TORSION-FREE AND DIVISIBLE MODULES OVER FINITE-DIMENSIONAL ALGEBRAS

F. OKOH

ABSTRACT. If R is a Dedekind domain, then div splits *i.e.*; the maximal divisible submodule of every R-module M is a direct summand of M. We investigate the status of this result for some finite-dimensional hereditary algebras. We use a torsion theory which permits the existence of torsion-free divisible modules for such algebras. Using this torsion theory we prove that the algebras obtained from extended Coxeter-Dynkin diagrams are the only such hereditary algebras for which div splits. The field of rational functions plays an essential role. The paper concludes with a new type of infinite-dimensional indecomposable module over a finite-dimensional wild hereditary algebra.

1. A family of indecomposable torsion-free divisible modules. A Kr(n)-module V is a pair of K-vector spaces (V, W) and a K-bilinear map from $K^n \times V$ to W. In this paper K is an algebraically closed field. The bilinear map gives, for a fixed $e \in K^n$, a linear map $T_e: V \to W$. We write $T_e(v)$ simply as ev. The module V is torsion-free (respectively, divisible) if for every nonzero $e \in K^n$, T_e is one-to-one, (respectively, surjective). Similar definitions have been used in [1], [2], [3] and [7]. We cannot use the torsion theory in [9] because it allows too many torsion-free modules while that in [10] allows no torsion-free divisible modules.

Throughout the paper, $\{e_1, e_2, \ldots, e_n\}$ will be an arbitrary but fixed basis of K^n . Let M be a $K[\zeta]$ -module. Make (M, M) a Kr(n)-module by setting

(1)
$$e_i m = \zeta^{i-1} m.$$

PROPOSITION 1.1. The $K[\zeta]$ -module M is torsion-free if and only if (M, M) is a torsion-free Kr(n)-module.

PROOF. Suppose that *M* is not a torsion-free $K[\zeta]$ -module. Then for some $m \in M$, $m \neq 0$, and some nonzero polynomial $f(\zeta)$, $f(\zeta)m = 0$. Among such annihilators of *m*, pick one, $p(\zeta)$ of minimal degree. Since $m \neq 0$, $p(\zeta)$ is not a constant. Let α be a root of $p(\zeta)$. Let $p(\zeta) = (\zeta - \alpha)g(\zeta)$. By the choice of $p(\zeta)$, $g(\zeta)m \neq 0$. Let $e = e_2 - \alpha e_1$. Then $T_{eg}(\zeta)m = 0$. Therefore, (M, M) is not torsion-free.

Suppose $e = \sum_{i=1}^{i=n} \alpha_i e_i \neq 0$, $\alpha_i \in K$, and $T_e m = 0$ for some nonzero $m \in M$. Then $f(\zeta) = \sum_{i=1}^{i=n} \alpha_i \zeta^{i-1} \neq 0$ and $f(\zeta)m = 0$.

Received by the editors August 9, 1995.

AMS subject classification: 16D70, 16G60, 13C12.

[©] Canadian Mathematical Society 1996.

Let α be a nonzero element of K. Let $f_i = e_i$, i = 1, 2, ..., n - 1, and $f_n = \alpha e_n$. Use $\{f_1, ..., f_n\}$ in place of $\{e_1, e_2, ..., e_n\}$ in (1). In this way we get functors from the category of $K[\zeta]$ -modules to the category of Kr(n)-modules. These functors have all the properties in Proposition 7.51 of [6]. Denote the Kr(n)-module $(K(\zeta), K(\zeta))$ by \mathcal{R}_{α} .

PROPOSITION 1.2. (a) The endomorphism ring of \mathcal{R}_{α} is isomorphic to the field $K(\zeta)$.

- (b) The module \mathcal{R}_{α} is indecomposable, torsion-free, and divisible.
- (c) Let α and β be nonzero elements of K. Then for $n \ge 3$, $\operatorname{Hom}(\mathcal{R}_{\alpha}, \mathcal{R}_{\beta}) \neq 0$ if and only if $\alpha = \beta$.

COROLLARY 1.3. Suppose that $n \ge 3$. Then there is an infinite family \mathcal{M} of nonisomorphic indecomposable torsion-free divisible Kr(n)-modules.

PROPOSITION 1.4. No proper nonzero submodule of \mathcal{R}_{α} is divisible.

