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Groups that can be represented as the product of two proper subgroups have been
studied extensively; one of the latest contributions is a paper by Wielandt (8), in which
references to previous work can be found. In the case where the two proper subgroups have
only the unit element in common, we adopt the term " general product " introduced by
Neumann (1).

A group G is, then, the general product of its subgroups A and B if

G=AB, Ar>B={e},
where e denotes the unit element of G.

If A and B are given groups, it is natural to ask for a survey over all the groups that
can be represented as general products of subgroups isomorphic to A and B, respectively.
This " extension problem " was first studied by Zappa (2).

The case of two cyclic groups has attracted attention. Redei (3) has determined the
structure of the general product of two cyclic groups in the cases in which one is finite and
the other infinite or both are infinite, but subject to certain restrictions. General products
of two finite cyclic groups have been investigated by Douglas (4-7). He is concerned with the
properties of permutations that can be associated with such a general product. These per-
mutations, which we shall call Douglas special permutations, are closely connected with, but
conceptually distinct from, " semi-special " permutations which will be studied in the present
paper and which are not, by their definition, associated with a general product. We shall
give here a general method of constructing semi-special permutations. In subsequent papers
we shall apply our results to the special cases of cyclic groups whose orders are primes, squares
of primes, cubes of primes, products of two primes, and others.

I wish to express my thanks to Dr. B. H. Neumann for his generous advice and help
during the preparation of this work.

§ 1. DEFINITIONS AND GENERAL THEOREMS

Definition. A group G is said to be the general product of its subgroups A and B if

G=AB, Ar^B = {e}.

From this definition it follows that every element of G can be expressed, in one and
only one way, in the form ab where a e A and b e B. Similarly every element of G can be ex-
pressed, in one and only one way, as the product of an element of B by an element of A.
Hence there exist, corresponding to given elements a of A and b of B, uniquely determined
elements a' of A and V of B such that ab=b'a'.

Since each of the elements a' and b' depends on both a and b, we write
a''=«(,, b'=ba, ab = baab.

We state without proof the following theorems.
1.1. Theorem. Let A and B be two groups and G be a general product of A and B. Then

to every element b of B there corresponds a permutation ( ) of the elements of A, and to
Vh/
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every element a of A there corresponds a permutation I J of the elements, of B, such that

(aa')b=aba,a'b, (I)

(bb\ = bab'ab, (II)

(%)b'=abb; (HI)
(&.)«• = &.'«, (IV)

where a' e A and b' eB.
These four relations will be called the " Fundamental Relations " of the general product

G. They were first obtained by Zappa (2), and are consequences of the associative property
inG.

1.2. Corollary. The Fundamental Relations (I-IV) imply the following relations :

ae=a, be=b)
These relations are obtained by taking a' = e and b' = e, in turn, in the Fundamental Relations.

1.3. Theorem. Let A and B be two given groups, and suppose that to each element b of

B there corresponds a permutation I ) of the elements of A, and to each element a of A a
vV

permutation I J of the elements of B such that the Fundamental Relations of Theorem 1.1

are satisfied. Then there exists a group G which is the general product of two groups A
and B isomorphic to A and B, respectively, in such a way that if a, ab, and b, ba denote the
elements corresponding to a, ab and b, ba in the isomorphism of A and A and of B and B, then

ab=baab.

1.4. Theorem. With the notation of the previous theorem, if H is some general product

of groups isomorphic to A and B which leads to the same permutations ( J and f J as

does G, then G is isomorphic to H.
1.5. Conclusion. From the above theorems we see that the problem of determining all

general products of two groups A and B is reduced to that of determining all possible per-

mutations I ) and I , ) such that

W \bJ
(aa')b=aba,a'b, {bb')a = bab'ab,
(ab)b- = aw, (ba)a- = ba-a.

§ 2. THE CASE OF TWO FINITE CYCLIC GBOUPS

In the particular case where the groups A and B are both cyclic and finite, let A = {a}
be of order m and B = {b} be of order n.

If G is a general product of A and B, then in G we have

abx=bx
aahX.

Evidently b% is an element of {b} wliich depends on x and can therefore be written as bnx.
Thus
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Dual relations to (2.1) are

av = a<>v, avb=baVaf>v (2.2)

From (2.1) and (2.2) we deduce

avbx = b""xa!'x''.

By Theorem 1.1 we see that X->TTX is a permutation of the numbers 1,2, ..., n and that
y->py is a permutation of the numbers 1, 2, ..., m. Relations (V) of Corollary 1.2 imply the
following relations

pm=m (modm), TTTI = n (mod n),
pny = y (mod ro), nmx=x (mod »).

