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Influence of the gas-phase Lewis number and
thermocapillary stress on motion of a slowly
evaporating droplet in Stokes flow
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The influence of thermocapillary stresses on motion of a slowly evaporating single-
component droplet in Stokes flow is investigated analytically for the situation where the
environment does not have a temperature gradient in the far field. The conservation
equations are solved in the liquid and gas phases and coupled at the gas–liquid interface by
applying conditions for conservation of mass, species, momentum and energy. It is found
that thermocapillary stresses may influence droplet motion by changing the the interface
velocity, and that the gas-phase Lewis number of the evaporating component determines
whether Marangoni effects increase or decrease droplet drag. If the Lewis number is less
than unity, then thermal Marangoni effects increase droplet drag, while if the Lewis number
is greater than unity, then thermal Marangoni effects decrease droplet drag. This is related to
the sign of the temperature gradient along the droplet surface that is induced by convection. It
is found that conditions may exist where a vaporizing droplet in a microgravity environment
will exhibit continuous translational motion driven by thermocapillary effects.

Key words: thermocapillarity

1. Introduction

Droplet vaporization is important in many applications. For example, vaporizing droplets
are present in sprays that are used for purposes such as extinguishing fire and liquid fuel
combustion. A spray will have a range of droplet sizes, with some droplets small enough
to be in the Stokes flow regime. The behaviour of vaporizing droplets under microgravity
conditions is also of fundamental interest as it allows for phenomena such as capillary
flows to be investigated for large droplets that are observable readily but where the masking
effects of buoyancy are negligible.

This research is focused upon investigating analytically the influence of thermal
Marangoni stresses and liquid and gas properties, including the gas-phase Lewis number
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Figure 1. Schematic of the geometry.

of the vaporizing component, on translational motion of a slowly vaporizing droplet in
the Stokes flow regime. The droplet is single component, and the gas phase is composed
of only two species – the ambient gas and the molecules that vaporize from the droplet
surface.

There have been numerous investigations, spanning decades, that focus on the behaviour
of vaporizing (and burning) droplets. Some recent reviews are available in Raghavan
(2019), Zang et al. (2019), Sazhin (2017), Karbalaei, Kumar & Cho (2016), Erbil (2012) and
Sazhin (2006). A monograph by Sirignano (2010) is also available. To the best knowledge
of this author, there have been no studies that focused on how thermocapillary stresses
and the Lewis number of the vaporizing species interact to influence the translational
motion of a vaporizing droplet in slow viscous flow without a far-field temperature
gradient. There are prior analytical studies of droplet vaporization (including combustion)
and motion in Stokes flow, e.g. Gogos & Ayyaswamy (1988), Jog, Ayyaswamy &
Cohen (1996) and Ackerman & Williams (2005), but these studies did not consider the
influences of thermocapillary stresses. Subramanian, Zhang & Balasubramaniam (1999)
analysed mass transport from a droplet executing thermocapillary motion, but where the
thermocapillary motion was driven by a temperature gradient that was imposed in the far
field. Computational modelling results that account for thermocapillary effects have also
been reported, e.g. Niazmand et al. (1994) and Shih & Megaridis (1996), but these studies
focused on droplet Reynolds numbers that were too large to correspond to Stokes flow, and
Lewis number effects were not discussed.

We next discuss the partial differential equations for conservation of mass, species,
momentum and energy in the gas and liquid phases.

2. Governing equations

2.1. Conservation of energy and species in the gas phase
A schematic of the geometry and coordinate system is shown in figure 1. The centre of the
droplet is at the origin of the coordinates shown.

Equation (2.1) shows the energy conservation equation for the gas phase:

αo ∇2To = vo,r
∂To

∂r
+ vo,θ

1
r
∂To

∂θ
, (2.1)

where T is temperature, v is velocity, α is thermal diffusivity, the subscript o denotes the
gas phase, and the subscripts r and θ denote components in the r and θ directions. The
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Lewis number and thermocapillary effects on droplet drag

species conservation equation is

Dio ∇2Y = vo,r
∂Y
∂r

+ vo,θ
1
r
∂Y
∂θ
, (2.2)

where Dio is the binary diffusion coefficient between the vaporizing component and the
ambient gas, and Y is the mass fraction of this component. The subscript o is not included
on Y because there are only two species in the gas phase.

