Minimal number of generators

of some classes of groups

Yeo Kok Chye

The rank $d(G)$ of a group G is defined as the minimum of the cardinalities of the generating sets of G; a generating set of cardinal $d(G)$ is called a minimal generating set of G.

Let G be a group with the presentation

$$
G=\operatorname{gp}\left(a_{1}, a_{2}, \ldots, a_{t} ; a_{1}^{p_{1}}=a_{2}^{p_{2}}=\ldots=a_{t}^{p_{t}}=a_{1} a_{2} \ldots a_{t}=1\right)
$$ where each of the $p_{i} s$ occurring in the set of relations is a prime. It is shown that any permutation of the generators in the last relator $a_{1} a_{2} \ldots a_{t}$ does not change the group. Let there be s different primes occurring in the presentation. It is shown that there is no loss of generality in assuming the first s primes, namely, $p_{1}, p_{2}, \ldots, p_{s}$, to be all distinct from one another.

Let $n=p_{1} p_{2} \cdots p_{s}$ and $r_{1}, r_{2}, \ldots, r_{s}$ be the number of times each $p_{i}, i=1,2, \ldots, s$, occurs in the presentation. Again, it is shown that there is no loss of generality in assuming $r_{1} \leq r_{2} \leq \ldots \leq r_{g}$.

If now G^{n} is the group generated by all elements of G, each raised to the nth power, then with the above assumptions, it is proved that
(i) if $s=1$, then $d\left(G / G^{n}\right)=t-1$;
(ii) if $s \geq 2$ and $r_{i} \geq 2$ for some $1 \leq i<s$, then

Received 21 March 1973. Thesis submitted to the Australian National University, November 1972. Degree approved, June 1973. Supervisors: Dr S.A. Meskin, Professor B.H. Neumann.

$$
d\left(G / G^{n}\right) \geq r_{s}+1-\frac{2}{p_{1} p_{2} \cdots p_{s-1}}
$$

(iii)

$$
\text { if } s \geq 2 \text { and } r_{i}=1 \text { for all } 1 \leq i<s \text {, but } r_{s} \geq 2 \text {, }
$$

then

$$
d\left(G / G^{n}\right) \geq \max \left\{1, r_{s}-2\right\}+1-\frac{2}{p_{s} p_{s-2}}, \text { where } p_{0}=1
$$

In the second part of the thesis we show that if A is a finitely generated nilpotent group, B is a non-trivial finitely generated abelian group, and A wr B is their (standard, restricted) wreath product, then

$$
d(A \mathrm{wr} B)=\max \{1+d(A), \quad d(A \times B)\}
$$

(where $A \times B$ is the direct product). In fact, we construct minimal generating sets for all such wreath products. Some other wreath products are also considered.