Now by the Fundamental Relation (II) we have

&*(*+« > = (b*+»)a = (b"b*)a =Kb%bu.

Putting abU =o' and b'a. = b"'x, we have

thus 77 (x + u) = -nu + TT'X (mod n),

or TT'X=TT(X+U) -TTU (mod n).

I t is clear that X-^TT'X is a permutation of the numbers 1, 2, ..., n. Moreover since a' is a
power of a, -n' is a power of 77. We observe that n' depends on the choice of u ; we thus have
a condition for every u. For simplicity we denote TT(X+U)-TTU by TTUX and the induced
permutation by TTU. Thus

TTUX=TT(X+U)-TTU (modw).

We have thus shown the following
2.3. Lemma. TTU is a power of 77 for every u.
In what follows we adopt the Douglas notation [n] for the range n, which is the set of

integers 1, 2, ..., n.
Definition. A permutation v defined on [n] is called a " Douglas special permutation " if

it is induced by one of the generators of a general product of two cyclic groups, that is, if it
is denned by

abx = bvxa „.

Definition. A permutation n defined on [n] is called a " semi-special permutation " if
nn = n and if the permutation TTU defined by

TTUX = 77 (x + u) - TTU (modw),

is a power of 77 for every u.
An obvious example of a semi-special permutation is the identical permutation which is

usually denoted by 1.
Necessary and sufficient conditions for a permutation to be a Douglas special permuta-

tion were given by Douglas (4).
Lemma 2.3 shows that Douglas special permutations are semi-special. Conversely, it

can be shown * that every semi-special permutation is Douglas special, but we shall not make
use of this result. Instead we shall derive results for semi-special permutations because it is
easier to check up whether a given permutation is semi-special than whether it is Douglas
special.

* B. H. Neumann (unpublished).
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§ 3. SOME PROPERTIES OF SEMI-SPECIAL PERMUTATIONS

In this paragraph we use the symbol TT to denote a semi-special permutation defined on
[?i] and k to denote the order of TT. Congruences with no modulus stated are to be understood
modulo n.

3.1. Lemma. If 771 =1 , then n = i.
Proof. Since TT is semi-special, TTV is a power of n for every y ; and 77I =1 . Therefore

TTV1=1. But Tr{y + 1) -Try = TTv\ =1 ; thus Tr[y + \) = \ + vy for all y. Moreover nl = 1. The
lemma follows by induction.

3.2. Lemma. If TTU = 1 for some u, then TT = 1.
Proof. By hypothesis we have

X = TT (X + U) - TTU.

Taking x+u = n and observing that -nn=n, we get TTU=U ; thus

X=TT(X + U) -u, or TT(X+U)=X+U.

The result follows at once if we here replace x + u by x.
3.3 Lemma. (Trr)u is a power of 77 for all r and u.
Proof. The lemma is true for r = 1 and for all u ; this is obvious, because TT is semi-

special. We complete the proof by induction over r. Assume that the lemma is true for
r=s , i.e., assume that (7rs)ua;=7rT<*>u)a;, say. Then

(1T>+1)UX = TT^X + U) - 77"+% = TT (TTS(X + u) ) - TT (TTS
U) = 77,,,U(77S(Z + U) - TTSU) = TTvsu( ( T 7 8 ) U X ) ,

i.e., (7rs+1)ua;=7rnSu(77T<s'»>a:),

and the right-hand side is a power of TT, since TT is semi-special. The lemma now follows by
induction.

We shall denote (TTT)U by Trr{r-"\ where r(r, u) is determined modulo k, the order of 77.

3.4. Lemma. With the above notation

r(r, u+v)=T{r(r, u), v) (mod k) (3.5)
T(T+S, u)=T{r, TTSU) +T(S, U) (mod k) (3.6)

Proof. For the first formulae, we have

nr(r.u+v)x = (7rr)u+va; = •„" (X + U + V) - TTr (U + V)

- TTrU + TTrU -TTT{U+V)

Thus r(r, u + v)=T(r(r, u), v) (mod A;).

For the second formulae, we have

TTT(T+>.U)X = (irr+8)uX = nr+mx + u) _

= TTr(TTS(x+U))-TTr{TTSu)

Thus r(r+s, u)=r(r, n'u) +T(S, U) (mod A;).

3.7. Lemma. With the same notation

(i) if T (r, u) = T (r, v) (mod A;), then
T(r,v-u)=r (modA;); (3.8)
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(ii) if r(r, u)=r (mod k), then for all y and z

r(r, uy +z) =r(r, z) (mod k) (3.9)

Proof. If r{r, u) =r{r, v) (mod k), then

rrr(x + u) -Trru=iTr(x+v) -TTTV for all x.

