
Canad. Math. Bull. Vol. 39 (1), 1996 pp. 111-114 

TORSION-FREE AND DIVISIBLE MODULES 
OVER FINITE-DIMENSIONAL ALGEBRAS 

F. OKOH 

ABSTRACT. If R is a Dedekind domain, then div splits i.e.; the maximal divisible 
submodule of every ^-module M is a direct summand of M. We investigate the status 
of this result for some finite-dimensional hereditary algebras. We use a torsion the
ory which permits the existence of torsion-free divisible modules for such algebras. 
Using this torsion theory we prove that the algebras obtained from extended Coxeter-
Dynkin diagrams are the only such hereditary algebras for which div splits. The field 
of rational functions plays an essential role. The paper concludes with a new type of 
infinite-dimensional indecomposable module over a finite-dimensional wild hereditary 
algebra. 

1. A family of indecomposable torsion-free divisible modules. A A>(«)-module 
V is a pair of AT-vector spaces ( V, W) and a AT-bilinear map from K" x V to W. In this paper 
K is an algebraically closed field. The bilinear map gives, for a fixed e € K",a. linear 
map Te: V —• W. We write Te(v) simply as ev. The module V is torsion-free (respectively, 
divisible) if for every nonzero e G AT1, Te is one-to-one, (respectively, surjective). Similar 
definitions have been used in [1], [2], [3] and [7]. We cannot use the torsion theory in [9] 
because it allows too many torsion-free modules while that in [10] allows no torsion-free 
divisible modules. 

Throughout the paper, {e\,ei,..., e„} will be an arbitrary but fixed basis ofK". Let 
M be a AT[£]-module. Make (M,M) a A>(w)-module by setting 

(1) etm = Cxm. 

PROPOSITION 1.1. The K[Q-module M is torsion-free if and only if(M,M) is a 
torsion-free Kr(n)-module. 

PROOF. Suppose that M is not a torsion-free AT[£]-module. Then for some m G M, 
m ^ 0, and some nonzero polynomial f(Q,f(Qm = 0. Among such annihilators of m, 
pick one,/?(Q of minimal degree. Since m ^ 0,p(Q is not a constant. Let a be a root of 
p(Q. Let/?(0 = (C - <x)g(Q. By the choice of p(Q, g(Qm ^ 0. Let e = e2-ae{. Then 
Teg(Qm = 0. Therefore, (M,M) is not torsion-free. 

Suppose e = £!=? atei ^ 0, az G K, and Tem = 0 for some nonzero m G M. Then 
M) - E}=ï <x£-1 ï 0 and/(Om = 0. 
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Let a be a nonzero element of K. Let fi = ei9 i = 1,2,... ,n — 1, andfn = aen. 
Use {/i,... ,fn} in place of {^1,^2,... ,en} in (1). In this way we get functors from the 
category of AT[(]-modules to the category of Kr(n)-modu\cs. These functors have all the 
properties in Proposition 7.51 of [6]. Denote the ATr(«)-module (K(Q9K(Q) by %x. 

PROPOSITION 1.2. (a) The endomorphism ring of%x is isomorphic to the field K(Q. 
(b) The module %& is indecomposable, torsion-free, and divisible. 
(c) Let a and (3 be nonzero elements ofK. Then for n>3, Hom(5^, $$) ^ 0 if and 

only ifa — ^. 

COROLLARY 1.3. Suppose that n > 3. Then there is an infinite family M ofnon-
isomorphic indecomposable torsion-free divisible Kr(n)-modules. 

PROPOSITION 1.4. No proper nonzero submodule of%x is divisible. 

PROOF. If we restrict the operation to e\ and ^2, then %x = (K(Q,K(Q) may be 
considered as the unique indecomposable torsion-free Ar(2)-module, Q = (K(Q, K(Q^j. 
Similarly the submodules of %& may be considered as submodules of Q. The proposition 
is true for Q by Proposition 9.8 of [1 ]. Suppose that (X, Y) is a nonzero divisible submod
ule of %>. Then, (X, Y) is a divisible À>(2)-submodule of Q. Hence, X = Y = K(Q. So 
(X, Y) = %, as A>(«)-modules. • 

Restricting the action to {e\, #2} we get directly or from Proposition 9.8 of [1]: 

LEMMA 1.5. Let (X, Y)bea nonzero proper submodule of%c. Then %x/(X,Y) is not 
torsion-free. 

is a submodule of % = ^ . 

LEMMA 1.6. The endomorphism ring of(U, Z) is K. 

