BULL. AUSTRAL. MATH. SOC. VOL. 10 (1974), 143-144.

Abstracts of Australasian PhD theses Magneto-viscous effects on

resistive plasma instabilities

George M. Marinoff

The influence of ion "parallel" viscosity, finite Larmor radius and "perpendicular" viscosity in resistive, normal mode analysis for the "interchange" and "tearing" instabilities is investigated.

For a plasma slab (cartesian) model, it is shown that ion "parallel" viscosity is unimportant for the resistive-g instability, but that ion "perpendicular" viscosity has a stabilizing effect consistent with results in previous literature.

A preliminary, cartesian model calculation for the incompressible resistive "tearing" mode in the hard-core pinch, with "parallel" viscosity included in the outer (non-resistive) region, suggests that "parallel" viscosity might be destabilizing. This result is not confirmed in cylindrical geometry calculations involving viscosity in the outer region, however; the dominant "parallel" viscosity is found to have no significant effect, except for slight stabilization in the extreme shear case.

A more complete treatment of the resistive "tearing" mode with viscosity, including both cylindrical geometry and compressibility, suggests the possibility of:

- (i) a new (double) viscous instability;
- (ii) a "parallel" viscosity modified resistive "tearing" instability, more unstable at lower temperatures but more stable at high temperature;

Received 21 May 1973. Thesis submitted to the Flinders University of South Australia, May 1973. Degree approved, November 1973. Supervisor: Professor R.J. Hosking, University of Waikato.

- (iii) negative values of $\Delta(Q)$, the discontinuity in the logarithmic derivative of the radial perturbed magnetic field across the inner resistive region, and resultant viscous instability;
 - (iv) possible complete stabilization of the resistive tearing mode by "parallel" viscosity.