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ABSTRACT. The purpose of this study is to propose a new constitutive law for pack ice, which is not only
capable of simulating the in-plane shear and out-of-plane uniaxial compression, but also capable of
avoiding overestimating divergence during shear. The pack ice is treated as a two-dimensional granular
plastic, obeying Coulomb’s friction law with a maximum principal stress limit. During the out-of-plane
uniaxial compression process the flow rule is normal, while during the in-plane shear process the flow
rule is coaxial with a linearly varying dilatancy angle describing the divergence. The strength
parameterizations are based on thickness and compactness of the pack ice; weakening or hardening can
be achieved through advection and redistribution.

INTRODUCTION
Pack ice is an aggregate of ice floes drifting on the sea
surface. Due to the great difficulty in directly measuring the
large-scale ice stress, validation of the mechanical behavior
of ice relies on the comparison of the resulting deformation
with that observed in the pack ice. A special deformation
pattern is the widely observed linear kinematic features
(LKFs), which are long, narrow geophysical features with a
much higher deformation rate than in the surrounding pack
ice. In general, they may consist of open water, new ice,
young ice, rafted ice or even ridged ice (Kwok, 2000).

It has been shown that LKF patterns are closely related to
the slope of the yield curve by (Erlingsson, 1988; Pritchard,
1988; Wang, 2004)

d�II
d�I

¼ cos 2�, ð1Þ

where �I and �II are the mean compressive stress and
maximum shear stress, and 2� is the angle between
intersecting LKFs with the larger principal stress as the
bisector. Typical observed deformation patterns are in-plane
shear (e.g. Marko and Thomson, 1977; Erlingsson, 1988;
Kwok, 2000), which results in intersecting LKFs in pack ice,
and uniaxial compression, which has been widely observed
as pressure ridges in the polar and subpolar seas. According
to Equation (1), the in-plane shear process is due to the
granular flow following Coulomb’s friction law, while the
out-of-plane uniaxial compression process is due to the limit
of maximum principal stress.

Classical sea-ice dynamical models (Coon and others,
1974; Hibler, 1979) do not simulate such features, and most
models using Coulomb’s law take the limit of maximum
compressive stress (e.g. Smith, 1983; Ip and others, 1991;
Tremblay and Mysak, 1997; Hibler and Schulson, 2000).
However, applying such a limit generally leads to no
pressure ridge or two intersecting shear ridges. Moreover,
applying the normal flow rule to Coulomb’s law leads to
overestimation of the divergence (Nedderman, 1992;
Balendran and Nemat-Nasser, 1993; Tremblay and Mysak,
1997); and applying the coaxial flow rule with a constant
dilatancy angle (Tremblay and Mysak, 1997) leads to an
overall divergence which does not well capture the
divergence when the mean compressive stress is high. The
purpose of the present study is to propose a new constitutive

law for pack ice, which is not only capable of simulating the
in-plane shear and out-of-plane uniaxial compression
processes, but also capable of avoiding overestimation of
the divergence during shear.

YIELD CURVE
The motion of pack ice is traditionally described on a
horizontal plane, where the motion and body forces are all
vertically integrated (e.g. Gray and Morland, 1994):

�h
du
dt

þ f k� u
� �

¼ r � �þ A�a þ A�w � �hgrH, ð2Þ

where � is the ice density, A and h the ice compactness and
mean thickness, k a unit vector normal to the ice surface, u
the ice velocity, f the Coriolis parameter, g the gravitational
acceleration, �a and �w the wind and current shear stresses
acting on and under the ice, H the dynamic height of the sea
surface, and � (�ij) is the two-dimensional internal ice stress.