TllUS nr(x+u)=TTr(x + U+V-u) -7Tr(v-u) + TTT(V -ll) +TTTU-TTTV,
i.e., •nr{x + u) = (TTT)v_u{x+u) + 77r(t> - u) + nTu - irrv.

For x + u = n, we have

0 = 0 + nr(v - u) + TTTU - TTTV ;

thuS TTT (X + U) m (TTr) V_U(X+U)= TTHr' V~U) (X+U).

Hence r(r, v-u)=r (mod A;).
Next if r(r, n) =r (mod k), then from (3.5) we deduce

r(r, uy +z) =r{r(r, u), u(y - 1) +z) (mod k)

= r{r,u(y -l)+z) (modi)

and (3.9) will follow by repeated application of (3.5).
3.10. Lemma. Let u be any number in the range [n] and let h be the length of the

•cycle of 7T which contains u. Then with the previous notation

h\ T(h,u), (3.11)
TThyu=yu for all y (3-12)

Proof. -nhu = u by hypothesis ; hence, from (3.6),

r(r + h, u) =r(r, nhu) + r(h, u) (mod A;)
= r(r,u) +T(h,u) (mod &).

By induction over multiples of h, we get

T (xh, u) =XT (II, U) (mod k).

Moreover k is a multiple of h, say k=dh; also r{k, u)=0 (mod k).

Hence 0 = r(dh, u)=d,T(h, u) (modi).

Hence h divides r(h, u).

If T (h, u) = th, say, then

irh (x + u) - TThu = trthx ;

but 7rAM = u by hypothesis and hence

w" (x + u) = irthx + u.

•(3.12) now follows by induction over multiples of u, if we remark that irthu=u.

3.13. Lemma. Let u and v be any numbers in the range [n] which belong to the same

•cycle of it. If h is the length of this cycle, then for all x and y

TTh (x + yw) s irhx + yw,

where w=v -u.

Proof. From (3.6) we have

r(r + l, u) = r[r, 7TM) + T(1 , U) (modi)

1, 7TU)+T(1, U) (mod k).
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Repeated application of (3.6) gives

rtM) (modfc).)
t=0

If h(x) denotes the length of the cycle containing the number x, then h(u)=h{v)-h by
hypothesis. Moreover, u and v belong to the same cycle of v ; thus VE=7T% for some j , and
u, nu, 7raw, ..., Tr"*"^1 u is a permutation of the numbers v, nv, TT2V, ..., TT^^^V. Thus

A ( » ) - l

r(h(v),v)= E T(1(7T^) (mod A;)
A ( B ) - 1

= E T ( 1 , 77'M)=T(A(M), U) (mod k),

i.e., r(h, v)=r(h, u) (mod A;).
Hence nh(x + v) -TThv=irh(x + u) -irhu ;

but TTNL = u, TTH = v and thus
7TA (X + V) - TTh (X + U) = V - U.

Putting v -u = w and replacing x by x—u, we have

TTA (x + w) = -nhx + w.

By induction over multiples of w, we get

77* (x + yw) = 77Aa; + yw.

§ 4. FURTHER PROPERTIES AND LINEAR PERMUTATIONS

Definition. If a permutation is written as the product of disjoint cycles, the cycle which
contains the number 1 is called the principal cycle.

Definition. The permutation 77 defined on [n] by

77a;=ra; (modn) (4.1)

where r is some integer prime to n, is called a linear permutation.
It should be noted that (4.1) defines a permutation if and only if r is prime to n. The

order of 77 is equal to the order of r modulo n, that is to say, it is the least positive number k
such that rk = 1 (mod n).

4.2. Lemma. If 77 is semi-special, then its order is equal to the length of its principal
cycle. If fc is the order of 77 and [n] is the range on which 77 is defined, then k^n -1.

Proof. If h is the length of the principal cycle, then it follows from (3.12) that TThy =y
for all y. The first part of the lemma follows. The second part becomes obvious if we remark
that Trn = n.

4.3. Theorem. If 77 is a semi-special permutation on [n], where w>2, the permutations
nu 772, ..., 77,,^ are not all different.

Proof. trlt 772, ..., 77n_1 are all powers of 77. If 77 = 1 then they, are all equal; if 77 ^ t ,
then by Lemma 3.2 none of them equals t. But by Lemma 4.2 77 has at most n - 2 different
powers other than 1. The theorem follows.