2.2. Conservation of energy and species in the liquid phase
The energy conservation in the liquid phase is

αi ∇2Ti = vi,r
∂Ti

∂r
+ vi,θ

1
r
∂Ti

∂θ
, (2.3)

where the subscript i denotes the liquid. Because we are considering only
single-component liquids, the species conservation equation in the liquid is simply that
the mass fraction is unity there.

2.3. Conservation of mass and momentum in the gas and liquid phases
We assume that the fluids inside and outside the droplet are Newtonian and
constant-density, though each fluid can have its own unique density. We also assume
that gravity is negligible, that steady-state conditions apply, that the flow is axisymmetric,
and that the Reynolds number based on the droplet diameter is small relative to unity.
Our starting point is then the stream function for Stokes flow in spherical coordinates.
This stream function automatically satisfies mass conservation as well as the r and θ
components of the momentum equations (neglecting nonlinear terms, of course).

The stream functions ψ for the outer and inner fluids, i.e. the gas and the liquid, are

ψo =
(

A1

r
+ A2r + A3r2 + A4r4

)
sin2(θ), (2.4)

ψi =
(

B1

r
+ B2r + B3r2 + B4r4

)
sin2(θ), (2.5)

where A1, A2, A3, A4, B1, B2, B3, and B4 are constants. Given these stream functions,
we may calculate the velocity components in the r and θ directions by applying the
expressions

vr = 1
r2 sin(θ)

∂ψ

∂θ
, (2.6)

vθ = −1
r sin(θ)

∂ψ

∂r
, (2.7)

to each phase separately. We require that the velocity components at the droplet centre are
finite, leading to B1 = B2 = 0. We also require that the velocity field becomes uniform as
r → ∞, yielding A3 = v∞/2 and A4 = 0, where v∞ is the velocity component in the +x

943 A12-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.426


B.D. Shaw

direction at r = ∞. The velocity components then become

vo,r = 2
(

A1

r3 + A2

r
+ v∞

2

)
cos(θ), (2.8)

vo,θ =
(

A1

r3 − A2

r
− v∞

)
sin(θ), (2.9)

vi,r = 2
(

B3 + B4r2
)

cos(θ), (2.10)

vi,θ = −2
(

B3 + 2B4r2
)

sin(θ). (2.11)

The shear stress components in the inner and outer fluids may now be evaluated as

τi,rθ = μi

(
1
r
∂vi,r

∂θ
+ ∂vi,θ

∂r

)
= −2B3 + 10B4r2

r
μi sin(θ), (2.12)

τo,rθ = μo

(
1
r
∂vo,r

∂θ
+ ∂vo,θ

∂r

)
= −5A1 + A2r2 + v∞r3

r4 μo sin(θ), (2.13)

where μ is viscosity and τ is shear stress. The gas pressure field in the outer fluid, i.e. po,
which is evaluated by integrating the momentum equation, is given by

po = p∞ + 2A2

r2 μo cos(θ), (2.14)

where p∞ is the pressure far from the droplet. By integrating the gas pressure and shear
stress components at the gas–liquid interface, we may solve for the resultant drag force FD
acting on the droplet:

FD = −2πR2
∫ π

0

(
τo,rθ |r=R sin(θ)+ po|r=R cos(θ)

)
sin(θ) dθ

= 8πR3v∞ + 40πA1

3R3 μo. (2.15)

Equation (2.15) shows that FD depends only on A1, i.e. the constants A2, B3 and B4 are
not present. To proceed, we evaluate A1 by considering the interface conditions.

2.4. Interface conditions
We enforce the following conditions at every location on the interface.

(i) The radial velocity component in the gas is negligible, which is consistent with the
assumption of slow evaporation.

(ii) The radial velocity component in the liquid is negligible.
(iii) The gas and liquid tangential velocity components are equal.
(iv) There is a balance between the liquid and gas viscous shear stresses and the surface

tension gradient, which in turn is caused by a surface temperature gradient.
(v) The liquid and gas temperatures are equal.

(vi) The difference between the liquid and gas heat fluxes is balanced by the energy per
unit time per unit area required for vaporization.