For the stress tensor �ij, its invariants can be expressed by

�I ¼ �kk
2

, �II ¼ �det�0ij
� �1=2

, ð3Þ

where �0ij ¼ �ij � �I�ij is the stress deviator and �ij is the
Kronecker operator. The principal stresses are

�1 ¼ �I þ �II, �2 ¼ �I � �II: ð4Þ
Mathematically, the principal stresses are eigenvalues of �ij,
which can be obtained by turning the x-y axis counter-
clockwise with an angle of  , in which

tan 2 ¼ 2�12
�11 � �22

: ð5Þ

As shown in Figure 1, the yield curve used in this paper
consists of two parts: Coulomb’s friction law describing the
in-plane shear, and a maximum principal stress law
describing the out-of-plane uniaxial compression. The
Coulomb’s friction law reads

�ns ¼ ��nn tan�þ c, ð6Þ
where �ns and �nn are shear and normal stresses acting on the
slip plane, � is the angle of friction and c is the cohesion. The
minus sign before �nn is so taken as we define compressive
stress as negative. According to the Mohr–Coulomb diagram
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(Fig. 1), Equation (6) can be rewritten in terms of the stress
invariants by

F1 ¼ �II þ �I sin�� c cos� ¼ 0: ð7Þ
The maximum principal stress law describes a maximum

compressive principal stress, that is �2 � �p�, where p� is
the compressive strength under biaxial compression. Ac-
cording to Equation (4), this law can be expressed in terms of
the stress invariants by

F2 ¼ �II � �I � p� ¼ 0: ð8Þ
The parameters involved in the yield curve are p�, � and

c. The two-dimensional ice strength p� can be parameter-
ized as a function of ice thickness and compactness (e.g.
Hibler, 1979):

p� ¼ P �h exp ½�Cð1� AÞ�, ð9Þ

where P � is the three-dimensional ice strength and C is the
reduction due to compactness.

The angle of friction can be determined through the
relationship (e.g. Nedderman, 1992)

� ¼ �

2
� ’, ð10Þ

where ’ is the smaller angle between the intersecting LKFs.
Within compacted pack ice, a typical angle of ’ is about 308
(e.g. Marko and Thomson, 1977; Kwok, 2000), resulting in a
typical angle of friction of 608.

Measurement of the cohesion c in geophysical scales is
very rare. In most cases, it is assumed to be 0 (e.g. Coon,
1974; Smith, 1983; Ip and others, 1991; Tremblay andMysak,
1997). However, it may be important in numerical modeling
of LKFs (e.g. Coon and others, 1998; Hibler and Schulson,
2000; Hopkins, 2000; Hutchings and Hibler, 2002). There-
fore keeping this parameter in the present constitutive law is
appropriate. In practice, it may be related to p� by

c ¼ p�

n
, ð11Þ

where n is a constant, possibly ranging between 5 and 20
according to the field observation during the Sea Ice
Mechanics Initiative (Coon and others, 1998).

The thick solid lines in Figure 2 show the yield curve as
expressed in the coordinates of the stress invariants. For
comparison, the cohesion c has been set to 0. Other similar
yield curves shown in Figure 2 are: dash-dot lines together
with the thick lines connecting to –p� (ice-cream cone)
(Coon, 1974); thin solid curve (teardrop) (Rothrock, 1975);

thin solid lines (square) (Pritchard, 1981); dashed lines
(Coulomb’s law) (Tremblay and Mysak, 1997); and dotted
lines and curve (modified Coulomb’s law) (Hibler and
Schulson, 2000). All the yield curves except the teardrop
applied Coulomb’s law. The angles of friction are all taken
from the original papers, being 358 (Coon, 1974), 908
(Pritchard, 1981), 308 (Tremblay and Mysak, 1997), 458
(Hibler and Schulson, 2000) and 608 in the present study.

At the intersecting point of the present yield curve, X
(Fig. 2), we have

�IX ¼ �p� þ c cos�
1þ sin�

�IIX ¼ p� sin�þ c cos�
1þ sin�

:

ð12Þ

This point is the demarcation between the uniaxial
compression and the Coulombic shear.

In the case of constant ice-strength parameters (p�, �
and c), expressing the yield curve in terms of the stress
components �11, �22 and �12, we can obtain these
components by solving together the momentum equation
and the yield curve equations. However, when these
parameters vary with ice conditions, we must consider the
evolution of the velocity and mass fields simultaneously, as
done in most dynamics models (e.g. Coon and others, 1974;
Hibler, 1979).