PROOF. If we restrict the operation to e_1 and e_2 , then $\mathcal{R}_{\alpha} = (K(\zeta), K(\zeta))$ may be considered as the unique indecomposable torsion-free Kr(2)-module, $Q = (K(\zeta), K(\zeta))$. Similarly the submodules of \mathcal{R}_{α} may be considered as submodules of Q. The proposition is true for Q by Proposition 9.8 of [1]. Suppose that (X, Y) is a nonzero divisible submodule of \mathcal{R}_{α} . Then, (X, Y) is a divisible Kr(2)-submodule of Q. Hence, $X = Y = K(\zeta)$. So $(X, Y) = \mathcal{R}_{\alpha}$ as Kr(n)-modules.

Restricting the action to $\{e_1, e_2\}$ we get directly or from Proposition 9.8 of [1]:

LEMMA 1.5. Let (X, Y) be a nonzero proper submodule of \mathcal{R}_{α} . Then $\mathcal{R}_{\alpha}/(X, Y)$ is not torsion-free.

Let $(U, Z) = ([1, \zeta], [1, \zeta, ..., \zeta^n])$ with $e_i 1 = \zeta^{i-1}$; $e_i \zeta = \zeta^i$, i = 1, 2, ..., n. So (U, Z) is a submodule of $\mathcal{R}_1 = \mathcal{R}$.

LEMMA 1.6. The endomorphism ring of (U, Z) is K.

PROOF. Let (ϕ, ψ) : $(U, Z) \to (U, Z)$ be an endomorphism. Let $\phi(1) = \alpha 1 + \beta \zeta$. Since $e_n 1 = \zeta^{n-1}$ we get that $\psi(\zeta^{n-1}) = \alpha \zeta^{n-1} + \beta \zeta^n$. Now, $e_{n-1}\zeta = \zeta^{n-1}$. Let $u = \phi(\zeta)$. Then $e_{n-1}u = \psi(e_{n-1}\zeta) = \alpha \zeta^{n-1} + \beta \zeta^n$. However, if $\beta \neq 0$, there would be no such element u, because $e_{n-1}f$ has degree less than n for every f in U. So $\beta = 0$ and (ϕ, ψ) is given by multiplication by α in U and Z.

The Ext formula in (48) of [5], (hom in the formula should read Hom) gives,

dim Ext((U, Z), (U, Z)) = dim Hom $((U, Z), (U, Z)) - 2^2 - (n+1)^2 + 2n(n+1)$.

Since $n \ge 3$ and dim Hom $((U, Z), (U, Z)) \ge 1$ we get that dim $\text{Ext}((U, Z), (U, Z)) \ne 0$. 0. Since Kr(n) is hereditary and $(U, Z) \subset \mathcal{R}$ we get that $\text{Ext}(\mathcal{R}, (U, Z)) \ne 0$.

The following is a projective resolution of (U, Z):

$$0 \longrightarrow (K,L) \stackrel{(\kappa,\lambda)}{\longrightarrow} (P,Q) \longrightarrow (U,Z) \longrightarrow 0.$$

where $(P,Q) = ([u_1], [z_1, ..., z_n]) \oplus ([v_1], [w_1, ..., w_n])$, $e_i u_1 = z_i$, $e_i v_1 = w_i$; $(K,L) = (0, [z_2 - w_1, z_3 - w_2, ..., z_n - w_{n-1}])$ and (κ, λ) is the inclusion. See [4] or [5, Proposition 0.2] for the projectivity of (P,Q) and (K,L).

If $(\mu, \nu) \in \text{Hom}((P, Q), \mathcal{R})$ let $(\kappa, \lambda)^*(\mu, \nu) = (\mu, \nu)(\kappa, \lambda)$.

THEOREM 1.7. (a) $\operatorname{Ext}((U, Z), \mathcal{R}) \neq 0$.

- (b) $\operatorname{Ext}(\mathcal{R}, \mathcal{R}) \neq 0.$
- (c) There is a Kr(n)-module M with the property that div M is not a direct summand of M.

PROOF. (a) $\operatorname{Ext}((U,Z),\mathcal{R}) = \operatorname{Hom}((K,L),\mathcal{R})/(\kappa,\lambda)^*(\operatorname{Hom}((P,Q),\mathcal{R}))$. Let $\psi(z_{i+1} - w_i) = 1, i = 1, ..., n - 1$. Then $(0, \psi) \in \operatorname{Hom}((K,L), \mathcal{R})$. However for any $(\mu,\nu) \in \operatorname{Hom}((P,Q),\mathcal{R})$ it follows from (1) that $\nu(z_{i+1} - w_i) = \zeta^i f - \zeta^{i-1} g$, where $\mu(u_1) = f, \mu(v_1) = g$. Since n > 2, $\operatorname{Ext}((U,Z),\mathcal{R}) = 0$ would contradict $\psi(z_{i+1} - w_i) = 1, i = 1, ..., n - 1$.