(vii) The liquid and the gas are in thermodynamic equilibrium.
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Lewis number and thermocapillary effects on droplet drag

These interface conditions are expressed mathematically as

vo,r|r=R = 0, (2.16)

vi,r|r=R = 0, (2.17)

vo,θ |r=R − vi,θ |r=R = 0, (2.18)

τi,rθ |r=R − τo,rθ |r=R − S sin(θ) = 0, (2.19)

To|r=R − Ti|r=R = 0, (2.20)

λo
∂To

∂r

∣∣∣∣
r=R

− λi
∂Ti

∂r

∣∣∣∣
r=R

+ ρoDioL
∂Y
∂r

∣∣∣∣
r=R

= 0, (2.21)

Y|r=R − f (Ti)|r=R = 0, (2.22)

where

S = σT

R sin(θ)
∂T
∂θ

∣∣∣∣
r=R

(2.23)

and

σT = ∂σ

∂T
. (2.24)

Here, λ and σ are thermal conductivity and surface tension, respectively. The phase
equilibrium expression f (Ti)|r=R is to be determined from a phase equilibrium relation.

Substituting (2.8), (2.9), (2.10) and (2.11) into (2.16), (2.17), (2.18) and (2.19) allows for
the constants A1, A2, B3 and B4 to be evaluated:

A1 = R3v∞(4μi − μo)− 2R4S
8(2μi + μo)

, (2.25)

A2 = −3Rv∞(4μi + μo)− 2R2S
8(2μi + μo)

, (2.26)

B3 = −3v∞μo + 2RS
8(2μi + μo)

, (2.27)

B4 = 3v∞μo + 2RS
8R2(2μi + μo)

. (2.28)

Substituting (2.25) into (2.15) yields the following expression for the drag force:

FD = Fμ + Fσ , (2.29)

where

Fμ = πRv∞μo(12μ̃+ 1)
2μ̃+ 1

(2.30)

is the droplet drag that would exist in the absence of thermocapillary effects, and

Fσ = −10πR2S
3(2μ̃+ 1)

(2.31)

accounts for the presence of surface tension gradients. The symbol μ̃ is the ratio of the
dynamic viscosities of the inner and outer fluids, i.e. μ̃ = μi/μo. Note that the surface
tension gradient influences Fσ via the quantity S. To proceed, we will now consider how
S is influenced by evaporation.
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3. Solving the energy and species equations

3.1. The unperturbed solution
Solving the gas-phase conservation equations for a stagnant environment, i.e. v∞ = 0,
leads to the expressions

To = T∞ + (Ts − T∞)
R
r
, (3.1)

Y = Y∞ + (Ys − Y∞)
R
r
, (3.2)

ṁ0 = 4πR
λo

L
(T∞ − Ts) = 4πRρoDio

Ys − Y∞
1 − Ys

, (3.3)

where the subscript s denotes the droplet surface, and the subscript ‘0’ on ṁ0 indicates
a spherically symmetrical solution for the mass flow rate off the droplet surface (ṁ).
The enthalpy of vaporization is denoted by the symbol L. To proceed, we introduce the
gas-phase Lewis number, Le = αo/Dio. It then follows that

cp(T∞ − Ts)

L
= 1

Le
Ys − Y∞
1 − Ys

, (3.4)

and for Ys � 1, which is consistent with the assumption of slow vaporization rates, we
obtain

Ys − Y∞
T∞ − Ts

L
cp

= Le. (3.5)

The variables Ts and Ys are related via a Clausius–Clapeyron phase equilibrium relation

Ys = Γ exp
[
− L

Rg

(
1
Ts

− 1
T∞

)]
, (3.6)

where Rg is the gas constant for the vaporizing species, and Γ is the equilibrium mass
fraction of the vaporizing species at temperature T∞. Linearizing the phase equilibrium
expression by considering small variations of Ts about T∞ yields

Ys = Γ + Γ L
RgT2∞

(Ts − T∞)+ · · · . (3.7)

3.2. Influence of convection
We define the dimensionless liquid temperature t = (Ti − T∞)/(Ts − T∞), the
dimensionless gas temperature h = (To − T∞)/(Ts − T∞), and the rescaled gas mass
fraction m = (Y − Y∞)/(Ys − Y∞), leading to the conservation equations

∇2t = φ

(
ui,z

∂t
∂z

+ ui,θ
1
z
∂t
∂θ

)
, (3.8)

∇2h = ε

(
uo,z

∂h
∂z

+ uo,θ
1
z
∂h
∂θ

)
, (3.9)

∇2m = β

(
uo,z

∂m
∂z

+ uo,θ
1
z
∂m
∂θ

)
, (3.10)

where z = r/R, ui,z = vi,r/v∞, ui,θ = vi,θ /v∞, uo,z = vo,r/v∞ and uo,θ = vo,θ /v∞. In
addition, φ = v∞Rμo/(αi(2μi + μo)) is a thermal transport Péclet number for the liquid,
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Lewis number and thermocapillary effects on droplet drag

ε = v∞R/αo is a gas-phase thermal transport Péclet number, and β = v∞R/Dio is a
gas-phase species transport Péclet number. It is noted that β = ε Le and that a rescaled
velocity within the liquid has been used to define φ, where this velocity accounts for the
difference in viscosity between the liquid and the gas.