FLOW RULE
The flow rule is the equation relating the stress tensor to the
rate-of-strain tensor. Similar to what was done for the stress,
for the rate-of-strain tensor _"ij the invariants are

_"I ¼ _"kk , _"II ¼ 2 � det _"0ij
� �1=2

, ð13Þ
where

_"0ij ¼ _"ij � _"I�ij
�
2

is the rate-of-strain deviator. The principal rates of strain are

_"1 ¼ _"I þ _"II
2

, _"2 ¼ _"I � _"II
2

: ð14Þ

Fig. 1. Stress state in the Mohr–Coulomb diagram. The thick lines
and curves show the yield curve used in the present constitutive law.

Fig. 2. Typical yield curves used in sea-ice dynamics in the
coordinates of the stress invariants: dash-dot lines together with the
thick lines connecting to –p� (ice-cream cone) (Coon, 1974); thin
solid curve (teardrop) (Rothrock, 1975); thin solid lines (square)
(Pritchard, 1981); dashed lines (Coulomb’s law) (Tremblay and
Mysak, 1997); dotted lines and curve (modified Coulomb’s law)
(Hibler and Schulson, 2000); and thick solid lines (diamond)
(present study). For comparison the cohesion c takes 0 and the slope
angles are all taken from the original papers accordingly (see text
for details).
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These principal rates of strain can similarly be obtained by
turning the x-y coordinates counterclockwise with an angle
of �, where

tan 2� ¼ 2 _"12
_"11 � _"22

: ð15Þ
For granular materials the Lévy–Mises flow rule, also

known as the coaxial flow rule, is often applied (e.g.
Nedderman, 1992). This flow rule states that the strain-rate
and stress deviators are proportional:

_"0ij ¼ �0�0ij , ð16Þ
where �0 is a scalar variable. This condition leads to � ¼  ,
that is, the principal stresses and the principal rates of strain
are coaxial. The disadvantage of this flow rule, however, is
that it does not provide a means to estimate the divergence.
On the other hand, the normal flow rule is often applied to
the sea-ice dynamics (e.g. Coon and others, 1974; Hibler,
1979; Pritchard, 1981). The normality can be expressed by

_"ij ¼ �
@F
@�ij

¼ �

2
@F
@�I

�ij þ
�0ij
�II

@F
@�II

 !
, ð17Þ

where � is a non-negative scalar variable and F is the yield
curve. Comparing Equations (16) and (17) we can see that
the normal flow rule automatically possesses the coaxial
property; it is therefore a special case of the coaxial flow rule.

For the ice stress on the yield curve of uniaxial
compression, as shown in Equation (8), applying the normal
flow rule leads to

_"I ¼ � _"II: ð18Þ
This result shows that the ice is undergoing uniaxial
compressive deformation, producing ice ridges perpendicu-
lar to the compressive stress. Such a deformation pattern is
physically reasonable. Therefore, we can take the normal
flow rule to describe the uniaxial compressive flow.

Similarly, applying the normal flow rule to Coulomb’s
friction law, as shown in Equation (7), we have

_"I ¼ _"II sin�: ð19Þ
In general, such divergence is overestimated (e.g. Nedder-
man, 1992; Tremblay and Mysak, 1997). As a result, the
normal flow rule does not apply in this case. Following
Balendran and Nemat-Nasser (1993), an angle of dilatancy �

can be employed to replace �, which gives

_"I ¼ _"II sin �: ð20Þ
The angle of dilatancy � here is generally less than �. As a
consequence, the normality is no longer fulfilled. In
addition, as a dense sample the compacted pack ice would
normally possess a positive � (Balendran and Nemat-Nasser,
1993). Then a continuous dilation leads to a continuous
decrease of the ice compactness and �. When the stress ratio
�II/�I reaches the peak (point X in Fig. 2), the critical stress
state appears, where the dilatancy becomes 0. In such a
case, � may be parameterized along the yield curve of
Coulomb’s shear such that

� ¼ �I � �IX
c cot�� �IX

�m, ð21Þ

where �m is the maximum angle of dilatancy. It may take
208, with 108 (Tremblay and Mysak, 1997) as a mean.

