 9c).

Stages one and two are encountered in both axisymmetric and 3-D shapes. Due to the
shape of the bubble, the streamlines are curved at the trailing edge and large tensile stresses
are exerted along them, a combination that is known to destabilize flows of viscoelastic
materials (Pakdel & McKinley 1996). Typically, the destabilization begins when a small
radial perturbation thrusts the polymer chain not to lie along a single streamline and the
shearing motion between the streamlines stretches the chain nonuniformly amplifying
the non-Newtonian ‘hoop stresses’, namely the θθ component of the stress tensor. This
necessarily positive radial thrust is present when the negative wake is formed behind the
bubble. Thus, all the prerequisites for triggering an elastic instability exist, making stage
three possible.

However, not all bubbles rising in viscoelastic materials obtain asymmetric shapes,
despite the presence of a negative wake. So, all these ingredients are not sufficient to
form the knife-edge shape. Based on the discussion presented in § 4.6.2, the fluid should
also exhibit extension-rate hardening for intermediate strain rates and thinning for larger
ones for the onset of the elastic instability, which allows the knife edge to form. Let us
expand on the necessity of both strain hardening and thinning effects in the constitutive
model. The strength of the tensile stresses should increase initially in response to the
induced strain and deform the bubble. The prolate or inverted teardrop shape of the bubble
prompts the development of shear stresses at the trailing edge. As the bubble size increases
(or alternatively the strain rate increases), tensile stresses should decrease compared with
the shear stresses and allow the destabilizing effect of the latter to amplify the azimuthal
perturbations, as indicated by Pakdel & McKinley (1996).

We believe that this very subtle interplay between tensile and shear stresses is the
reason behind the limited experimental evidence of the knife-edge bubble shape and
the non-existence of numerical simulations that demonstrate it. This mechanism explains
clearly the effect of Bo and εPTT on the instability. The more the tensile stresses deform
the bubble interface, the more the shear stresses increase near the trailing edge, which are
convected by the flow and trigger the instability sooner. In general, the deformation of
the bubble is a result of either weaker surface tension effects (or equivalently larger Bond
number) or stronger tensile stresses (smaller εPTT ) that pull the interface downward. Note
that after the emergence of small azimuthal perturbations, εPTT amplifies their growth and
larger values facilitate the steeper increase of Ap (figure 18b).

5. Summary and conclusions

We have investigated the flow dynamics around a bubble that translates through a
quiescent viscoelastic medium inside a cylindrical container. The rheological response
of the material followed the exponential PTT model. We do not assume axial symmetry,
but solve numerically the governing equations in a three-dimensional setting. We select
as the base material a 1.5 % polyox solution (Joseph et al. 1994). For a small bubble,
we predict axisymmetric shapes, specifically an inverted teardrop shape, in accordance
with previous simulations and experiments. When the bubble size increases, it induces
larger rate-of-strains in the viscoelastic material, amplifying the elastic effects. When a
critical bubble volume is surpassed, the flow field ceases to be axisymmetric causing an
asymmetric deformation of the bubble interface and leading to the peculiar knife-edge
bubble shape. Our novel numerical results are the first ones to capture its emergence.
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The obtained bubble shapes match nicely with the experiments reported by Liu et al.
(1995). The bubbles have a cusp-like, sharp interface in one view and a knife, broader
edge in the perpendicular view.

We have examined the flow kinematics and dynamics around the knife edge to elucidate
the mechanism that forces the bubble to deform in such an astonishing way. We have
monitored two quantities to determine the onset of the instability. The first one is the
average of the absolute value of the azimuthal velocity and the second one is the absolute
value of the difference between the arclength of the bubble interface measured at two
perpendicular planes. Although both quantities indicate the same value of the critical
Eg for the onset of the instability, the former is easier to measure experimentally. Then,
we conduct a parametric study varying the surface tension of the bubble interface, the
extensional rheology of the material and the radius of the cylindrical container. Our key
findings that answer the questions posed in the introduction are summarized here. In
particular, we conclude the following.