For analysis, we assume φ � 1, ε � 1 and β � 1 along with the expansions

t = t0 + φt1 + · · · , (3.11)

h = h0 + εh1 + · · · , (3.12)

m = m0 + βm1 + · · · , (3.13)

where t0 = 1, h0 = 1/z and m0 = 1/z are the unperturbed (spherically symmetrical)
solutions, and t1, h1 and m1 correct the spherically symmetrical solutions when convection
is present. Substituting these expansions into the transport equations for t, h and m yields
the following first-order problem:

∇2t1 = 0, (3.14)

∇2h1 = − 1
z2

(
1 − 3 − ζ

2z
+ 1 − ζ

2z3

)
cos(θ), (3.15)

∇2m1 = − 1
z2

(
1 − 3 − ζ

2z
+ 1 − ζ

2z3

)
cos(θ), (3.16)

where uo,z has been evaluated by setting S = 0. It is also noted that ζ = 3μ̃/(4 + μ̃).
The general solutions of (3.14), (3.15) and (3.16), i.e. the sums of the homogeneous and

inhomogeneous solutions, are

t1 =
∞∑

n=0

(
anzn + bn

zn+1

)
Pn, (3.17)

h1 =
∞∑

n=0

(
cnzn + dn

zn+1

)
Pn +

(
1
2

+ ζ − 3
4z

− 3
8
ζ − 1

z2 + ζ − 1
8z3

)
cos(θ), (3.18)

m1 =
∞∑

n=0

(
fnzn + gn

zn+1

)
Pn +

(
1
2

+ ζ − 3
4z

− 3
8
ζ − 1

z2 + ζ − 1
8z3

)
cos(θ), (3.19)

where an, bn, cn, dn, fn, gn are arbitrary constants. We restrict our attention to situations
where the temperature along the droplet surface varies as a constant added to another
constant multiplied by cos(θ), leading to

t1 = a0 + a1z cos(θ), (3.20)

h1 = c0 + d0

z
+ d1

z2 cos(θ)+
(

1
2

+ ζ − 3
4z

− 3
8
ζ − 1

z2 + ζ − 1
8z3

)
cos(θ), (3.21)

m1 = f0 + g0

z
+ g1

z2 cos(θ)+
(

1
2

+ ζ − 3
4z

− 3
8
ζ − 1

z2 + ζ − 1
8z3

)
cos(θ). (3.22)

There are now a total of eight undetermined coefficients, i.e. a0, a1, c0, d0, d1, f0, g0, g1.
The remaining interface conditions, i.e. (2.20), (2.21) and (2.22), allow six of these
coefficients to be determined. There are no values of c0 and f0, however, that enable h1
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and m1 to vanish as z → ∞. As such, the solutions for h1 and m1 must be regarded as
solutions that apply in an inner zone. The coefficients c0 and f0 are determined by matching
to outer-zone solutions.

For analysis of the outer-zone energy equation, we define the variables Z = εz and H =
h/ε, leading to

∇2H0 = ∂H0

∂Z
cos(θ)− 1

Z
∂Ho

∂θ
sin(θ), (3.23)

where we have employed the approximations vor ≈ v∞ cos(θ) and voθ ≈ −v∞ sin(θ) for
large r, and the subscript ‘0’ indicates that H0 is the leading-order solution in the outer
zone. Equation (3.23) has the solution, as discussed by Acrivos & Taylor (1962),

H0 = C0
π

Z
exp

(
Z [cos(θ)− 1]

2

)
P0 + C1

π

Z

(
1 + 2

Z

)
exp

(
Z [cos(θ)− 1]

2

)
P1

+ C2
π

Z

(
1 + 6

Z
+ 12

Z2

)
exp

(
Z [cos(θ)− 1]

2

)
P2 + · · · , (3.24)

where C0,C1,C2, . . . are arbitrary constants that are evaluated by matching, which yields
c0 = −1/2, Co = 1/π and Cn = 0 for n ≥ 1. The leading-order solution in the outer zone
is then

H0 = 1
εz

exp
(
εz [cos(θ)− 1]

2

)
. (3.25)