4.4. Theorem. Let 77 be a permutation (which we need here not assume semi-special).
If 77U = 77 for some number u, then for all y and z

7rt/M=7/77M, (4.5)
nz> 7 r»u=7r (*-6)

CM.A.
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Proof. By hypothesis we have

77 (x + u) - TTU = TTX,

i.e., TT(Z+U) =TTX+TTU (4.7)

Then (4.5) follows directly from (4.7), by induction over multiples of u.
Next, to show (4.6), we have on using (4.7),

7TU+ZX = TT(X+U+Z) - 77 ( « + z) = 77 ( » + Z) + 77« - (TTU + 772 ) = IT (x + Z) - TTZ = TTZX.

We complete the proof of (4.6) by induction over y. For this assume that

Then 7r(r+1)u+2x = 7r(a; + (r + \)u + z) -n((r + l)u+z)
= TT(X + ru+z) +TTU-(n(ru +z) +TTU), using (4.7),
= 7T (x + ru + z) - 7r (ru + z)

= 7rru+zx = "•**. by assumption,

and the first formula of (4.6) follows by induction.
The second formula of (4.6) is a particular case of the first one.
4.8. Corollary. If TT is semi-special on [m] and if u is some divisor of n such that TTU =TT,

then TTU = ud, where (ud, n) = u. Moreover, n permutes multiples of u among themselves.
Proof. lin=qu, say, then from (4.5) we deduce that

•nn = Trqu = qn%,

and the first part of the corollary follows if we note that im=n.
For the second part we have

Tryu = yiru = yud for all y.

4.9. Lemma. Let t be a semi-special permutation defined on [n]. If u is some
divisor of n such that nu = n, then IT defines modulo u a semi-special permutation p by
PX=TTX (modw).

Proof. By Corollary 4.8 we can write

TTU = ud, Tryu s yud,

where d is some number prime to nju.
Moreover, from (4.6) we have TTVUX = 77a;; thus TT(X+ yu) =TTX+ yud. If in our previous

notation 7Tj = 7rT(1-2), then pz = pr(1-z') and therefore p is semi-special on [u].
4.10. Theorem. Let 7r be a permutation (which we need here not assume semi-special)

defined on the range [»]. If nu = w for some number « which is prime to n, then TT is a linear
permutation.

Conversely, if w is a linear permutation, then TTU=TT for every u ; therefore a linear permuta-
tion is semi-special. #

Proof. Since w is prime to n, there exist two integers i and j such that iu +jn = 1 ; thus
"i =77tu- Moreover, since TTU = 7T, 7r,u =TT by using (4.6), and hence n-j = TT.

If 77-1 =r, then by induction one can show that TTX =rx ; also r must be prime to n and
77 is linear.

The converse of the theorem is obvious.
4.11. Corollary. If 77 is semi-special and TT2 = I, then TT is linear.
For TTJ, being a power of TT, is either 1 or TT. If ^ = 1, then TT = 1 by Lemma 3.2 and there-

fore 77 is linear ; if 77X =77, then 77 is linear by the above theorem.

https://doi.org/10.1017/S2040618500033165 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033165


GENERAL PRODUCTS OF TWO FINITE CYCLIC GROUPS 123

4.12. Theorem. Let w>2 ; then to every semi-special permutation denned on [n] there
exists an integer r which divides n such that

l < r < w and TTT = TT.

Proof. By Theorem 4.3 we can find two integers u and v such that

1<5« <*><«, and TTV = TTU.

Then TT(X+V) -TTV^TT(X + U) -TTU,

i.e., 77(a; + v) - -n(x + u) s-nv - -nu.

Put v - it =io and replace x by x - u ; then 1 ^iv<.n and

•n (x + w) - TTX = irv - nu = constant.

The value of this constant is obtained by putting x = n ; this gives
TT(X+W) -TTX=TTW, i .e., 7Tu,=7r.

If (iv,n)=r, then one can find two integers i and j such that iw+jn=r and then nT=Triw.
Moreover, as -nw =77, -niv,=-n by (4.6), and thus TTT=TT. This proves the theorem.

4.13. Corollary. If p is an odd prime number, the semi-special permutations on [p] are
all linear.

For the r of the theorem is 1 and 7r is linear by Theorem 4.10.»
4.14. Theorem. Let -n be a semi-special permutation defined on [ri]. If u and v are any

two numbers in this range such that (u, n) divides (v, n), then the length of the cycle contain-
ing v divides the length of the cycle containing w.

Proof. Since (u, ri) divides (v, n), there exists some number y such that v =yu (mod ri).
If h is the length of the cycle which contains u, then, by Lemma 3.10,

TThv s n^yu = yu = v,

that is to say, h is a multiple of the length of the cycle which contains v. This proves the
theorem.
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