• Regarding flow kinematics, it is different depending on from which direction
we observe it. When we view the sharp bubble tip, the radial flow of the
material points toward the z-axis, but it changes direction and points away from
it when we visualize it from the broad, knife edge. The negative wake is present
in both views and it resembles approximately the shape of the knife edge. It
expands below the broad side and is confined below the narrow tip of the bubble.
A finite azimuthal velocity accompanies this change in the radial flow direction. The
material converges towards the z-axis from one direction, rotates and then diverges
from the z-axis from the perpendicular direction. Therefore, the flow compresses
the bubble trailing edge from one side and extends it from the perpendicular
one, creating the bubble knife edge. In contrast, the flow converges radially to
the z-axis from all directions in axisymmetric simulations and forms the inverted
teardrop shape. The asymmetric flow configuration can be considered like a biaxial
extension whereas uniaxial elongation is found in axisymmetric cases. Concerning
the flow dynamics, significant changes arise when we visualize the τzz and τθθ

components of the stress tensor. The axial, normal stresses attain a butterfly-like
shape, extend along the broad side and pull eventually the interface downwards.
Still, a birefringent strand is formed that lies along the z-axis, albeit smaller than that
encountered in other materials. The e-PTT model predicts extension-rate thinning
and disallows the extreme increase in the extensional viscosity, or equivalently the
extensional stresses. Positive hoop stresses develop on the front and the back of the
knife edge, indicating that the material is stretched in the azimuthal direction.

• Increasing the deformability of the bubble interface, the value of the critical
elastogravity number for asymmetry inception decreases. A more deformed
interface amplifies shear stresses that lead to the destabilization of the flow field
downstream and the emergence of the knife edge. We find that for Bo = 1.5, the
flow field becomes asymmetric downstream, but the knife edge does not arise.
Here, the shape of the isosurfaces of τzz resembles a cross, not a butterfly. Thus,
the extensional stresses stretch the bubble interface from two perpendicular to each
other planes, and the bubble interface obtains a shape that resembles a deformed
square.

• For the onset of the elastic instability, the material should exhibit both extension-rate
hardening followed by thinning. The knife-edge bubble shape and asymmetric flow
kinematics are found only when we use the e-PTT or FEG viscoelastic models, but
not with the other three models we examined. The initial increase of the extensional
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viscosity allows the flow to deform the bubble, increasing the shear stresses that
destabilize the flow. However, the growth of azimuthal perturbations entails the
dominant shear stresses over tensile ones; thus, the latter should decrease. Our
argument is further strengthened by the dependence of Egcr on the εPTT parameter.
Smaller values of εPTT trigger the instability sooner, but larger values amplify the
growth of the azimuthal perturbations.

• The effect of the blockage ratio on the bubble dynamics is captured when we
monitor the Weissenberg number, which depends on the bubble velocity. Increasing
the blockage ratio decreases the critical Wi for the onset of the instability, following
the argument of Pakdel & McKinley (1996) and McKinley et al. (1996).

Our results allow us to postulate a mechanism for the onset of the instability. As larger
bubbles rise in viscoelastic materials, the induced strain rate results in stronger tensile
stresses that pull the bubble interface downwards. The deformed bubble shape allows the
development of considerable shear stresses, even though the shear-free condition is applied
along its interface. The balance between tensile and shear stresses forms the negative wake
behind the trailing edge. However, its presence is not sufficient for asymmetric solutions.
The tensile stresses stabilize the flow, hindering any azimuthal disturbances. We need a
viscoelastic material that shows a strong strain-rate thinning nature. In that case, the tensile
stresses decrease and the shear ones destabilize the flow by amplifying the azimuthal
disturbances. This delicate balance between the tensile and shear stresses is difficult to
establish. We believe that this is the reason for the scarce theoretical and experimental
evidence of the knife-edge bubble shape.