Equation (3.25) satisfies the boundary condition h(z = ∞, θ) = 0.
Analysis of the species equation follows a similar path. The leading-order solution in

the outer zone is found to be given by

M0 = 1
βz

exp
(
βz [cos(θ)− 1]

2

)
, (3.26)

where M = m/β. We also note that matching yields f0 = −1/2.
Applying the interface conditions enables the remaining coefficients to be evaluated:

a0 = 1
2
ε

φ

Le(Le − 1)
Le + η

, (3.27)

a1 = 1
16
φ

ε

(ζ + 3)(1 − Le)

1 + λ̃/2 + Γ η/Le
, (3.28)

d0 = 1
2

Le2 + η

Le + η
, (3.29)

d1 = 1
16

(ζ + 3)(1 − Le)

1 + λ̃/2 + Γ η/Le
, (3.30)

g0 = 1
2 Le

Le2 + η

Le + η
, (3.31)

g1 = − 1
16

η

Le2
(ζ + 3)(1 − Le)

1 + λ̃/2 + Γ η/Le
, (3.32)

where

η = L2

cpRgT2∞
. (3.33)
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Lewis number and thermocapillary effects on droplet drag

The quantity S is evaluated by noting that the surface temperature gradient is given by
ε(T∞ − Ts) a1 sin(θ). Substituting this gradient into (2.23) eventually yields

S = (ζ + 3)(1 − Le)

16(1 + λ̃/2 + Γ η/Le)

σT(T∞ − Ts)v∞
αo

, (3.34)

where λ̃ = λi/λo, and the temperature difference T∞ − Ts is evaluated using

T∞ − Ts = L
cp

Γ − Y∞
Le + Γ η

. (3.35)

The tangential velocity at the interface is given by

vi,θ |r=R = − 3v∞
4(1 + 2μ̃)

(
1 − R

R1

)
sin(θ), (3.36)

where

R1 = −4(4 + μ̃)(1 + λ̃/2 + Γ η/Le)μoαo

(2 + μ̃)σT(T∞ − Ts)(1 − Le)
(3.37)

is the droplet radius at which the tangential interface velocity equals zero, but where
v∞ /= 0. Because σT < 0 for common liquids, R1 > 0 if Le < 1, and R1 < 0 if Le > 1.
The latter situation corresponds to cases where the tangential velocity is never zero (again,
where v∞ /= 0).

We also have the following expression for Fσ :

Fσ = 5π

4
2 + μ̃

(1 + 2μ̃)(4 + μ̃)

(Le − 1)σT(T∞ − Ts)

1 + λ̃/2 + Γ η/Le

v∞R2

αo
. (3.38)

It is evident that if σT < 0, then Fσ > 0 (thermocapillary effects enhance drag) if Le > 1,
and Fσ < 0 (thermocapillary effects decrease drag) if Le < 1. This behaviour is related
to the temperature gradient along the droplet surface. Two quantities that determine the
interface temperature profile are d0 and d1, where d0 is related to the average interface
temperature, and d1 is related to the interface temperature gradient. The constant d0 is
always positive, so convection increases the average droplet surface temperature. However,
d1 is negative if Le > 1 and positive if Le < 1, such that the sign of the surface temperature
gradient depends upon the Lewis number. If Le < 1, then the resulting thermocapillary
stresses reduce the interfacial velocity, thus increasing the droplet drag. Conversely, if
Le > 1, then the resulting thermocapillary stresses increase the interfacial velocity, which
decreases the droplet drag. The reversal of the surface temperature gradient is discussed in
Appendix A, where it is shown that this reversal is related to the effects of convection on
the surface energy and mass balances.

We also define F̃ = FD/Fμ = 1 + Fσ /Fμ, which is independent of v∞, as shown:

F̃ = 1 + 5(2 + μ̃)

4(4 + μ̃)(1 + 12μ̃)
(Le − 1)σT(T∞ − Ts)

1 + λ̃/2 + Γ η/Le

R
μoαo

. (3.39)
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A critical situation arises when F̃ = 0. Equation (3.40) shows the relationship for the
radius R2 that corresponds to F̃ = 0:

R2 = 4(4 + μ̃)(1 + 12μ̃)
5(2 + μ̃)

1 + λ̃/2 + Γ η/Le
(1 − Le)σT(T∞ − Ts)

μoαo = 1 + 12μ̃
5

R1. (3.40)

Inserting (3.40) into (3.39) yields

F̃ = 1 − R
R2
. (3.41)

We interpret these results within the context of a droplet in a quiescent environment where
gravity and other body forces are absent. Suppose that at time t = 0, a droplet with radius
R is slowly moving with speed v∞. If R2 < 0, then F̃ > 0 and the velocity of the droplet
will decay continually with time. If R2 > 0 and R < R2, then F̃ > 0 and the velocity of
the droplet will also decay continually with time. If, however, R = R2, then F̃ = 0 and the
droplet will move with a steady translational motion.