- (b) Follows from (a) because Kr(n) is hereditary and $(U, Z) \subset \mathcal{R}$.
- (c) Let M be a nonsplit extension of R by (U, Z) guaranteed by (a). Since (U, Z) is reduced by Proposition 1.4, we have R as the maximal divisible submodule of M, div M, and is not a direct summand of M.

The status of Theorem 1.7(c) is unknown when *divisible* is used in the sense of [10], see [10, Section 5].

THEOREM 1.8. There is a purely simple extension, (V, W), of \mathcal{R} by \mathcal{R} .

PROOF. By Theorem 1.7(b), there is a nonsplit extension (V, W) of (V_1, W_1) by (V_2, W_2) where both (V_1, W_1) and (V_2, W_2) are isomorphic to \mathcal{R} . Let $(\pi, \rho): (V, W) \rightarrow (V_2, W_2)$ be the projection. We shall prove by contradiction that (V, W) is purely simple. We shall use (P1): If N is a pure submodule of a torsion-free module M then M/N is torsion-free. Let (X, Y) be an infinite-dimensional pure submodule of $(V, W), (X, Y) \neq (V, W)$. If $(X, Y) \cap (V_1, W_1) \neq 0$, then (P1) and (1) lead to $(V_1, W_1) \subseteq (X, Y)$. By Property (a') of [13, Section F], $(X, Y)/(V_1, W_1)$ is pure in (V_2, W_2) . By (P1) and Lemma 1.5 we get that (X, Y) = (V, W) or $(X, Y) = (V_1, W_1)$. Since $K(\zeta)$ is a pure-injective $K[\zeta]$ -module, we get by [6, Theorem 7.51] that (V_1, W_1) is a direct summand of (V, W), contradicting Proposition 1.7(b). So we may assume that $(X, Y) \cap (V_1, W_1) = 0$. Therefore, (π, ρ) restricts to an embedding of (X, Y) into (V_2, W_2) . Note that a pure submodule of a torsion-free divisible module is divisible. So by Proposition 1.4, $(X, Y) \cong (V_2, W_2)$ via (π, ρ) . Hence, (V, W) is a split extension, a contradiction.

The functor in [8] transfers the module in Theorem 1.8 to an arbitrary wild finitedimensional hereditary algebra. If R is a Dedekind domain or a tame finite-dimensional hereditary algebra, then no extension of an infinitely generated R-module by itself is purely simple, see [7] and [12]. So Theorem 1.8 is a bona fide *wild* theorem.

ACKNOWLEDGEMENT. We thank the referee for providing the suggestions on which this draft is based.

REFERENCES

- 1. N. Aronszajn and U. Fixman, Algebraic spectral problems, Studia Mathematica 30(1968), 273-338.
- 2. D. Britten and F. Lemire, On pointed modules of simple Lie algebras, CMS conference proceedings 5, 319–323.

F. OKOH

- 3. A. J. Coleman and V. Futorny, Stratified L-modules, J. Algebra, 163(1994), 219-234.
- 4. V. Dlab and C. M. Ringel, *Indecomposable representations of graphs and algebras*, Memoirs Amer. Math. Soc. 173(1976).
- 5. U. Fixman, F. Okoh, and N. Sankaran, Internal functors for systems of linear transformations, J. Algebra, (1988) 399-415.
- 6. C. U. Jensen and H. Lenzing, Model Theoretic Algebra, Gordon and Breach, New York and London, 1989.
- 7. I. Kaplansky, Modules over Dedekind domains and valuation rings, Trans. Amer. Math. Soc. 72(1952), 327–340.
- 8. O. Kerner, Preprojective components of wild tilted algebras, Manuscripta Math. 61(1988), 429-445.
- 9. L. Levy, Torsion-free and divisible modules over non-integral domains, Canad. J. Math. 15(1963), 132–151.
- 10. F. Lukas, Infinite-dimensional modules over wild hereditary algebras, J. London Math. Soc.(2)14(1991), 401–419.
- 11. F. Okoh, Properties of purely simple Kronecker modules, Journ. Pure and Applied Alg. (1983), 39-48.
- 12. _____, Pure-injective modules over path algebras, Journ. Pure and Applied Alg. (1991), 75-83.
- 13. C. M. Ringel, Infinite-dimensional representations of finite-dimensional hereditary algebras, Sympos. Math. Inst. Alta. Mat. 23(1979), 321–412.

Department of Mathematics Wayne State University Detroit, Michigan 48202 U.S.A.