In a forthcoming study, we will perform a stability analysis study to revisit the problem
of You et al. (2009), and determine the leading eigenvalue and eigenvector that lead to
the onset of the instability. This instability will also be investigated via the examination
of the disturbance-energy equation and will point out how the perturbations of the flow
field grow. Moreover, we will neglect the presence of symmetry planes and simulate the
unrestrained transient motion of the bubble. This will allow us to expand on the work
of Kordalis et al. (2023) and simulate the interaction of bubbles rising non-coaxially
in elastoviscoplastic materials and also the ‘dancing’ motion of two bubbles rising in
viscoelastic ones (Ravisankar et al. 2022).
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Appendix A

Here, we present the constitutive equations of the rheological models that we employ, in
addition to the e-PTT model, along with the values of their parameters. We mention that
the values of the zero-shear rate viscosity and the relaxation time do not change and remain
equal to those in table 1.
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κ L2
FEG

0.3 10

Table 6. Rheological parameters of the FEG model.

The l-PPT model is recovered when the Y(tr(τ )) function reads as

Y(tr(τ )) = 1 + εl−PTTEgtr(τ ). (A1)

Here, εl−PTT is equal to 0.8 to follow closely the shear prediction of e-PTT in figure 3. The
FEG model (Beris & Edwards 1994) is written in terms of the conformation tensor, C , as

Eg
∇
C +(I + κ( fFEGC − I)) · ( fFEGC − I) = 0, (A2)

where κ is mobility parameter. The formula of the scalar function fFEG is

fFEG = L2
FEG − 3

L2
FEG − tr(C)

, (A3)

where L2
FEG is the chain extensibility parameter. Note that both κ and L2

FEG affect the strain
rate behaviour of the material. Table 6 summarizes their values.

The viscoelastic stresses are retrieved from the conformation tensor using the following
expression:

τ = 1
Eg

( fFEGC − I). (A4)

The last model that we use is the FENE-CR (Chilcott & Rallison 1988), which is also
written in terms of the conformation tensor, C , as

Eg
∇
C + fFENE−CR(C − I) = 0. (A5)

The scalar function fFENE−CR is given by

fFENE−CR = L2
FENE−CR−3

L2
FENE−CR − tr(C)

, (A6)

where L2
FENE−CR is the extensibility parameter. It bounds the extensional viscosity and

controls its value for large strain rates. The FENE-CR model does not present shear
thinning. We fit the value of L2

FENE−CR by matching the steady-state response of l-PTT
in uniaxial extension, which is shown in figure 4(a). We obtain L2

FENE−CR = 8.

Appendix B

Here, we present the mesh convergence that we achieve for the e-PTT models. The
characteristics of the three meshes that we employ are summarized in table 7.

In figure 23, we plot the dependence of the bubble velocity (figure 23a), the azimuthal
parameter (figure 23b) and the arclength parameter (figure 23c) on Eg for all three meshes
and for the e-PTT model. For the two larger meshes, the curves almost collapse onto each
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# Elements # Nodes Minimum length side

M1 608 175 127 432 5.5 × 10−3

M2 1 223 514 185 589 4 × 10−3

M3 2 150 174 282 154s 2.5 × 10−3

Table 7. Overview of the mesh characteristics.
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Figure 23. (a) Bubble rising velocity, (b) azimuthal parameter, Ap, and (c) arclength parameter, AL, versus
Eg for all three meshes and for e-PTT model. Different line styles differentiate between the different meshes.
Ar = 0, Bo = 2.

other which demonstrates that our solution has converged with M2. Let us comment more
about the convergence of the value of the critical Eg with the mesh. From figure 23(b),
we obtain the following values: (i) Egcrit = 0.797for M1; (ii) Egcrit = 0.782 for M2;
(iii) Egcrit = 0.778 for M3. Thus, the critical value decreases as we refine the mesh. This
is an expected result because the mesh refinement in the locality of the trailing edge
enables the numerical scheme to resolve better the stress field and leads to an earlier
triggering of the elastic instability. This observation might indicate that the inability of
the interface capturing methods to determine the knife edge can be traced back to their
reduced accuracy near the interface compared with the interface tracking methods. Still,
this is a sheer speculation and more investigation is necessary.
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