An interesting situation occurs when R2 > 0 and R > R2, in which case F̃ < 0.
Thermocapillary effects are then sufficiently strong to cause the droplet velocity to
increase with time, where the droplet will accelerate in a direction that is opposite to the
oncoming free stream flow. The creeping-flow assumption used in this analysis does not
predict the existence of a velocity where F̃ = 0 when R > R2, so it appears to be possible
for the droplet velocity to increase enough such that the assumption of Stokes flow no
longer applies, at which point a velocity would likely be attained where F̃ = 0. Further
analysis is needed to investigate this situation. Eventually, however, the droplet velocity
would decrease because of the reduction in R as the droplet vaporizes. These analyses
show that in the Stokes flow regime, the radius R2 is a bifurcation point for a droplet in a
microgravity environment. That is, if R2 > 0, then the droplet velocity: (i) decreases when
R < R2; (ii) remains constant when R = R2; and (iii) increases when R > R2.

Table 1 shows representative values for R1 and R2 for different liquids and ambient
gases with p∞ = 1 atm (abs), Y∞ = 0 and T∞ = 300 K. The ambient gases are selected
to allow for different Lewis numbers to be attained. If the Lewis number is less than unity,
then R1 and R2 are both negative, while if the Lewis number is greater than unity, then R1
and R2 are both positive. For example, a CH3OH droplet in an N2 or He environment has
R2 > 0, but in an Xe environment, the droplet has R2 < 0. The gas and liquid properties
were evaluated using data from Linstrom & Mallard (2021). Lewis numbers were obtained
from Dandy (2021).

4. Convective modification of the vaporization rate

The mass flow rate off the droplet is calculated by integrating the mass flux over the droplet
surface (4.1):

ṁ = −2πR2ρoDio

∫ π

0

∂Y
∂r

∣∣∣∣
r=R

sin(θ) dθ. (4.1)

Evaluating the integral yields

ṁ
ṁ0

= 1 + β
1
2

Le2 + η

Le + η
+ · · · , (4.2)
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Liquid/ambient gas Le R1 (mm) R2 (mm)

H2O/N2 0.99 −1.35 −146
H2O/He 1.96 0.007 6.1
H2O/Xe 0.48 −0.006 −0.53
CH3OH/N2 1.44 0.007 1.7
CH3OH/He 2.80 0.010 2.4
CH3OH/Xe 0.77 −0.006 −0.36
C8H18/N2 3.17 0.027 0.48
C8H18/He 5.29 0.040 0.63
C8H18/Xe 2.20 0.001 0.22

Table 1. Values of R1 and R2 for p = 1 atm (abs), Y∞ = 0 and T∞ = 300 K.

where

ṁ0 = 4πR
λo

L
(T∞ − Ts). (4.3)

The evaporation constant K, which is the negative of the time-rate-of-change of the
square of the droplet diameter, is defined as

K = −4
dR2

dt
= 2ṁ

πRρi
, (4.4)

where ρi is the droplet density. Inserting (4.4) and (4.6) into (4.2) yields

K
K0

= 1 + β
1
2

Le2 + η

Le + η
+ · · · , (4.5)

where

K0 = 2ṁ0

πRρi
. (4.6)

Equations (4.2) and (4.5) illustrate the influence of the Lewis number on vaporization
rates, i.e. increasing Le increases the vaporization rate if β is held constant. Similarly, if Le
is held constant, then increasing β, e.g. by increasing R or v∞, increases the vaporization
rate.

5. Droplet motion considerations

We now consider the rectilinear motion of a droplet in a quiescent environment and in the
absence of any body forces, e.g. gravity. Equations (5.1) and (5.2) show the differential
equations for the position x and the velocity v∞ of a droplet, respectively, where m is the
instantaneous droplet mass, and FD is evaluated with (2.29):

dx
dt

= v∞, (5.1)

dv∞
dt

= −FD

m
. (5.2)

Note that here, v∞ is the droplet velocity in the reference frame of the gas.