Figure 3 shows the ratios of divergence to shear, 	 ¼ _"I= _"II,
for different yield curves and flow rules. As can be seen, the
ratios from Coon’s cream cone and Pritchard’s square are
rather close to that of the present study, consisting of a
uniaxial compression and shear. The difference in these three
constitutive laws lies in how much divergence would occur
during shear. Tremblay and Mysak’s constitutive law, as has
been pointed out, takes an overall divergence when the
compressive stress is higher than –p�. Rothrock’s teardrop
with the normal flow rule possesses a small divergence when
�I is low, but results in significant convergence when �I
becomes close to –p�. Hibler and Schulson’s constitutive law
generally yields a small ratio of divergence to shear, but it
tends to be quite large when �I approaches 0 or –p�. As
suggested by Equation (1), the teardrop and modified
Coulomb’s law hardly result in uniaxial pressure ridges,
which implies that in the case of high mean compressive
stress these two constitutive laws are less effective than the
others. And using a constant divergence rate in Tremblay and
Mysak’s constitutive law does not predict compression
except when the mean compressive stress reaches –p�,
which is physically unreasonable. For the constitutive laws
applied by Coon (1974) and Pritchard (1981), we know that
the typical angle of friction needs to be about 608 and that
the normal flow rule usually overestimates divergence during

Fig. 3. The ratios of divergence to shear, 	 ¼ _"I= _"II, for different yield curves and flow rules: (a) yield curve of ice cream cone with the normal
flow rule (Coon, 1974); (b) teardrop yield curve with the normal flow rule (Rothrock, 1975); (c) square yield curve with the normal flow rule
(Pritchard, 1981); (d) Coulomb’s law with the coaxial flow rule (Tremblay and Mysak, 1997); (e) modified Coulomb’s law with a combined
normal and non-normal flow rule (Hibler and Schulson, 2000); and (f) diamond yield curve with a combined normal and coaxial flow rule
(present study).
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shear. Therefore, the present constitutive law possesses the
highest capability in modeling the observed LKF and
divergence patterns. Further determination of the ratio of
divergence to shear can be achieved by checking the
available satellite observations (e.g. Kwok, 2000).

The flow rule on the three corners in the present
constitutive law needs some special treatment. Basically,
the corner where �I ¼ 0 can be seen as a pure divergence
case, while the corner where �I ¼ –p� can be seen as a pure
convergence case. At the intersecting point X (Fig. 2), the
maximum shear stress reaches the peak, and the flow rule
can be regarded as a pure shear case. Such treatment is
consistent with the classical Tresca yield curve with the
normal flow rule.

With the coaxial flow rule, the components of the rate of
strain can be expressed by

_"11 ¼ @u
@x

¼ 1
2

_"I þ _"II cos 2 ð Þ

_"22 ¼ @v
@y

¼ 1
2

_"I � _"II cos 2 ð Þ

_"12 ¼ 1
2

@u
@y

þ @v
@x

� �
¼ 1

2
_"II sin 2 ,

ð22Þ

where u and v are the two-dimensional ice velocity
components. Combining Equations (15), (18)/(20) and (22)
gives two equations describing the evolution of u and v, from
which the velocity field can be obtained, provided the
boundary conditions are given.

CONCLUDING REMARKS
A new constitutive law is presented to describe the plastic
behavior of pack ice, as shown in Equations (7), (8), (16),
(17), (20) and (21). The yield curve consists of Coulomb’s
friction law describing the in-plane shear, and the maximum
principal stress law describing the out-of-plane uniaxial
compression. For the shear deformation, the coaxial flow
rule with a parameterized dilatancy is proposed, while for
the uniaxial compression the normal flow rule is shown to
be appropriate. This constitutive law is not only capable of
simulating the in-plane shear and out-of-plane uniaxial
compression, but also capable of avoiding overestimation of
divergence during shear.

A comparison of the present constitutive law with other
similar laws shows that the present constitutive law possesses
the highest capability in modeling the observed LKF and
divergence patterns. This law has physical significance in
forming the pressure ridges and intersecting LKFs, resulting
in a typical angle of 308 between the intersecting LKFs.
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