PROOF. Let (</>, i/>): (U, Z)—>(U,Z) be an endomorphism. Let </>(l) = a\ +/3£. Since 
en\ = Ç1-1 we get that V(C -1) = <n~X + PC> Now, en-XÇ = C1"1 • Let u = <j>(Q. Then 
en-\u = t/;(e„_iO — a C _ 1 +/3(w- However, if /? ^ 0, there would be no such element w, 
because en-\f has degree less than n for every/ in £/. So /3 = 0 and (</>, 1/O is given by 
multiplication by a in U and Z. • 

The Ext formula in (48) of [5], (horn in the formula should read Horn) gives, 

dimExt((C/,Z),(£/,Z)) = dimHom((£/,Z),(£/,Z)) - 22 - (n + l)2 + 2/I(/I + 1). 

Since « > 3 anddimHom((£/,Z),(£/,Z)) > 1 we get that dimExt((£/,Z),(£/,Z)) ^ 
0. Since Kr(n) is hereditary and (U, Z) C $i we get that Ex t (^ , (U, Z)) ^ 0. 

The following is a projective resolution of (U, Z): 

0-+(K,L)(^\p,Q)^(U9Z)^0. 

where ( P , 0 = ([wi],[zi,. ..,zn]) 0 ([vi],[wi,...,w„]), eywi = zh etv{ = wt;(K9L) = 
(0, [z2 — wi,Z3 — W2,... ,z„ — wn-\]) and (ft, A) is the inclusion. See [4] or [5, Proposi
tion 0.2] for the projectivity of (P, Q) and (K,L). 

If 0x,i/) G Hom((P,£) ,^ ) let(«, A)*(/x,i/) = (/i, */)(*, A). 
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THEOREM 1.7. (a) Ext((C/, Z), $Q ^ 0. 
(b) E x t ( ^ , , ^ ) ^ 0 . 
(c) There is a Kr{ri)-module M with the property that div M is not a direct summand 

ofM. 

PROOF, (a) Ext((£/,Z),£) = Hom((^,I ) ,^) / (« ,A)*(Hom((P,e) ,^)) . Let 

i/)(zi+i - wt) = 1, i = l, . . . , /i - 1. Then (0,VO G Hom((A',Z), ^ ) . However for 

any (/x,i/) G Hom((P,£) ,^) it follows from (1) that i/(zm - w,-) = C/ - C -1g, 

where /i(wi) = / , p(vx) = g. Since n > 2, Ext((U,Z), $Q = 0 would contradict 

xl)(zi+i - wt) = 1, i = 1,. . . ,/i - 1. 
(b) Follows from (a) because £r(«) is hereditary and (£/, Z) C ^ . 
(c) Let M be a nonsplit extension of ^ by (£/, Z) guaranteed by (a). Since (£/, Z) is 

reduced by Proposition 1.4, we have !^ as the maximal divisible submodule of 
M, divM, and is not a direct summand of M. m 

The status of Theorem 1.7(c) is unknown when divisible is used in the sense of [10], 
see [10, Section 5]. 

THEOREM 1.8. There is a purely simple extension, ( V, W), of%^ by H^. 

PROOF. By Theorem 1.7(b), there is a nonsplit extension (F, W) of (V\9 Wx) by 
(V2, Wi) where both (Vx, Wx) and (K2, W2) are isomorphic to ^ . Let (TT, p): (K, JF) —• 
(^2, W2) be the projection. We shall prove by contradiction that (V, W) is purely simple. 
We shall use (PI): If N is a pure submodule of a torsion-free module M then M/N is 
torsion-free. Let (X, Y) be an infinite-dimensional pure submodule of (F, W), (X, Y) ^ 
(V, W). lf(X,Y)n(Vu Wx) Ï 0,then(Pl)and(l)leadto(Fi, Wx) Ç (X, Y). By Property 
(a') of [13, Section F], (X, Y)/(VX, Wx) is pure in (V2, W2). By (PI) and Lemma 1.5 we 
get that (X, Y) = (V,W) or(X, Y) = (VUW{). Since K(Q isapure-injectiveA:[C]-module, 
we get by [6, Theorem 7.51] that (Vx, Wx) is a direct summand of (V, W), contradicting 
Proposition 1.7(b). So we may assume that (X, Y) D (V\9 Wx) = 0. Therefore, (TT, p) re
stricts to an embedding of (X, Y) into (V2, W2). Note that a pure submodule of a torsion-
free divisible module is divisible. So by Proposition 1.4, (X, Y) = (V2,W2) via (jr,p). 
Hence, (V, W) is a split extension, a contradiction. • 

The functor in [8] transfers the module in Theorem 1.8 to an arbitrary wild finite-
dimensional hereditary algebra. If R is a Dedekind domain or a tame finite-dimensional 
hereditary algebra, then no extension of an infinitely generated /^-module by itself is 
purely simple, see [7] and [12]. So Theorem 1.8 is a bona fide wild theorem. 
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