Because the droplet is evaporating slowly, we neglect momentum transfer that may
exist from non-uniform vaporization along the droplet surface. The droplet mass history is
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Figure 2. Results for an n-octane droplet in a nitrogen environment with R > R2.

evaluated using
dm
dt

= −ṁ, (5.3)

where ṁ, which is the mass flow rate off the droplet surface, is evaluated using (4.2)
and (4.3). Equations (5.1), (5.2) and (5.3) are integrated numerically using an available
ordinary differential equation solver in the language R (Soetaert, Petzoldt & Setzer 2010).

Figure 2 shows results for a C8H18 (n-octane) droplet in a quiescent N2 environment
at 1 atm (abs) and 300 K. The initial droplet radius is R = 0.53 mm, which is larger than
R2 = 0.48 mm, and the initial droplet velocity is 0.1 mm s−1. The droplet radius decreases
with time because of vaporization. The droplet velocity initially increases with time until
the droplet radius decreases to 0.48 mm, at which time the droplet velocity is about
0.4 mm s−1, i.e. after about 50 s, after which the droplet velocity decreases with time. The
total distance that the droplet moves is nearly 30 mm over a time scale of about 100 s. Also
shown in figure 2 are histories for Re, ε, β and φ. These quantities are all much smaller
than unity over the calculation period. In addition, they all display peaks at a time slightly
larger than 50 s, which is when R becomes less than R2.

For comparison, figure 3 shows results for another C8H18 (n-octane) droplet in a
quiescent N2 environment at 1 atm (abs) and 300 K. Now the initial droplet radius is
R = 0.43 mm, however, which is smaller than R2 = 0.48 mm. The initial droplet velocity
is 0.1 mm s−1. As before, the droplet radius decreases with time because of vaporization.
Unlike figure 2, however, the droplet velocity decreases monotonically with time. The total
distance that the droplet moves is slightly over 1 mm over a time scale of about 50 s. The
histories for Re, ε, β and φ are also shown. These quantities are all much smaller than unity
over the calculation period, and they all decrease monotonically with time. The velocity
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Figure 3. Results for an n-octane droplet in a nitrogen environment with R < R2.

profile in figure 3 is similar to the velocity profile in figure 2 once the velocity has begun
to decay.

We now consider the terminal velocity of a droplet as it falls vertically through a
quiescent gas under the influence of gravity. We assume quasi-steady conditions, i.e. the
weight of the droplet is balanced by buoyancy and drag forces. Under these conditions, we
may derive

ṽ = v∞
v∞ref

= 1
1 + R/R2

, (5.4)

where

v∞ref = 4R2(ρi − ρo)g
3μo

1 + 2μ̃
1 + 12μ̃

(5.5)

is the terminal velocity in the absence of thermocapillary effects, and g is the acceleration
due to gravity. Equation (5.4) indicates that when R2 = 0 (Le = 1), a droplet will fall with
speed v∞ref . However, if R2 < 0 (Le < 1), then v∞ > v∞ref , while if R2 > 0 (Le > 1),
then v∞ < v∞ref .

As an example, consider a water droplet of radius 0.01 mm falling under the influence of
normal gravity (g = 9.81 m s−1) in an N2 environment with the environmental conditions
of table 1. Calculations yield ṽ = 1.000, where the Reynolds number based on the droplet
diameter is Re = 0.014. If the environment is changed to He, then it is found that ṽ =
0.998 and Re = 0.0018, while for an Xe environment, ṽ = 1.019 with Re = 0.044. These
Reynolds numbers are all small relative to unity, so the assumption of Stokes flow is valid.
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6. Conclusion

The influence of thermal Marangoni stresses and gas-phase properties on the motion
of a slowly evaporating single-component droplet in Stokes flow has been investigated.
The conservation equations were solved in the liquid and gas phases, and coupled at the
gas–liquid interface by applying interface conditions for conservation of mass, species,
momentum and energy. It was found that thermal Marangoni stresses influence droplet
drag by changing the flow field in the vicinity of a droplet, and that the gas-phase Lewis
number of the evaporating component determines whether Marangoni effects increase or
decrease droplet drag. If the Lewis number is less than unity, then thermal Marangoni
effects increase droplet drag, while if the Lewis number is greater than unity, then thermal
Marangoni effects decrease droplet drag. This behaviour is related to the sign of the
temperature gradient along the droplet surface that is induced by convection.

Conditions exist where a vaporizing droplet in a microgravity environment may exhibit
constant or accelerating translational motion that is driven by thermocapillary effects. This
behaviour will occur only if the droplet radius R is larger than or equal to a critical radius
R2. If the droplet radius is smaller than R2, then the droplet speed will decay with time.

The quasi-steady speed that a falling droplet would attain was also considered. It was
found that relative to Le = 1, if Le < 1, then a droplet falls faster, while if Le > 1, then a
droplet falls more slowly. This behaviour is caused by thermocapillary flow induced by an
interfacial temperature gradient that develops from the droplet–gas relative motion.
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Appendix A

To expand further on the influence of the Lewis number on the surface temperature
gradient, we express the outer-zone solutions in terms of h and m as

houterzone ≈ 1
z

exp
(
εz [cos(θ)− 1]

2

)
, (A1)

mouterzone ≈ 1
z

exp
(
εLez [cos(θ)− 1]

2

)
. (A2)

Equations (A1) and (A2) are plotted in figure 4 for ε = 0.1 and Lewis numbers 0.8 and 1.2,
where the solid lines correspond to (A1), and the dashed lines correspond to (A2). When
Le = 0.8, the contours for h are inside the contours of m, while for Le = 1.2, the opposite
situation holds. When Le = 1, the contours overlap completely such that energy and mass
are transported in exactly the same way (this situation is not shown in the figure). The solid
and dashed lines in figure 4 overlap for θ = 0, but they do not overlap for other values of
θ . The largest gap between the solid and dashed lines occurs when θ = π such that Lewis
number effects are strongest upstream of the droplet (for Le /= 1). Finally, it is noted that
convection increases gradients on the upstream side of the droplet, while gradients are
decreased on the downstream side.

Figure 4 suggests an approximate approach to increase understanding of the reversal
of the surface temperature gradient. To proceed, we divide the droplet into upstream and
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Figure 4. Contour plots of (A1) (solid lines) and (A2) (dashed lines) with ε = 0.1.

downstream halves, denoted by ‘+’ and ‘−’, respectively. Energy conservation is enforced
on each half separately, and for simplicity we assume that energy transport through the
droplet (between the two halves) is negligible.

An energy balance at the upstream surface of the droplet, i.e. r = R, yields

λ+
dT+
dr

= −ρoD+L
dY+
dr

, (A3)

where λ+ and D+ are effective transport properties that account for both convection and
diffusion. We characterize the derivatives as dT+/dr = (T∞ − Ts+)/R and dY+/dr =
(Y∞ − Ys+)/R, enabling the surface energy balance to be expressed as

λ+
ρoD+

(T∞ − Ts+) = Ys+ − Y∞. (A4)

Use of (3.7) allows the interface energy balance to be written as

Ts+ = T∞ + Γ − Y∞
λ+
ρoD+

+ Γ L
RgT2∞

. (A5)

Applying this same procedure to the downstream half of the droplet yields

Ts− = T∞ + Γ − Y∞
λ−
ρoD−

+ Γ L
RgT2∞

, (A6)

where λ− > λo and D− > Do for ε > 0.
To evaluate λ+, we characterize the energy flux to the upstream droplet surface as the

sum λo(T∞ − Ts+)/R + v∞cp(T∞ − Ts+), i.e. diffusion plus convection, which can be
written as λo(1 + ε)(T∞ − Ts+)/R. We thus define λ+ = λo(1 + ε).

The mass flux from the upstream droplet surface to the environment is characterized
as a sum of diffusive and convective components, i.e. ρoDio(Ys+ − Y∞)/R +
ρov∞(Ys+ − Y∞), which can be expressed as ρoDio(1 + ε Le)(Ys+ − Y∞)/R. This yields
D+ = Dio(1 + ε Le). Similar analyses for the downstream surface yield λ− = λo(1 − ε),
and D− = Dio(1 − ε Le), where it is noted that the convective flow is away from the
droplet in this case.
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Substituting these variables into the interface energy balances and then subtracting Ts−
from Ts+ yields

Ts+ − Ts− = Γ − Y∞
λo

ρoDo

1 + ε

1 + εLe
+ Γ L

RgT2∞

− Γ − Y∞
λo

ρoDio

1 − ε

1 − εLe
+ Γ L

RgT2∞

. (A7)

We now expand (A7) in a Taylor series for ε � 1, yielding

Ts+ − Ts− = Cε(Le − 1)+ · · · , (A8)

where C is a constant. Equation (A8) yields the result that to leading order in ε, the surface
temperature gradient, which is characterized as (Ts+ − Ts−)/π, changes its sign if Le
becomes smaller or larger than unity (for ε /= 0). If Le = 1, then to leading order the
surface temperature gradient is zero.
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